1
|
Khanem A, Karim N, Ullah I, Younas F. Essential oils of Citrus limon, Cymbopogon citratus, and Lavandula officinalis disrupt E. coli biofilms by inducing cellular damage. Biol Futur 2025:10.1007/s42977-025-00255-5. [PMID: 40232606 DOI: 10.1007/s42977-025-00255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Biofilms by E. coli is not only the primary cause of recurrent urinary tract infections, but also lead to medical device-associated infections. Ever increasing antibiotic resistance due to biofilms has sparked a search for plant-based replacements. This study examines anti-biofilm potential of essential oils from lemon (Citrus limon), lemongrass (Cymbopogon citratus), and lavender (Lavandula officinalis) against 26 clinical isolates of E. coli. Essential oils (EOs) were extracted by using hydro-distillation and characterized by GC-MS and FT-IR. Biofilms were quantitatively and qualitatively evaluated. The extracted essential oils had yields ranging from 1.37 to 1.45 (w/v). The main constituents were limonene (94%) in lemon, citral (42%) and ketones (9%) in lemongrass, and linalool (35%) and linalyl anthranilate (20%) in lavender EO. MICs and MBCs of EOs were in the range of 3.13-50 µg/ml. The oils under investigation exhibited notable biofilm inhibition and eradication properties. The percent inhibition and eradication varied between 6-89% and 3-82.25% (p < 0.0001), respectively. These findings suggest that essential oils from lemon, lemongrass, and lavender may offer a promising natural approach to combat E. coli biofilms and associated infections. Further research is warranted to elucidate the underlying mechanisms of action and to explore their clinical applications.
Collapse
Affiliation(s)
- Aalia Khanem
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| | - Naheed Karim
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| | - Ikram Ullah
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| | - Farhan Younas
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
3
|
D’Aquila P, De Rose E, Sena G, Scorza A, Cretella B, Passarino G, Bellizzi D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics (Basel) 2024; 13:619. [PMID: 39061301 PMCID: PMC11273524 DOI: 10.3390/antibiotics13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
With the widespread phenomenon of antibiotic resistance and the diffusion of multiple drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative agents against pathogenic microorganisms. Since an association between biofilm formation and antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing (QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted the attention of researchers and has become a new strategy for controlling harmful microorganisms. Among these, a number of both natural and synthetic compounds have been progressively identified as able to interrupt the intercellular communication within a microbial community and the adhesion to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Angelo Scorza
- Villa Ermelinda, Progetto Terza Età, 88842 Cutro, Italy; (A.S.); (B.C.)
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| |
Collapse
|
4
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
5
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ygor Ferreira Garcia da Costa
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Talas, Kayseri, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Moghaddam A, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K, Hosseini ZS, Tebyaniyan H. The Current Antimicrobial and Antibiofilm Activities of Synthetic/Herbal/Biomaterials in Dental Application. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8856025. [PMID: 35958811 PMCID: PMC9363208 DOI: 10.1155/2022/8856025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Herbal and chemical products are used for oral care and biofilm treatment and also have been reported to be controversial in the massive trials conducted in this regard. The present review is aimed at evaluating the potential of relevant herbal and chemical products and comparing their outcomes to conventional oral care products and summarizing the current state of evidence of the antibiofilm properties of different products by evaluating studies from the past eleven years. Chlorhexidine gluconate (CHX), essential oils (EOs), and acetylpyridinium chloride were, respectively, the most commonly studied agents in the included studies. As confirmed by all systematic reviews, CHX and EO significantly control the plaque formation and gingival indices. Fluoride is another interesting reagent in oral care products that has shown promising results of oral health improvement, but the evidence quality needs to be refined. The synergy between natural plants and chemical products should be targeted in the future to accede to the formation of new, efficient, and healthy anticaries strategies. Moreover, to discover their biofilm-interfering or biofilm-inhibiting activities, effective clinical trials are needed. In this review article, therapeutic applications of herbal/chemical materials in oral biofilm infections are discussed in recent years (2010-2022).
Collapse
Affiliation(s)
- Ali Moghaddam
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Hosseini
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Tebyaniyan
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Novel approaches for the treatment of infections due to multidrug-resistant bacterial pathogens. Future Med Chem 2022; 14:1133-1148. [PMID: 35861021 DOI: 10.4155/fmc-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR), which is a major challenge for global healthcare, emerging because of several reasons including overpopulation, increased global migration and selection pressure due to enhanced use of antibiotics. Antibiotics are the widely used therapeutic options to combat infectious diseases; however, unfortunately, inadequate and irregular antibiotic courses are also major contributing factors in the emergence of AMR. Additionally, persistent failure to develop and commercialize new antibiotics has created the scarcity of effective anti-infective drugs. Thus, there is an urgent need for a new class of antimicrobials and other novel approaches to curb the menace of AMR. Besides the conventional approaches, some novel approaches such as the use of antimicrobial peptides, bacteriophages, immunomodulation, host-directed therapy and antibodies have shown really promising potentials.
