1
|
Mosele JI, Viadel B, Yuste S, Tomás-Cobos L, García-Benlloch S, Escribano Bailón MT, García Estévez I, Moretón Fraile P, Rodríguez de Rivera F, de Domingo Casado S, Motilva MJ. Application of a dynamic colonic gastrointestinal digestion model to red wines: a study of flavanol metabolism by the gut microbiota and the cardioprotective activity of microbial metabolites. Food Funct 2025; 16:885-899. [PMID: 39812624 DOI: 10.1039/d4fo03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to in vitro dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites. Furthermore, the cardiovascular protective activity of wine flavanol microbial metabolites was investigated, integrating their effects on antihypertensive activity, cholesterol metabolism and insulin resistance into human endothelial (EA.hy926) and hepatic (HepG2) cell lines. A significant production of microbial flavanol metabolites, with a prevalence of phenylpropionic and phenylacetic acids, valerolactones and short chain fatty acids such as butyric acid, was observed, particularly in the transverse and descending colon sections. Incubating HAECs and HepG2 cells with the colon improved cardioprotective parameters. Specifically, an increase in the vasodilator NO, an improvement in the LDL receptors and the HMGCoA enzyme, with positive effects on cholesterol metabolism, and the reduction of glycogen levels improving insulin resistance were observed.
Collapse
Affiliation(s)
- Juana I Mosele
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
- Fisicoquímica, Facultad de Farmacia y Bioquímica-IBIMOL, Universidad de Buenos Aries-CONICET, 1113 Buenos Aires, Argentina
| | - Blanca Viadel
- Ainia, Technology Centre, C/Benjamin Franklin 5-11, 46980 Paterna, Valencia, Spain
| | - Silvia Yuste
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, 25198 Lleida, Spain
| | - Lidia Tomás-Cobos
- Ainia, Technology Centre, C/Benjamin Franklin 5-11, 46980 Paterna, Valencia, Spain
| | | | - María-Teresa Escribano Bailón
- Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca, Campus Miguel de Unamuno s/n, E37007, Salamanca, Spain
| | - Ignacio García Estévez
- Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca, Campus Miguel de Unamuno s/n, E37007, Salamanca, Spain
| | | | | | | | - María-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
| |
Collapse
|
2
|
Dong L, Li Y, Chen Q, Liu Y, Wu Z, Pan D, Yan N, Liu L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr 2024; 64:9495-9513. [PMID: 37222572 DOI: 10.1080/10408398.2023.2213768] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
You Y, Wang R, Li J, Cao F, Zhang Y, Ma X. The role of dietary intake of live microbes in the association between leisure-time physical activity and depressive symptoms: a population-based study. Appl Physiol Nutr Metab 2024; 49:1014-1024. [PMID: 38569203 DOI: 10.1139/apnm-2023-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Current research has shown promising associations between factors such as diet, total physical activity, and mental health outcomes, acknowledging the intricate interplay between these variables. However, the role of dietary intake of live microbes, coupled with leisure-time physical activity (LTPA), in their relationship to depressive symptoms necessitates further exploration. The present study examined a cohort of 25 747 individuals who participated in the National Health and Nutrition Examination Survey between the years 2007 and 2018. Patient's Health Questionnaire (PHQ-9) was employed, whereby individuals scoring ≥ 10 were classified as exhibiting symptoms of depression. LTPA status was reported by the Global Physical Activity Questionnaire and calculated by metabolic equivalent-minutes/week. Foods consumed by participants were evaluated by live microbes per gram, which were categorized into three groups: low, medium, and high. After controlling for all covariates, findings indicated that LTPA was negatively associated with depressive symptoms (OR (95% confidence interval (CI): 0.983 (0.976, 0.990), p < 0.001). Participating in more LTPA was positively correlated with consuming all three levels of dietary live microbes (low, β (95% CI): 0.086 (0.063, 0.109); medium, β (95% CI): 0.009 (0.007, 0.012); high, β (95% CI): 0.002 (0.001, 0.002)). Moreover, taking more foods with medium live microbes was associated with lower depressive likelihood (OR (95% CI): 0.931(0.882, 0.982), p = 0.010). Intake of medium and high levels of live microbes mediated the association between LTPA and depressive symptoms by 4.15% and 0.83%, respectively. Dietary intake of foods containing medium and high levels of live microbes may be a mediator of LTPA's negative association with depressive symptoms.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- School of Social Sciences, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Rui Wang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- School of Social Sciences, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jinwei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Cao
- Faculty of Education, The University of Hong Kong, Hong Kong 999077, China
| | - Yang Zhang
- Kunming Medical University, Kunming 650500, China
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Riegelman E, Xue KS, Wang JS, Tang L. Gut-Brain Axis in Focus: Polyphenols, Microbiota, and Their Influence on α-Synuclein in Parkinson's Disease. Nutrients 2024; 16:2041. [PMID: 38999791 PMCID: PMC11243524 DOI: 10.3390/nu16132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
With the recognition of the importance of the gut-brain axis in Parkinson's disease (PD) etiology, there is increased interest in developing therapeutic strategies that target α-synuclein, the hallmark abhorrent protein of PD pathogenesis, which may originate in the gut. Research has demonstrated that inhibiting the aggregation, oligomerization, and fibrillation of α-synuclein are key strategies for disease modification. Polyphenols, which are rich in fruits and vegetables, are drawing attention for their potential role in this context. In this paper, we reviewed how polyphenols influence the composition and functional capabilities of the gut microbiota and how the resulting microbial metabolites of polyphenols may potentially enhance the modulation of α-synuclein aggregation. Understanding the interaction between polyphenols and gut microbiota and identifying which specific microbes may enhance the efficacy of polyphenols is crucial for developing therapeutic strategies and precision nutrition based on the microbiome.
Collapse
Affiliation(s)
| | | | | | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (E.R.); (K.S.X.); (J.-S.W.)
| |
Collapse
|
5
|
Miłek M, Franke G, Tomczyk M, Górecki M, Cwiková O, Jarošová A, Dżugan M. The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota. Pharmaceuticals (Basel) 2024; 17:768. [PMID: 38931435 PMCID: PMC11206650 DOI: 10.3390/ph17060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Ethanol extracts obtained from 13 poplar propolis samples originating from various European countries by traditional maceration were tested for total polyphenols, flavonoid content, and antioxidant activity. Moreover, the content of 18 polyphenolic compounds (from the group of phenolic acids and flavonoids) was determined using the HPLC method. The inhibitory effect of six selected extracts with the highest activity was assessed by well-diffusion method against five strains (Bifidobacterium spp., L. rhamnosus, L. acidophilus, E. coli, and Bacteroides spp.) of intestinal bacteria self-isolated from the faeces of obese probands with the use of selective media. It was found that the antioxidant activity of propolis varied depending on geographical origin and even among samples from the same region, which indicates that some other factors also influence propolis quality. The samples of different geographical origin varied mainly in the share of individual phenolic compounds, and it was not possible to find a characteristic marker of origin, excluding the galangin present in the Polish samples only. Assessing the inhibitory activity of propolis (in the range of 70 mg to 10 µg per mL) indicated that the concentration of 100 µg/mL was found as being safe for tested fecal bacteria (Bifidobacterium spp., L. rhamnosus, L. acidophilus, E. coli, and Bacteroides spp.). As no negative effect of low doses of propolis on the intestinal microflora was found, it can be suggested that its use in recommended doses brings only beneficial effects to the body.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.T.); (M.D.)
| | - Gabriela Franke
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1 St., 613 00 Brno, Czech Republic; (G.F.); (O.C.); (A.J.)
| | - Monika Tomczyk
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.T.); (M.D.)
| | - Miłosz Górecki
- PROKIT—Miłosz Górecki, Świętokrzyska 25 St., Kazimierów, 05-074 Halinow, Poland;
| | - Olga Cwiková
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1 St., 613 00 Brno, Czech Republic; (G.F.); (O.C.); (A.J.)
| | - Alžbeta Jarošová
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1 St., 613 00 Brno, Czech Republic; (G.F.); (O.C.); (A.J.)
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.T.); (M.D.)
| |
Collapse
|
6
|
Wei X, Wang J, Wang Y, Zhao Y, Long Y, Tan B, Li QX, Dong Z, Wan X. Dietary fiber and polyphenols from whole grains: effects on the gut and health improvements. Food Funct 2024; 15:4682-4702. [PMID: 38590246 DOI: 10.1039/d4fo00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.
Collapse
Affiliation(s)
- Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
- Environmental Economics and Natural Resources Group, Wageningen University & Research, Wageningen 6706 KN, The Netherlands
| | - Jianhui Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yaxuan Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yilin Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| |
Collapse
|
7
|
Coutinho-Wolino KS, Melo MFS, Mota JC, Mafra D, Guimarães JT, Stockler-Pinto MB. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr Rev 2024; 82:248-261. [PMID: 37164634 DOI: 10.1093/nutrit/nuad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is associated with uremic toxin production, inflammation, oxidative stress, and cardiovascular disease development. Therefore, healthy dietary patterns are essential modulators of gut microbiota. In this context, studies suggest that consuming berry fruits, rich in polyphenols and nutrients, may positively affect the gut microbiota, promoting the selective growth of beneficial bacteria and improving clinical status. However, studies on the effects of berry fruits on gut microbiota in CKD are scarce, and a better understanding of the possible mechanisms of action of berry fruits on gut microbiota is needed to guide future clinical studies and clinical practice in CKD. The objective was to discuss how berry fruits (blueberry, cranberry, raspberry, and strawberry) could be a therapeutic strategy to modulate the gut microbiota and possibly reverse the dysbiosis in CKD. Overall, available evidence shows that berry fruits can promote an increase in diversity by affecting the abundance of mucus-producing bacteria and short-chain fatty acids. Moreover, these fruits can increase the expression of mRNA involved in tight junctions in the gut such as occludin, tight junction protein 1 (TJP1), and mucin. Studies on the exact amount of berries leading to these effects show heterogeneous findings. However, it is known that, with 5 mg/day, it is already possible to observe some effects in animal models. Wild berries could possibly improve the uremic condition by reducing the levels of uremic toxins via modulation of the gut microbiota. In the long term, this could be an excellent strategy for patients with CKD. Therefore, clinical studies are encouraged to evaluate better these effects on CKD as well as the safe amount of these fruits in order to promote a better quality of life or even the survival of these patients.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Manuela F S Melo
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Jessica C Mota
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Denise Mafra
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
8
|
Baquero F, Rodríguez-Beltrán J, Coque TM, del Campo R. Boosting Fitness Costs Associated with Antibiotic Resistance in the Gut: On the Way to Biorestoration of Susceptible Populations. Biomolecules 2024; 14:76. [PMID: 38254676 PMCID: PMC10812938 DOI: 10.3390/biom14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The acquisition and expression of antibiotic resistance implies changes in bacterial cell physiology, imposing fitness costs. Many human opportunistic pathogenic bacteria, such as those causing urinary tract or bloodstream infections, colonize the gut. In this opinionated review, we will examine the various types of stress that these bacteria might suffer during their intestinal stay. These stresses, and their compensatory responses, probably have a fitness cost, which might be additive to the cost of expressing antibiotic resistance. Such an effect could result in a disadvantage relative to antibiotic susceptible populations that might replace the resistant ones. The opinion proposed in this paper is that the effect of these combinations of fitness costs should be tested in antibiotic resistant bacteria with susceptible ones as controls. This testing might provide opportunities to increase the bacterial gut stress boosting physiological biomolecules or using dietary interventions. This approach to reduce the burden of antibiotic-resistant populations certainly must be answered empirically. In the end, the battle against antibiotic resistance should be won by antibiotic-susceptible organisms. Let us help them prevail.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| |