Collapse
|
8
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|
9
|
Kim Y, Lee J, Park S, Kim S, Lee J. Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microb Biotechnol 2022; 15:590-602. [PMID: 34156757 PMCID: PMC8867970 DOI: 10.1111/1751-7915.13864] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022] Open
Abstract
Biofilms are communities of bacteria, fungi or yeasts that form on diverse biotic or abiotic surfaces, and play important roles in pathogenesis and drug resistance. A generic saw palmetto oil inhibited biofilm formation by Staphylococcus aureus, Escherichia coli O157:H7 and fungal Candida albicans without affecting their planktonic cell growth. Two main components of the oil, lauric acid and myristic acid, are responsible for this antibiofilm activity. Their antibiofilm activities were observed in dual-species biofilms as well as three-species biofilms of S. aureus, E. coli O157:H7 and C. albicans. Transcriptomic analysis showed that lauric acid and myristic acid repressed the expressions of haemolysin genes (hla and hld) in S. aureus, several biofilm-related genes (csgAB, fimH and flhD) in E. coli and hypha cell wall gene HWP1 in C. albicans, which supported biofilm inhibition. Also, saw palmetto oil, lauric acid and myristic acid reduced virulence of three microbes in a nematode infection model and exhibited minimal cytotoxicity. Furthermore, combinatorial treatment of fatty acids and antibiotics showed synergistic antibacterial efficacy against S. aureus and E. coli O157:H7. These results demonstrate that saw palmetto oil and its main fatty acids might be useful for controlling bacterial infections as well as multispecies biofilms.
Collapse
Affiliation(s)
- Yong‐Guy Kim
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Jin‐Hyung Lee
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Sunyoung Park
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Sanghun Kim
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Jintae Lee
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| |
Collapse
|
10
|
Nguyen HT, Hensel A, Goycoolea FM. Chitosan/cyclodextrin surface-adsorbed naringenin-loaded nanocapsules enhance bacterial quorum quenching and anti-biofilm activities. Colloids Surf B Biointerfaces 2021; 211:112281. [PMID: 34952287 DOI: 10.1016/j.colsurfb.2021.112281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022]
Abstract
Pathogenic bacteria use quorum sensing (QS), a cell-to-cell communication process that relies on small signaling molecules, to regulate the genetic expression that leads to several essential virulence factors such as bioluminescence, biofilm formation, bacterial motility, among other. Naringenin (NAR), a bitter and colorless flavanone ubiquitous in herbs and fruits, has been shown to inhibit QS activity in P. aeruginosa by decreasing the production of pyocyanin and elastase. In this study, to evaluate the anti-QS activity of naringenin against an E. coli Top 10 biosensor, we developed a novel core-corona nanocapsule formulation comprising surface co-adsorbed β-cyclodextrin (Captisol®) and chitosan loaded with NAR. The results showed that both the nanocapsule (NC) and nanoemulsion (NE) formulations, NAR payload associated with high efficiency , namely ~ 92.88 and ~ 67.98%, respectively. These formulations remained stable for 24 h and showed a biphasic controlled release profile in bacterial M9 medium. Captisol® was effectively immobilized on the NC's surface, resulting in a surface charge inversion from positive (~ + 42 mV) to negative (~ -32 mV) ζ-potential. The biosensor assay revealed that NC outperformed NE in quenching the QS response and the incorporation of naringenin at the NC's multifunctional surface enhanced this bioactivity. Cytotoxicity assays showed that when NAR was associated in NC (188 µM) it was not cytotoxic to Caco2 cells, by contrast with its free form, thus highlighting the cytoprotective effect of the developed formulation. Biofilm formation was inhibited up to ~ 60% in NAR-loaded NC (188 μM), indicating the synergistic effect of positively charged chitosan with the bioactivity of NAR while harnessing the NC's high surface area-to-volume ratio.
Collapse
Affiliation(s)
- Hao Thanh Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam; Institute for Biology and Biotechnology of Plants, Laboratory of Nanobiotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Andreas Hensel
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom; Institute for Biology and Biotechnology of Plants, Laboratory of Nanobiotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany.
| |
Collapse
|
11
|
Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:153-190. [PMID: 33951403 DOI: 10.1146/annurev-phyto-020620-095740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Amy Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Adi Faigenboim
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| |
Collapse
|
12
|
Lahiri D, Nag M, Garai S, Ray RR. The Chemistry of Antibiofilm Phytocompounds. Mini Rev Med Chem 2021; 21:1034-1047. [PMID: 32767942 DOI: 10.2174/1389557520666200807135243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Phytocompounds are long known for their therapeutic uses due to their competence as antimicrobial agents. The antimicrobial activity of these bioactive compounds manifests their ability as an antibiofilm agent and is thereby proved to be competent to treat the widespread biofilm-associated chronic infections. The rapid development of antibiotic resistance in bacteria has made the treatment of these infections almost impossible by conventional antibiotic therapy, which forced a switch-over to the use of phytocompounds. The present overview deals with the classification of a huge array of phytocompounds according to their chemical nature, detection of their target pathogen, and elucidation of their mode of action.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| |
Collapse
|
13
|
Ismail MM, Hassan M, Moawad SS, Okba MM, Ashour RM, Fayek NM, Saber FR. Exploring the Antivirulence Activity of Pulverulentone A, a Phloroglucinol-Derivative from Callistemon citrinus Leaf Extract, against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10080907. [PMID: 34438957 PMCID: PMC8388764 DOI: 10.3390/antibiotics10080907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Bacterial resistance to antibiotics is a global life-threatening issue. Antivirulence therapy is a promising approach to combat bacterial infections as it disarms the bacteria from their virulence factors with reduced selective pressure and a lower chance of resistance. (2) Methods: Callistemon citrinus leaf extract and its major constituent, Pulverulentone A, were tested for their ability to inhibit biofilm, exopolysaccharides, pyocyanin and proteases produced by MDR P. aeruginosa. In addition, a Galleria mellonella larvae model was employed to evaluate the in vivo cytotoxicity of Pulverulentone A and its ability to combat Pseudomonas infection. Docking study was further performed to investigate Pulverulentone A druggability against main quorum sensing (QS) targets expressed by P. aeruginosa; (3) Results: Both C. citrinus extract and the isolated compound could inhibit biofilm formation, extracellular polymeric substances (EPS) and pigment production by the tested isolates. Unexpectedly, no significant inhibition was observed on proteases production. The in silico docking analysis revealed good interactions of Pulverulentone A with all QS targets examined (LasR, MyfR/PqsR, QscR). Pulverulentone A was safe up to 400 µg·mL−1 in Galleria caterpillars. Moreover, pre-treatment of P. aeruginosa with Pulverulentone A slightly enhanced the survival of the infected larvae. (4) Conclusions: The present study proves Pulverulentone A safety with significant in vitro and in silico antivirulence potential against P. aeruginosa.
Collapse
Affiliation(s)
- Maha M. Ismail
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Correspondence: (M.M.I.); (F.R.S.); Tel./Fax: +20-3628426 (ext. 00202) (M.M.I.); Tel.: +20-1004405983 (F.R.S.)
| | - Mariam Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Sawsan S. Moawad
- Department of Pests and Plant Protection, National Research Center (NRC), Giza 12622, Egypt;
| | - Mona M. Okba
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
| | - Rehab M. Ashour
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
| | - Nesrin M. Fayek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
| | - Fatema R. Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
- Correspondence: (M.M.I.); (F.R.S.); Tel./Fax: +20-3628426 (ext. 00202) (M.M.I.); Tel.: +20-1004405983 (F.R.S.)
| |
Collapse
|
14
|
Antimicrobial and antivirulence efficacies of citral against foodborne pathogen Vibrio parahaemolyticus RIMD2210633. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107507] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Shi YS, Zhang Y, Li HT, Wu CH, El-Seedi HR, Ye WK, Wang ZW, Li CB, Zhang XF, Kai GY. Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front Microbiol 2020; 11:566325. [PMID: 33193155 PMCID: PMC7658412 DOI: 10.3389/fmicb.2020.566325] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.
Collapse
Affiliation(s)
- Rojita Mishra
- Department of Botany, Polasara Science College, Polasara, India
| | | | - Surajit De Mandal
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Junaid Khan
- Department of Pharmacy, Sant Gahira Guru University, Ambikapur, India
| |
Collapse
|
17
|
Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo) 2020; 74:24-41. [PMID: 32647212 DOI: 10.1038/s41429-020-0344-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.
Collapse
|
18
|
Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
20
|
Karn A, Zhao C, Yang F, Cui J, Gao Z, Wang M, Wang F, Xiao H, Zheng J. In-vivo biotransformation of citrus functional components and their effects on health. Crit Rev Food Sci Nutr 2020; 61:756-776. [PMID: 32255367 DOI: 10.1080/10408398.2020.1746234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Citrus, one of the most popular fruits worldwide, contains various functional components, including flavonoids, dietary fibers (DFs), essential oils (EOs), synephrines, limonoids, and carotenoids. The functional components of citrus attract special attention due to their health-promoting effects. Food components undergo complex biotransformation by host itself and the gut microbiota after oral intake, which alters their bioaccessibility, bioavailability, and bioactivity in the host body. To better understand the health effects of citrus fruits, it is important to understand the in-vivo biotransformation of citrus functional components. We reviewed the biotransformation of citrus functional components (flavonoids, DFs, EOs, synephrines, limonoids, and carotenoids) in the body from their intake to excretion. In addition, we described the importance of biotransformation in terms of health effects. This review would facilitate mechanistic understanding of the health-promoting effect of citrus and its functional components, and also provide guidance for the development of health-promoting foods based on citrus and its functional components.
Collapse
Affiliation(s)
- Abhisek Karn
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Minqi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Karnjana K, Nobsathian S, Soowannayan C, Zhao W, Tang YJ, Wongprasert K. Purification and Evaluation of N-benzyl Cinnamamide from Red Seaweed Gracilaria fisheri as an Inhibitor of Vibrio harveyi AI-2 Quorum Sensing. Mar Drugs 2020; 18:E80. [PMID: 32012662 PMCID: PMC7073586 DOI: 10.3390/md18020080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/03/2023] Open
Abstract
Previously, we reported that the ethanol extract from red seaweed Gracilaria fisheri effectively decreased biofilm formation of Vibrio harveyi. In this study, the anti-biofilm active compounds in the ethanol extract were isolated and their structures identified. The anti-biofilm fractionation assay for minimum inhibitory concentration (MIC) produced two fractions which possessed maximal inhibitory activities toward the biofilm formation of V. harveyi strains 1114 and BAA 1116. Following chromatographic separation of the bioactive fractions, two pure compounds were isolated, and their structures were elucidated using FTIR, NMR, and HR-TOF-MS. The compounds were N-benzyl cinnamamide and α-resorcylic acid. The in vitro activity assay demonstrated that both compounds inhibited the biofilm formation of V. harveyi and possessed the anti-quorum sensing activity by interfering with the bioluminescence of the bacteria. However, the N-benzyl cinnamamide was more potent than α-resorcylic acid with a 10-fold lesser MIC. The present study reveals the beneficial property of the N-benzyl cinnamamide from the ethanol extract as a lead anti-microbial drug against V. harveyi.