Collapse
|
9
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Bastos TS, Souza CMM, Kaelle GCB, do Nascimento MQ, de Oliveira SG, Félix AP. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 37129233 DOI: 10.1111/jpn.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed at evaluating the coefficients of total tract apparent digestibility (CTTAD) of nutrients, metabolisable energy (ME), diet palatability, faecal fermentative products and microbiota of dogs fed yeasts from different fermentation media and its fractions. Four diets were evaluated: control, without yeast (CO); diet with 10 g/kg brewer's yeast (BY); diet with 10 g/kg brewer's yeast + corn yeast (BCY); and diet with 10 g/kg BCY + cell wall fractions (BCYF). Twelve adult dogs were distributed in a randomized block design (periods). Each of the four diets was fed to a group of three dogs per period of 20 days, totalling two periods and six repetitions per treatment. Sixteen adult dogs were used for the palatability test, which compared the CO diet versus each one of the yeast diets. Data with normal distribution were subjected to analysis of variance (p < 0.05). Means were compared by orthogonal contrasts (p < 0.05): (A) CO diet versus BY, BCY and BCYF diets; (B) BY diet versus BCY and BCYF diets; (C) BCY diet versus BCYF diet. There was no difference in the CTTAD and ME of the diets (p > 0.05). Yeast diets reduced faecal odour and indole peak area (p < 0.05). Faecal short-chain fatty acids concentration was greater in dogs fed yeast diets compared to those fed the CO (p < 0.05). Yeast diets showed a higher intake ratio compared to the CO (p < 0.05). The BCY and BCYF diets resulted in a greater abundance of Bacteroides, Faecalibacterium, Coprococcus, and Phascolarctobacterium in relation to the CO (p < 0.05). Our results suggest that dietary yeast supplementation results in beneficial changes in intestinal functionality indicators, mainly with the combination of yeasts from brewers and corn fermentation media. In addition, yeast supplementation improves diet palatability without compromising nutrient digestibility.
Collapse
Affiliation(s)
- Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Ananda Portella Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
11
|
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int J Mol Sci 2023; 24:ijms24054977. [PMID: 36902407 PMCID: PMC10003427 DOI: 10.3390/ijms24054977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.
Collapse
|
12
|
Study on the interaction between grain polyphenols and intestinal microorganisms: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakara A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Song EJ, Shin JH. Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities. J Microbiol Biotechnol 2022; 32:1497-1505. [PMID: 36398438 PMCID: PMC9843811 DOI: 10.4014/jmb.2209.09050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea,Corresponding author Phone: +82-63-219-9446 Fax: +82-63-219-9876 E-mail:
| |
Collapse
|
15
|
Mueed A, Ibrahim M, Shibli S, Madjirebaye P, Deng Z, Jahangir M. The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application. Crit Rev Food Sci Nutr 2022; 64:4312-4330. [PMID: 36345888 DOI: 10.1080/10408398.2022.2140643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lignans are one of the most important and abundant phytochemicals found in flaxseed-diets. These have shown to possess several health-benefits, including anticancer, antioxidant, neuroprotective, cardioprotective, and estrogenic-properties etc. The potential of lignans health-promoting effects are circumscribed due to their poor-bioavailability resulting from their bound structure. Recent studies have demonstrated that various food design strategies can enhance the release of bound-lignans from agro-industrial residues, resulting in a higher bioaccessibility and bioavailability. This review focuses primarily on the bioavailability of flaxseed lignans, key factors affecting it and their pharmacokinetics, different strategies to improve the contents of lignans, their release and delivery. Present study will help to deepen our understanding of the applications of lignans and their dietary-supplements in the prevention and treatment of diseases. Several absorption issues of lignans have been observed such as impaired-bioavailability and variability in pharmacokinetics and pharmacodynamics. Therefore, the development of novel strategies for optimizing lignan bioavailability is critical to ensure its successful application, such as the delivery of lignans to biological targets via "targeted designs." In addition, some detailed examination is required to identify and understand the basis of variation in lignans bioavailability caused by interactions with the gastrointestinal system.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Ibrahim
- Department of Forestry, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
16
|
Dietary Polyphenols as Prospective Natural-Compound Depression Treatment from the Perspective of Intestinal Microbiota Regulation. Molecules 2022; 27:molecules27217637. [PMID: 36364464 PMCID: PMC9657699 DOI: 10.3390/molecules27217637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
The broad beneficial effects of dietary polyphenols on human health have been confirmed. Current studies have shown that dietary polyphenols are important for maintaining the homeostasis of the intestinal microenvironment. Moreover, the corresponding metabolites of dietary polyphenols can effectively regulate intestinal micro-ecology and promote human health. Although the pathogenesis of depression has not been fully studied, it has been demonstrated that dysfunction of the microbiota-gut-brain axis may be its main pathological basis. This review discusses the interaction between dietary polyphenols and intestinal microbiota to allow us to better assess the potential preventive effects of dietary polyphenols on depression by modulating the host gut microbiota.
Collapse
|
17
|
Sun X, Dey P, Bruno RS, Zhu J. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. J Nutr Biochem 2022; 109:109094. [PMID: 35777589 PMCID: PMC10332503 DOI: 10.1016/j.jnutbio.2022.109094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Green tea extract (GTE) alleviates obesity, in part, by modulating gut microbial composition and metabolism. However, direct evidence regarding the catechin-specific bioactivities that are responsible for these benefits remain unclear. The present study therefore investigated dietary supplementation of GTE, epigallocatechin gallate (EGCG), or (+)-catechin (CAT) in male C57BL6/J mice that were fed a high-fat (HF) diet to establish the independent contributions of EGCG and CAT relative to GTE to restore microbial and host metabolism. We hypothesized that EGCG would regulate the gut microbial metabolome and host liver metabolome more similar to GTE than CAT to explain their previously observed differential effects on cardiometabolic health. To test this, we assessed metabolic and phenolic shifts in liver and fecal samples during dietary HF-induced obesity. Ten fecal metabolites and ten liver metabolites (VIP > 2) primarily contributed to the differences in the metabolome among different interventions. In fecal samples, nine metabolic pathways (e.g., tricarboxcylic acid cycle and tyrosine metabolism) were differentially altered between the GTE and CAT interventions, whereas three pathways differed between GTE and EGCG interventions, suggesting differential benefits of GTE and its distinctive bioactive components on gut microbial metabolism. Likewise, hepatic glycolysis / gluconeogenesis metabolic pathways were significantly altered between GTE and EGCG interventions, while only hepatic tyrosine metabolism was altered between CAT and GTE interventions. Thus, our findings support that purified catechins relative to GTE uniquely contribute to regulating host and microbial metabolic pathways such as central energy metabolism to protect against metabolic dysfunction leading to obesity.
Collapse
Affiliation(s)
- Xiaowei Sun
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Department of Biotechnology, Thapar Institute of Engineering & Technology, Punjab, India
| | - Richard S Bruno
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Grape seed procyanidins improve intestinal health by modulating gut microbiota and enhancing intestinal antioxidant capacity in weaned piglets. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Akan OD, Qin D, Guo T, Lin Q, Luo F. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Foods 2022; 11:foods11192955. [PMID: 36230032 PMCID: PMC9563801 DOI: 10.3390/foods11192955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.
Collapse
Affiliation(s)
- Otobong Donald Akan
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Uyo 1167, Nigeria
| | - Dandan Qin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-731-85623240
| |
Collapse
|
20
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
21
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
22
|
Deng G, Wu Y, Song Z, Li S, Du M, Deng J, Xu Q, Deng L, Bahlol HS, Han H. Tea Polyphenol Liposomes Overcome Gastric Mucus to Treat Helicobacter Pylori Infection and Enhance the Intestinal Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13001-13012. [PMID: 35266695 DOI: 10.1021/acsami.1c23342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infection with Helicobacter pylori (Hp) is one of the leading causes of stomach cancer. The ability to treat Hp infection is hampered by a lack of stomach gastric acid environment. This work introduces a nanoliposome that can rapidly adjust the gastric acid environment to ensure a drug's optimal efficacy. We introduce CaCO3@Fe-TP@EggPC nanoliposomes (CTE NLs) that are composed of Fe3+ and tea polyphenols (TPs) forming complexes on the surface of internal CaCO3 and then with lecithin producing a phospholipid bilayer on the polyphenols' outer surface. Through the action of iron-TP chelate, the phospholipid layer can fuse with the bacterial membrane to eliminate Hp. Furthermore, CaCO3 can promptly consume the excessive gastric acid, ensuring an ideal operating environment for the chelate. TPs, on the other hand, can improve the inflammation and gut microbes in the body. The experimental results show that CTE NLs can quickly consume protons in the stomach and reduce the bacterial burden by 1.2 orders of magnitude while reducing the inflammatory factors in the body. The biosafety evaluation revealed that nanoliposomes have good biocompatibility and provide a new strategy for treating Hp infection.