Collapse
Affiliation(s)
- Kulwadee Karnjana
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | - Chumporn Soowannayan
- National Center for Genetic Engineering and Biotechnology, and Centex Shrimp Chalermprakiat Building, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
22
|
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med 2019; 14:11. [PMID: 30936939 PMCID: PMC6425673 DOI: 10.1186/s13020-019-0232-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Biofilm is a natural form of bacterial growth ubiquitously in environmental niches. The biofilm formation results in increased resistance to negative environmental influences including resistance to antibiotics and antimicrobial agents. Quorum sensing (QS) is cell-to-cell communication mechanism, which plays an important role in biofilm development and balances the environment when the bacteria density becomes high. Due to the prominent points of biofilms implicated in infectious disease and the spread of multi-drug resistance, it is urgent to discover new antibacterial agents that can regulate biofilm formation and development. Accumulated evidences demonstrated that natural products from plants had antimicrobial and chemo-preventive properties in modulation of biofilm formation in the last two decades. This review will summarize recent studies on the discovery of natural anti-biofilm agents from plants with clear-cut mechanisms or identified molecular addresses, as well as some herbs with unknown mechanisms or unidentified bioactive ingredients. We also focus on the progression of techniques on the extraction and identification of natural anti-biofilm substances. Besides, anti-biofilm therapeutics undergoing clinical trials are discussed. These newly discovered natural anti-biofilm agents are promising candidates which could provide novel strategies for biofilm-associated infections.
Collapse
Affiliation(s)
- Lan Lu
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China.,2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan People's Republic of China
| | - Wei Hu
- 4Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong People's Republic of China.,5Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zeru Tian
- 6School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Dandan Yuan
- 7Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong People's Republic of China
| | - Guojuan Yi
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Yangyang Zhou
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Qiang Cheng
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Jie Zhu
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Mingxing Li
- 2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan People's Republic of China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan People's Republic of China
| |
Collapse
|
23
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Calva-Candelaria N, Meléndez-Camargo ME, Montellano-Rosales H, Estrada-Pérez AR, Rosales-Hernández MC, Fragoso-Vázquez MJ, Martínez-Archundia M, Correa-Basurto J, Márquez-Flores YK. Oenothera rosea L´Hér. ex Ait attenuates acute colonic inflammation in TNBS-induced colitis model in rats: in vivo and in silico myeloperoxidase role. Biomed Pharmacother 2018; 108:852-864. [PMID: 30372897 DOI: 10.1016/j.biopha.2018.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Oenothera rosea L´Hér. ex Ait is a species traditionally used in the treatment of inflammation, headache, stomach pain, infections, among others. The aim of this study was evaluating the acute anti-inflammatory activity of the aqueous extract of O. rosea by 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Rats were randomized into six groups: (I) Sham; (II) EtOH; (III) TNBS; and (IV-VI) 250, 500 and 750 mg/Kg, respectively. The colonic injury was induced (groups III-VI) by intrarectal instillation of 0.25 mL of TNBS (10 mg) in 50% ethanol. Groups I and II received an enema (0.25 mL) of physiological saline solution or 50% ethanol, respectively. Treatments were administered by oral gavage 48, 24 and 1 h prior, and 24 h after the induction. The inflammatory response was assessed considering the macroscopic and microscopic damage, the serum nitric oxide (NO), the colonic IL-1β levels, and the myeloperoxidase (MPO) activity. Moreover, we performed an LC-MS-based metabolite profiling, and a docking on the MPO. Doses of 500 and 750 mg/Kg showed a protective effect in the TNBS-induced colonic damage. This activity was related to the downregulation of evaluated parameters. Also, considering previous reports, 29 metabolites of 91 detected were selected for the docking, of which Isolimonic acid (29) and Kaempferol 3-(2'',4''-diacetylrhamnoside) (10) showed the highest affinity to MPO. The aqueous extract of O. rosea protected the TNBS-induced colonic damage in rats, an effect that could be associated with the presence of polyphenolic compounds, alkaloids, and terpenes; as well as their ability to down-regulate MPO activity.
Collapse
Affiliation(s)
- Natalia Calva-Candelaria
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, Mexico
| | - María Estela Meléndez-Camargo
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, Mexico
| | - Hortensia Montellano-Rosales
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico
| | - Alan R Estrada-Pérez
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - M Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - Yazmín K Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, Mexico; Universidad Tecnológica de México, UNITEC MÉXICO, Campus Marina, Av. Marina Nacional 162 Col. Anáhuac Sección I, C.P. 11320, Miguel Hidalgo, Ciudad de México, Mexico.
| |
Collapse
|
25
|
Pérez-Sánchez T, Mora-Sánchez B, Balcázar JL. Biological Approaches for Disease Control in Aquaculture: Advantages, Limitations and Challenges. Trends Microbiol 2018; 26:896-903. [PMID: 29801773 DOI: 10.1016/j.tim.2018.05.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Although aquaculture activity has experienced a great development over the past three decades, infectious diseases have become a limiting factor for further intensification. Because the use of antibiotics has led to the widespread emergence of antibiotic resistance, the search for alternative environmentally friendly approaches is urgently needed. This Opinion paper offers an update on the successes and challenges of biological approaches for bacterial disease prevention and control in aquaculture. Although most of these approaches are still in research and development stages, some of them have shown promising results in field trials. Therefore, a better understanding of the mechanisms of action of these approaches will help to maximise their beneficial properties.