Collapse
Affiliation(s)
- Guiyun Deng
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Wu
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| | - Shuojun Li
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Moqing Du
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Deng
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Xu
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Deng
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Hagar Shendy Bahlol
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Heyou Han
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Przybylska-Balcerek A, Szablewski T, Cegielska-Radziejewska R, Góral T, Kurasiak-Popowska D, Stuper-Szablewska K. Assessment of Antimicrobial Properties of Phenolic Acid Extracts from Grain Infected with Fungi from the Genus Fusarium. Molecules 2022; 27:1741. [PMID: 35268842 PMCID: PMC8911651 DOI: 10.3390/molecules27051741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Problems related with biological contamination of plant origin raw materials have a considerable effect on prevention systems at each stage of food production. Concerning the antimicrobial action of phenolic acids, studies were undertaken to investigate antibacterial properties against bacterial strains of Escherichia coli (EC), Pseudomonas fluorescence (PF), Micrococcus luteus (ML) and Proteus mirabilis (PM), as well as antifungal properties targeting microscopic fungi Fusarium spp., extracts of phenolic compounds coming from inoculated grain from various genotypes of cereals. This study evaluated the antimicrobial action of phenolic acids extracts obtained from both naturally infested and inoculated with microorganisms. For this purpose a total of 24 cereal cultivars were selected, including 9 winter and 15 spring cultivars. The analyses showed a bactericidal effect in the case of 4 extracts against Micrococcus luteus (ML), 14 extracts against Pseudomonas fluorescence (PF), 17 extracts against Escherichia coli (EC) as well as 16 extracts against Proteus mirabilis (PM). It was found that 3 out of the 24 extracts showed no antibacterial activity. In turn, fungicidal action was observed in the case of 17 extracts against Fusarium culmorum (FC) (NIV), 16 extracts against FC (3AcDON), 12 extracts against Fusarium graminearum (FG) (3AcDON), while 12 other extracts showed antifungal action against FG (NIV) and 19 extracts against Fusarium langsethiae (FL). Based on the conducted analyses it was found that grain of small-grained cereals exposed to fungal infection is a source of bioactive compounds exhibiting antimicrobial properties. It was observed that the qualitative and quantitative profiles of polyphenols vary depending on the cereal cultivar. This extracts may be used to develop an antimicrobial preparation applicable in organic farming.
Collapse
Affiliation(s)
- Anna Przybylska-Balcerek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-628 Poznań, Poland;
| | - Tomasz Szablewski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland; (T.S.); (R.C.-R.)
| | - Renata Cegielska-Radziejewska
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland; (T.S.); (R.C.-R.)
| | - Tomasz Góral
- Department of Applied Biology, Plant Breeding and Acclimation Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering Poznan University of Life Sciences, 60-632 Poznań, Poland;
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-628 Poznań, Poland;
| |
Collapse
|
24
|
Higbee J, Solverson P, Zhu M, Carbonero F. The emerging role of dark berry polyphenols in human health and nutrition. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jerome Higbee
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Patrick Solverson
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Meijun Zhu
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| |
Collapse
|
25
|
Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11010109. [PMID: 35052613 PMCID: PMC8772845 DOI: 10.3390/antiox11010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection affects more than half of the world’s population, and thus, about 10 to 20% of people with H. pylori suffer from peptic ulcers, which may ultimately lead to gastric cancer. The increase in antibiotic resistance and susceptibility has encouraged the search for new alternative therapies to eradicate this pathogen. Several plant species are essential sources of polyphenols, and these bioactive compounds have demonstrated health-promoting properties, such as the gut microbiota stimulation, inflammation reduction, and bactericidal effect. Therefore, this review aims to discuss the potential effect of plant-based polyphenols against H. pylori and their role in the gut microbiota improvement.
Collapse
|
26
|
Lai W, Yang S, Lin X, Zhang X, Huang Y, Zhou J, Fu C, Li R, Zhang Z. Zingiber officinale: A Systematic Review of Botany, Phytochemistry and Pharmacology of Gut Microbiota-Related Gastrointestinal Benefits. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1007-1042. [PMID: 35729087 DOI: 10.1142/s0192415x22500410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a traditional edible medicinal herb with a wide range of uses and long cultivation history. Fresh ginger (Zingiberis Recens Rhizoma; Sheng Jiang in Chinese, SJ) and dried ginger (Zingiberis Rhizoma; Gan Jiang in Chinese, GJ) are designated as two famous traditional Chinese herbal medicines, which are different in plant cultivation, appearances and functions, together with traditional applications. Previous researches mainly focused on the differences in chemical composition between them, but there was no systematical comparison on the similarity concerning research achievements of the two herbs. Meanwhile, ginger has traditionally been used for the treatment of gastrointestinal disorders, but so far, the possible interaction with human gut microbiota has hardly been considered. This review comprehensively presents similarities and differences between SJ and GJ retrospectively, particularly proposing them the significant differences in botany, phytochemistry and ethnopharmacology, which can be used as evidence for clinical application of SJ and GJ. Furthermore, the pharmacology of gut microbiota-related gastrointestinal benefits has also been discussed in order to explore better ways to prevent and treat gastrointestinal disorders, which can be used as a reference for further research.