Collapse
Affiliation(s)
- Tania Pérez-Sánchez
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Brenda Mora-Sánchez
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; Department of Animal Health, Centro Veterinario de Diagnóstico e Investigación (CEVEDI), School of Veterinary Medicine, Universidad Nacional Autónoma de Nicaragua-León, Carretera a la Ceiba 1 Km al Este, León, Nicaragua
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain.
| |
Collapse
|
26
|
Abstract
Increasing extent of pathogenic resistance to drugs has encouraged the seeking for new anti-virulence drugs. Many pharmacological and pharmacognostical researches are performed to identify new drugs or discover new structures for the development of novel therapeutic agents in the antibiotic treatments. Although many phytochemicals show prominent antimicrobial activity, their power lies in their anti-virulence properties. Quorum sensing (QS) is a bacterial intercellular communication mechanism, which depends on bacterial cell population density and controls the pathogenesis of many organisms by regulating gene expression, including virulence determinants. QS has become an attractive target for the development of novel anti-infective agents that do not rely on the use of antibiotics. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Medicinal plants offer an attractive repertoire of phytochemicals with novel microbial disease-controlling potential, due to the spectrum of secondary metabolites present in extracts, which include phenolics, quinones, flavonoids, alkaloids, terpenoids, and polyacetylenes. They have recently received considerable attention as a new source of safe and effective QS inhibitory substances. The objective of this review is to give a brief account of the research reports on the plants and natural compounds with anti-QS potential.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Nature to the natural rescue: Silencing microbial chats. Chem Biol Interact 2017; 280:86-98. [PMID: 29247642 DOI: 10.1016/j.cbi.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Communication is the sole means by which effective networking and co-existence is accomplished amongst living beings. Microbes have their own chit-chats. Science has overheard these microbial gossips and have concluded that these aren't just informal communications, but carefully coordinated signals that plan their effective strategies. Tracking one such signal molecule, N-acyl homoserine lactone (AHL), led to a fundamental understanding to microbial quorum sensing (QS). Furtherance of research sought for ways to cut off communication between these virulent forms, so as to hinder their combinatorial attacks through quorum sensing inhibitors (QSIs). A clear understanding of the inhibitors of these microbial communication systems is vital to destroy their networking and co-working. The current review, consolidates the solutions for QSIs offered from natural sources against these micro components, that are capable of slaughtering even nature's most fit entity-man. The applications of effective out sourcing of this QSI technologies and the need for development are discussed. The importance of silencing this microbial chatter to various aspects of human life and their implications are discussed and elaborated.
Collapse
|
28
|
Thanh Nguyen H, Goycoolea FM. Chitosan/Cyclodextrin/TPP Nanoparticles Loaded with Quercetin as Novel Bacterial Quorum Sensing Inhibitors. Molecules 2017; 22:E1975. [PMID: 29140285 PMCID: PMC6150374 DOI: 10.3390/molecules22111975] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
The widespread emergence of antibiotic-resistant bacteria has highlighted the urgent need of alternative therapeutic approaches for human and animal health. Targeting virulence factors that are controlled by bacterial quorum sensing (QS), seems a promising approach. The aims of this study were to generate novel nanoparticles (NPs) composed of chitosan (CS), sulfo-butyl-ether-β-cyclodextrin (Captisol®) and/or pentasodium tripolyphosphate using ionotropic gelation technique, and to evaluate their potential capacity to arrest QS in bacteria. The resulting NPs were in the size range of 250-400 nm with CS70/5 and 330-600 nm with CS70/20, had low polydispersity index (<0.25) and highly positive zeta potential ranging from ζ ~+31 to +40 mV. Quercetin, a hydrophobic model flavonoid, could be incorporated proportionally with increasing amounts of Captisol® in the NPs formualtion, without altering significantly its physicochemical properties. Elemental analysis and FTIR studies revealed that Captisol® and quercetin were effectively integrated into the NPs. These NPs were stable in M9 bacterial medium for 7 h at 37 °C. Further, NPs containing Captisol® seem to prolong the release of associated drug. Bioassays against an E. coli Top 10 QS biosensor revealed that CS70/5 NPs could inhibit QS up to 61.12%, while CS70/20 NPs exhibited high antibacterial effects up to 88.32%. These results suggested that the interaction between NPs and the bacterial membrane could enhance either anti-QS or anti-bacterial activities.
Collapse
Affiliation(s)
- Hao Thanh Nguyen
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- Department of Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Ngo Xuan Quang Street, Hanoi 100000, Vietnam.
| | - Francisco M Goycoolea
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
29
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|
30
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
31
|
Santhakumari S, Nilofernisha NM, Ponraj JG, Pandian SK, Ravi AV. In vitro and in vivo exploration of palmitic acid from Synechococcus elongatus as an antibiofilm agent on the survival of Artemia franciscana against virulent vibrios. J Invertebr Pathol 2017; 150:21-31. [PMID: 28887169 DOI: 10.1016/j.jip.2017.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/02/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Biofilm formation of Vibrio spp. has been demonstrated as a potentially important mechanism contributing antibiotic treatment failure in aquaculture. In the present study, the effect of palmitic acid (PA) identified from Synechococcus elongatus was assessed for the inhibition of quorum sensing (QS) regulated biofilm formation in aquatic bacterial pathogens. The biofilm inhibitory concentration (BIC) of PA against Vibrio spp. was found to be 100µgml-1. In this concentration, PA exhibited a significant inhibition in biofilm biomass of Vibrio harveyi MTCC 3438, V. parahaemolyticus ATCC 17802, V. vulnificus MTCC 1145 and V. alginolyticus ATCC 17749 without hindering their planktonic growth. Also, PA displayed gradual decrease in bioluminescence production of V. harveyi. The results of extracellular polymeric substances quantification, microbial adhesion to hydrocarbons and Fourier transform infrared spectroscopic (FT-IR) analyses suggested that PA positively interferes with the initial adhesion stages of biofilm formation. In addition, confocal and scanning electron microscopic analysis substantiates the antibiofilm efficacy of the PA. The transcriptomic analysis revealed the down-regulation of QS mediated response regulator genes expression in V. harveyi. Concomitantly, PA reduced the intestinal colonization of vibrios in brine shrimp larvae and thereby attenuates the biofilm assemblage and its associated virulence. In vivo studies using brine shrimp larvae manifested the reduction in adherence and virulence, which prompts further investigation about the potential of PA for the treatment of vibriosis.
Collapse
Affiliation(s)
| | | | - Jeyaraj Godfred Ponraj
- TIL Biosciences - Animal Health Division of Tablets (India) Limited, Jhaver Centre, Egmore, Chennai 600 008, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
32
|
Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. ASIAN PAC J TROP MED 2017; 10:729-743. [DOI: 10.1016/j.apjtm.2017.07.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023] Open
|
33
|
Srinivasan R, Santhakumari S, Ravi AV. In vitro antibiofilm efficacy of Piper betle against quorum sensing mediated biofilm formation of luminescent Vibrio harveyi. Microb Pathog 2017; 110:232-239. [PMID: 28687321 DOI: 10.1016/j.micpath.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Vibrio harveyi is a potent biofilm former, which confers resistance to multiple antimicrobials, disinfectants, chemicals and biocides. The prevalence of biofilm mediated antibiotic resistance among aquatic bacterial pathogens stresses the search for novel alternative approach to treat vibriosis in aquaculture. Exploring suitable therapeutics from natural resources could be a novel area of research. Therefore, this work was executed to evaluate the inhibitory effect of Piper betle ethyl acetate extract (PBE) on bioluminescence production and biofilm formation of V. harveyi. Minimal inhibitory concentration (MIC) of PBE against planktonic V. harveyi was found to be 1600 μg ml-1; furthermore, PBE inhibited the quorum sensing (QS) mediated bioluminescence production and biofilm formation in V. harveyi upto 98 and 74% respectively, at its sub-MIC concentration of 400 μg ml-1 without affecting their cell viability. Similar results were obtained for exopolysaccharides production and swimming motility related to biofilm formation of V. harveyi, where PBE reduced EPS production upto 64%. Light and confocal laser scanning microscopic analyses further confirmed that the PBE effectively prevented the initial attachment as well as microcolonies formation of V. harveyi biofilm, when compared to their untreated controls. This study demonstrates the promising antibiofilm activity of PBE and confirms the ethnopharmacological potential of this plant against V. harveyi infections.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
34
|
|
35
|
Redenski I, Sahar-Helft S, Stabholz A, Steinberg D. Er:YAG Laser Irradiation Induces Behavioral Changes in V. harveyi. Photomed Laser Surg 2017; 35:164-170. [PMID: 28068190 DOI: 10.1089/pho.2016.4155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Laser technologies have many different applications in medical, agricultural, and industrial fields. Studies have shown several effects of laser energy on different bacterial species, in a wide variety of settings. Recent reports have found that one of the unique features of bacteria is their ability to communicate among themselves (quorum sensing). We sought to investigate whether low-energy laser irradiation affects bacterial behavior, which is regulated by quorum sensing. METHODS Laser irradiations were performed using Er:YAG laser (2940 nm wavelength) at output powers of 0.5, 1.5, 2.5, and 4 W on wild-type Vibrio harveyi. Bioluminescence, motility, and biofilm forming capability were assessed on the bacteria after irradiation. RESULTS After irradiation of bacteria, positive dose/output power dependencies were found in the bioluminescence omitted from tested experimental groups. Motility of colonies on semi-solid media was inhibited as irradiation output power was increased. However, after irradiation, biomass analysis of biofilm samples showed negligible differences between the irradiated samples and controls. CONCLUSIONS Results indicate the impact of low-energy laser irradiation on bacterial behavior such as quorum sensing and motility, without affecting bacterial growth patterns.