Collapse
Affiliation(s)
- Wenjing Lai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shasha Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xia Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - You Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jingwei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co., Ltd., Pengzhou 610081, P. R. China
| |
Collapse
|
27
|
Ashwin K, Pattanaik AK, Howarth GS. Polyphenolic bioactives as an emerging group of nutraceuticals for promotion of gut health: A review. FOOD BIOSCI 2021; 44:101376. [DOI: 10.1016/j.fbio.2021.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Zhang G, Yang Y, Memon FU, Hao K, Xu B, Wang S, Wang Y, Wu E, Chen X, Xiong W, Si H. A Natural Antimicrobial Agent: Analysis of Antibacterial Effect and Mechanism of Compound Phenolic Acid on Escherichia coli Based on Tandem Mass Tag Proteomics. Front Microbiol 2021; 12:738896. [PMID: 34912304 PMCID: PMC8666975 DOI: 10.3389/fmicb.2021.738896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was to evaluate the antibacterial mechanisms of phenolic acids as natural approaches against multi-drug resistant Escherichia coli (E. coli). For that purpose, five phenolic acids were combined with each other and 31 combinations were obtained in total. To select the most potent and effective combination, all of the obtained combinations were examined for minimum inhibitory concentration (MIC) and it was found that the compound phenolic acid (CPA) 19 (protocatechuic acid, hydrocinnamic acid, and chlorogenic acid at concentrations of 0.833, 0.208, and 1.677 mg/mL, respectively) showed better efficacy against E. coli compared to other combinations. Furthermore, based on tandem mass tag (TMT) proteomics, the treatment of CPA 19 significantly downregulated the proteins associated with resistance (Tsr, Tar, CheA, and CheW), OmpF, and FliC of multidrug-resistant E. coli. At the same time, we proved that CPA 19 improves the sensitivity of E. coli to antibiotics (ceftriaxone sodium, amoxicillin, fosfomycin, sulfamonomethoxine, gatifloxacin, lincomycin, florfenicol, cefotaxime sodium, and rifampicin), causes the flagellum to fall off, breaks the structure of the cell wall and cell membrane, and leads to macromolecules leaks from the cell. This evidence elaborated the potential therapeutic efficacy of CPA 19 and provided a significant contribution to the discovery of antibacterial agents.
Collapse
Affiliation(s)
- Geyin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunqiao Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fareed Uddin Memon
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Baichang Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuaiyang Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Enyun Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogang Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenguang Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
29
|
Wei XY, Xia W, Zhou T. Antibacterial activity and action mechanism of a novel chitosan oligosaccharide derivative against dominant spoilage bacteria isolated from shrimp Penaeus vannamei. Lett Appl Microbiol 2021; 74:268-276. [PMID: 34758122 DOI: 10.1111/lam.13596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
With the aim of exploring the potential application of a novel chitosan oligosaccharide derivative (COS-All-Tio) in shrimp preservation, six dominant spoilage bacteria in the spoiled shrimp (Penaeus vannamei) were isolated and identified as Shewanella putrefaciens (RMS1), S. putrefaciens (S2), Pseudomonas weihenstephanensis (P1), P. gessardii (P2), Aeromonas bestiarum (A1) and Aeromonas molluscorum (A2). The antibacterial effect of COS-All-Tio against the six bacterial isolates were studied. Bacterial inhibition zone determination, and minimum inhibitory concentration and minimum bactericidal concentration assays indicated that the antibacterial activity of COS-All-Tio was greatly improved when compared to that of chitosan oligosaccharide (COS). The antibacterial mechanism investigation against S. putrefaciens (RMS1) revealed that COS-All-Tio could inhibit bacterial growth by influencing of membrane integrity. Such disturbance of membrane structure resulted in the leakage of intracellular substance of the bacteria. A strong synergistic antibacterial effect against S. putrefaciens (RMS1) was observed when COS-All-Tio was used in combination with food preservatives (e.g. ε-polylysine hydrochloride). Therefore, COS-All-Tio might have potential in shrimp preservation.