Collapse
Affiliation(s)
- Idan Redenski
- 1 Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah , Jerusalem, Israel .,2 Department of Endodontics, Faculty of Dental Medicine, Hebrew University-Hadassah , Jerusalem, Israel
| | - Sharonit Sahar-Helft
- 2 Department of Endodontics, Faculty of Dental Medicine, Hebrew University-Hadassah , Jerusalem, Israel
| | - Adam Stabholz
- 2 Department of Endodontics, Faculty of Dental Medicine, Hebrew University-Hadassah , Jerusalem, Israel
| | - Doron Steinberg
- 1 Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah , Jerusalem, Israel
| |
Collapse
|
36
|
Gualdani R, Cavalluzzi MM, Lentini G, Habtemariam S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016; 21:E1530. [PMID: 27845763 PMCID: PMC6273274 DOI: 10.3390/molecules21111530] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.
Collapse
Affiliation(s)
- Roberta Gualdani
- Department of Chemistry "U. Shiff", University of Florence, Via della Lastruccia 3, Florence 50019, Italy.
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Giovanni Lentini
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
37
|
Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation. Appl Biochem Biotechnol 2016; 181:192-218. [DOI: 10.1007/s12010-016-2207-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
38
|
Weiland-Bräuer N, Kisch MJ, Pinnow N, Liese A, Schmitz RA. Highly Effective Inhibition of Biofilm Formation by the First Metagenome-Derived AI-2 Quenching Enzyme. Front Microbiol 2016; 7:1098. [PMID: 27468282 PMCID: PMC4942472 DOI: 10.3389/fmicb.2016.01098] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/30/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial cell-cell communication (quorum sensing, QS) represents a fundamental process crucial for biofilm formation, pathogenicity, and virulence allowing coordinated, concerted actions of bacteria depending on their cell density. With the widespread appearance of antibiotic-resistance of biofilms, there is an increasing need for novel strategies to control harmful biofilms. One attractive and most likely effective approach is to target bacterial communication systems for novel drug design in biotechnological and medical applications. In this study, metagenomic large-insert libraries were constructed and screened for QS interfering activities (quorum quenching, QQ) using recently established reporter strains. Overall, 142 out of 46,400 metagenomic clones were identified to interfere with acyl-homoserine lactones (AHLs), 13 with autoinducer-2 (AI-2). Five cosmid clones with highest simultaneous interfering activities were further analyzed and the respective open reading frames conferring QQ activities identified. Those showed homologies to bacterial oxidoreductases, proteases, amidases and aminotransferases. Evaluating the ability of the respective purified QQ-proteins to prevent biofilm formation of several model systems demonstrated highest inhibitory effects of QQ-2 using the crystal violet biofilm assay. This was confirmed by heterologous expression of the respective QQ proteins in Klebsiella oxytoca M5a1 and monitoring biofilm formation in a continuous flow cell system. Moreover, QQ-2 chemically immobilized to the glass surface of the flow cell effectively inhibited biofilm formation of K. oxytoca as well as clinical K. pneumoniae isolates derived from patients with urinary tract infections. Indications were obtained by molecular and biochemical characterizations that QQ-2 represents an oxidoreductase most likely reducing the signaling molecules AHL and AI-2 to QS-inactive hydroxy-derivatives. Overall, we propose that the identified novel QQ-2 protein efficiently inhibits AI-2 modulated biofilm formation by modifying the signal molecule; and thus appears particularly attractive for medical and biotechnological applications.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Molecular Microbiology, University KielKiel, Germany
| | - Martin J. Kisch
- Institute of Technical Biocatalysis, Technical University HamburgHamburg, Germany
| | - Nicole Pinnow
- Institute for General Microbiology, Molecular Microbiology, University KielKiel, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Technical University HamburgHamburg, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Molecular Microbiology, University KielKiel, Germany
| |
Collapse
|
39
|
Banerjee G, Ray AK. The talking language in some major Gram-negative bacteria. Arch Microbiol 2016; 198:489-99. [PMID: 27062655 DOI: 10.1007/s00203-016-1220-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India
| |
Collapse
|
40
|
Abstract
In the biofilm form, bacteria are more resistant to various antimicrobial treatments. Bacteria in a biofilm can also survive harsh conditions and withstand the host's immune system. Therefore, there is a need for new treatment options to treat biofilm-associated infections. Currently, research is focused on the development of antibiofilm agents that are nontoxic, as it is believed that such molecules will not lead to future drug resistance. In this review, we discuss recent discoveries of antibiofilm agents and different approaches to inhibit/disperse biofilms. These new antibiofilm agents, which contain moieties such as imidazole, phenols, indole, triazole, sulfide, furanone, bromopyrrole, peptides, etc. have the potential to disperse bacterial biofilms in vivo and could positively impact human medicine in the future.
Collapse
|
41
|
Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2015. [PMID: 26712734 DOI: 10.3390/molecules21010029.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.
Collapse
|
42
|
Ta CAK, Arnason JT. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors. Molecules 2015; 21:E29. [PMID: 26712734 PMCID: PMC6273182 DOI: 10.3390/molecules21010029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.