Collapse
Affiliation(s)
- X-Y Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai, P. R. China
| | - W Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, P. R. China
| | - T Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
30
|
Prakash V, Krishnan AS, Ramesh R, Bose C, Pillai GG, Nair BG, Pal S. Synergistic Effects of Limosilactobacillus fermentum ASBT-2 with Oxyresveratrol Isolated from Coconut Shell Waste. Foods 2021; 10:foods10112548. [PMID: 34828830 PMCID: PMC8622123 DOI: 10.3390/foods10112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Value-added phytochemicals from food by-products and waste materials have gained much interest and among them, dietary polyphenolic compounds with potential biological properties extend a promising sustainable approach. Oxyresveratrol (Oxy), a stilbenoid polyphenol, possesses great therapeutic potential, though its pharmacokinetic issues need attention. A good source of oxyresveratrol was found in underutilized coconut shells and the synbiotic applications of the compound in combination with a potential probiotic isolate Limosilactobacillus fermentum ASBT-2 was investigated. The compound showed lower inhibitory effects on the strain with minimum inhibitory concentration (MIC) of 1000 µg/mL. Oxyresveratrol at sub-MIC concentrations (500 µg/mL and 250 µg/mL) enhanced the probiotic properties without exerting any inhibitory effects on the strain. The combination at sub- MIC concentration of the compound inhibited Salmonella enterica and in silico approaches were employed to elucidate the possible mode of action of oxy on the pathogen. Thus, the combination could target pathogens in the gut without exerting negative impacts on growth of beneficial strains. This approach could be a novel perspective to address the poor pharmacokinetic properties of the compound.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Akshaya S Krishnan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Reshma Ramesh
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | | | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
- Correspondence: ; Tel.: +91-4762805315
| |
Collapse
|
31
|
Li Q, Van de Wiele T. Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Crit Rev Food Sci Nutr 2021; 63:1500-1526. [PMID: 34515591 DOI: 10.1080/10408398.2021.1965536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tea polyphenols have been extensively studied for their preventive properties against cardiometabolic diseases. Nevertheless, the evidence of these effects from human intervention studies is not always consistent, mainly because of a large interindividual variability. The bioavailability of tea polyphenols is low, and metabolism of tea polyphenols highly depends on individual gut microbiota. The accompanying reciprocal relationship between tea polyphenols and gut microbiota may result in alterations in the cardiometabolic effects, however, the underlying mechanism of which is little explored. This review summarizes tea polyphenols-microbiota interaction and its contribution to interindividual variability in cardiometabolic effects. Currently, only a few bacteria that can biodegrade tea polyphenols have been identified and generated metabolites and their bioactivities in metabolic pathways are not fully elucidated. A deeper understanding of the role of complex interaction necessitates fully individualized data, the ntegration of multiple-omics platforms and development of polyphenol-centered databases. Knowledge of this microbial contribution will enable the functional stratification of individuals in the gut microbiota profile (metabotypes) to clarify interindividual variability in the health effects of tea polyphenols. This could be used to predict individual responses to tea polyphenols consumption, hence bringing us closer to personalized nutrition with optimal dose and additional supplementation of specific microorganisms.
Collapse
Affiliation(s)
- Qiqiong Li
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Liu Z, Chen Q, Zhang C, Ni L. Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice. Food Chem 2021; 367:130735. [PMID: 34365247 DOI: 10.1016/j.foodchem.2021.130735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Green and black teas are regarded to possess therapeutic potential for the treatment of obesity, however it is not clear which tea performs better in body weight control. In this study, aiming to eliminate cultivar variation, green tea phenolics (GTP) were oxidized by tyrosinase to obtain oxidized tea phenolics (OTP). Thereafter, their anti-obesity effect on high-fat diet induced obese mice were compared. The results showed that despite their distinctive phenolic profiles, GTP and OTP exerted similar anti-obesity properties after 12 weeks of dietary intervention. Furthermore, cecal microbiota profiling exhibited comparable modulatory effects of GTP and OTP on multiple bacterial taxa, including Parabacteroides distasonis, Bifidobacterium, Prevotella, and Akkermansia muciniphila, which were strongly associated with obesity related indexes. Putative bacterial function profiling implicated that both GTP and OTP might regulate the lipid metabolism similarly. Collectively, the oxidation of GTP did not influence the anti-obesity and gut microbiota modulatory effects to any large extent.
Collapse
Affiliation(s)
- Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China
| | - Qin Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China
| | - Chen Zhang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China.
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
33
|
Guadamuro L, Azcárate-Peril MA, Tojo R, Mayo B, Delgado S. Impact of Dietary Isoflavone Supplementation on the Fecal Microbiota and Its Metabolites in Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157939. [PMID: 34360231 PMCID: PMC8345437 DOI: 10.3390/ijerph18157939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Isoflavones are metabolized by components of the gut microbiota and can also modulate their composition and/or activity. This study aimed to analyze the modifications of the fecal microbial populations and their metabolites in menopausal women under dietary treatment with soy isoflavones for one month. Based on the level of urinary equol, the women had been stratified previously as equol-producers (n = 3) or as equol non-producers (n = 5). The composition of the fecal microbiota was assessed by high-throughput sequencing of 16S rRNA gene amplicons and the changes in fatty acid excretion in feces were analyzed by gas chromatography. A greater proportion of sequence reads of the genus Slackia was detected after isoflavone supplementation. Sequences of members of the family Lachnospiraceae and the genus Pseudoflavonifractor were significantly increased in samples from equol-producing women. Multivariable analysis showed that, after isoflavone treatment, the fecal microbial communities of equol producers were more like each other. Isoflavone supplementation increased the production of caproic acid, suggesting differential microbial activity, leading to a high fecal excretion of this compound. However, differences between equol producers and non-producers were not scored. These results may contribute to characterizing the modulating effect of isoflavones on the gut microbiota, which could lead to unravelling of their beneficial health effects.