Collapse
Affiliation(s)
- Chieu Anh Kim Ta
- Phytochemistry Laboratory, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - John Thor Arnason
- Phytochemistry Laboratory, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
43
|
Zhu J, Huang X, Zhang F, Feng L, Li J. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. J Microbiol 2015; 53:829-36. [PMID: 26626353 DOI: 10.1007/s12275-015-5123-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
We investigated the quorum sensing (QS) system of Shewanella baltica and the anti-QS related activities of green tea polyphenols (TP) against spoilage bacteria in refrigerated large yellow croaker. Autoinducer-2 (AI-2) and the diketopiperazines (DKPs) cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe) were detected in the culture extract of S. baltica XH2, however, no N-acylhomoserine lactones (AHLs) activity was observed. Green TP at sub-inhibitory concentrations interfered with AI-2 and DKPs activities of S. baltica without inhibiting cell growth and promoted degradation of AI-2. The green TP treatment inhibited biofilm development, exopolysaccharide production and swimming motility of S. baltica in a concentration- dependent manner. In addition, green TP decreased extracellular protease activities and trimethylamine production in S. baltica. A transcriptional analysis showed that green TP repressed the luxS and torA genes in S. baltica, which agreed with the observed reductions in QS activity and the spoilage phenotype. Epigallocatechin gallate (EGCG)-enriched in green TP significantly inhibited AI-2 activity of S. baltica. These findings strongly suggest that green TP could be developed as a new QS inhibitor for seafood preservation to enhance shelf life.
Collapse
Affiliation(s)
- Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China.
| | - Xuzheng Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Fang Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Lifang Feng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Jianrong Li
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, 121013, P. R. China
| |
Collapse
|
44
|
Martínez Díaz Y, Vanegas Laverde G, Reina Gamba L, Mayorga Wandurraga H, Arévalo-Ferro C, Ramos Rodríguez F, Duque Beltrán C, Castellanos Hernández L. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Uckoo RM, Jayaprakasha GK, Vikram A, Patil BS. Polymethoxyflavones Isolated from the Peel of Miaray Mandarin (Citrus miaray) Have Biofilm Inhibitory Activity in Vibrio harveyi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7180-9. [PMID: 26140409 DOI: 10.1021/acs.jafc.5b02445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Citrus fruits are a good source of bioactive compounds with numerous beneficial biological activities. In the present study, fruits of the unexplored Miaray mandarin were used for the isolation of 10 bioactive compounds. Dried peels were sequentially extracted with hexane and chloroform in a Soxhlet-type apparatus for 8 h. The extracts were concentrated under vacuum and separated by flash chromatography to obtain nine polymethoxyflavones and a limonoid. The purity of each compound was analyzed by high-performance liquid chromatography (HPLC), and the compounds were identified by spectral analysis using MALDI-TOF-MS and NMR. The isolated compounds were identified as 5-hydroxy-3,7,3',4'-tetramethoxyflavone, 5,6,7,8,4'-pentamethoxyflavone (tangeretin), 3,5,6,7,8,3',4'-heptamethoxyflavone, 5,6,7,8,3',4'-hexamethoxyflavone (nobiletin), 3,5,7,8,3',4'-hexamethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone (pentamethylquercetin), 5,7,4'-trimethoxyflavone, 5,7,8,4'-tetramethoxyflavone, 5,7,8,3',4'-pentamethoxyflavone, and limonin. These compounds were further tested for their ability to inhibit cell-cell signaling and biofilm formation in Vibrio harveyi. Among the evaluated polymethoxyflavones, 3,5,6,7,8,3',4'-heptamethoxyflavone and 3,5,7,8,3',4'-hexamethoxyflavone inhibited autoinducer-mediated cell-cell signaling and biofilm formation. These results suggest that Miaray mandarin fruits are a good source of polymethoxyflavones. This is the first report on the isolation of bioactive compounds from Miaray mandarin and evaluation of their biofilm inhibitory activity as well as isolation of pentamethylquercetin from the Citrus genus.
Collapse
|
46
|
|
47
|
Kaur J, Kaur G. An insight into the role of citrus bioactives in modulation of colon cancer. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
48
|
Singh RP. Attenuation of quorum sensing-mediated virulence in Gram-negative pathogenic bacteria: implications for the post-antibiotic era. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00363b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quorum quenching compounds blocked quorum sensing system of bacteria by several mechanisms (a, b, c and d).
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Kyushu University
- Fukuoka-shi
- Japan
| |
Collapse
|
49
|
Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 2014; 10:550-65. [PMID: 24910534 PMCID: PMC4046882 DOI: 10.7150/ijbs.9028] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022] Open
Abstract
Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater treatment systems resulting in significant loss of treatment efficiency and economy. Different strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved by inhibiting biofouling without interfering with bacterial growth. As a result, the search for environmental friendly non-antibiotic antifouling strategies has received much greater attention among scientific community. The use of quorum quenching natural compounds and enzymes will be a potential approach for control of membrane biofouling. This approach has previously proven useful in diseases and membrane biofouling control by triggering the expression of desired phenotypes. In view of this, the present review is provided to give the updated information on quorum quenching compounds and elucidate the significance of quorum sensing inhibition in control of membrane biofouling.
Collapse
Affiliation(s)
| | - Diby Paul
- Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
| | - Ji Hyang Kweon
- Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
| |
Collapse
|
50
|
Castillo S, Heredia N, Arechiga-Carvajal E, García S. Citrus Extracts as Inhibitors of Quorum Sensing, Biofilm Formation and Motility ofCampylobacter jejuni. FOOD BIOTECHNOL 2014. [DOI: 10.1080/08905436.2014.895947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|