Collapse
Affiliation(s)
- Lucía Guadamuro
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departament of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.G.); (B.M.)
| | - M. Andrea Azcárate-Peril
- Division of Gastroenterology and Hepatology, and Microbiome Core, School of Medicine, Department of Medicine, University of North Carolina (UNC), Chapel Hill, NC 2759, USA;
| | - Rafael Tojo
- Gastroenterology Department, Cabueñes University Hospital, 33203 Gijón, Spain;
| | - Baltasar Mayo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departament of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.G.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departament of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.G.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
- Correspondence:
| |
Collapse
|
34
|
Ray SK, Mukherjee S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota-An Emerging Importance in Healthcare. Front Nutr 2021; 8:634944. [PMID: 34109202 PMCID: PMC8180580 DOI: 10.3389/fnut.2021.634944] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are natural plant compounds and are the most abundant antioxidants in the human diet. As the gastrointestinal tract is the primary organ provided to diet sections, the diet may be regarded as one of the essential factors in the functionality, integrity, and composition of intestinal microbiota. In the gastrointestinal tract, many polyphenols remain unabsorbed and may accumulate in the large intestine, where the intestinal microbiota are most widely metabolized. When assuming primary roles for promoting host well-being, this intestinal health environment is presented to the effect of external influences, including dietary patterns. A few different methodologies have been developed to increase solvency and transport across the gastrointestinal tract and move it to targeted intestinal regions to resolve dietary polyphenols at the low bioavailability. Polyphenols form a fascinating community among the different nutritional substances, as some of them have been found to have critical biological activities that include antioxidant, antimicrobial, or anticarcinogenic activities. Besides, it affects metabolism and immunity of the intestines and has anti-inflammatory properties. The well-being status of subjects can also benefit from the development of bioactive polyphenol-determined metabolites, although the mechanisms have not been identified. Even though the incredible variety of health-advancing activities of dietary polyphenols has been widely studied, their effect on intestinal biology adaptation, and two-way relationship between polyphenols and microbiota is still poorly understood. We focused on results of polyphenols in diet with biological activities, gut ecology, and the influence of their proportional links on human well-being and disease in this study.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
35
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
36
|
Wojnicz D, Tichaczek-Goska D, Gleńsk M, Hendrich AB. Is it Worth Combining Solidago virgaurea Extract and Antibiotics against Uropathogenic Escherichia coli rods? An In Vitro Model Study. Pharmaceutics 2021; 13:pharmaceutics13040573. [PMID: 33920649 PMCID: PMC8073685 DOI: 10.3390/pharmaceutics13040573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
European goldenrod (Solidago virgaurea L.) has long been applied in traditional medicine and recommended in the prophylaxis of urinary tract infections (UTIs). However, research describing the antibacterial properties of goldenrod is very limited. Therefore, the aim of the study was to determine the effect of S. virgaurea extract on the survival and biofilm formation of uropathogenic Escherichia coli. The interactions between the goldenrod extract and antibiotics used in UTIs were established. The influence of the extract on the duration of the post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) of amikacin and ciprofloxacin were determined. Extract composition was analyzed using coupled UHPLC/MS and the spectrophotometric method. The survival of bacteria was established using the serial dilution assay. The crystal violet assay for biofilm quantification was also used. PAE and PASME were investigated using the viable count method. The obtained results indicate that S. virgaurea extract limits the survival of planktonic forms of bacteria and reduces 24-h biofilm. However, the combination of S. virgaurea extract with antibiotics weakens their antibacterial activity and shortens the duration of PAE and PASME. Therefore, when deciding to use a combination of S. virgaurea extract and amikacin/ciprofloxacin, it is necessary to take into account their antagonistic activity.
Collapse
Affiliation(s)
- Dorota Wojnicz
- Department of Biology and Medical Parasitology, Wrocław Medical University, 50-367 Wrocław, Poland; (D.W.); (A.B.H.)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wrocław Medical University, 50-367 Wrocław, Poland; (D.W.); (A.B.H.)
- Correspondence: ; Tel.: +48-717-841-523
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-367 Wrocław, Poland;
| | - Andrzej B. Hendrich
- Department of Biology and Medical Parasitology, Wrocław Medical University, 50-367 Wrocław, Poland; (D.W.); (A.B.H.)
| |
Collapse
|
37
|
Gutierrez-Zetina SM, González-Manzano S, Ayuda-Durán B, Santos-Buelga C, González-Paramás AM. Caffeic and Dihydrocaffeic Acids Promote Longevity and Increase Stress Resistance in Caenorhabditis elegans by Modulating Expression of Stress-Related Genes. Molecules 2021; 26:molecules26061517. [PMID: 33802064 PMCID: PMC8001149 DOI: 10.3390/molecules26061517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Caffeic and dihydrocaffeic acid are relevant microbial catabolites, being described as products from the degradation of different phenolic compounds i.e., hydroxycinnamoyl derivatives, anthocyanins or flavonols. Furthermore, caffeic acid is found both in free and esterified forms in many fruits and in high concentrations in coffee. These phenolic acids may be responsible for a part of the bioactivity associated with the intake of phenolic compounds. With the aim of progressing in the knowledge of the health effects and mechanisms of action of dietary phenolics, the model nematode Caenorhabditis elegans has been used to evaluate the influence of caffeic and dihydrocaffeic acids on lifespan and the oxidative stress resistance. The involvement of different genes and transcription factors related to longevity and stress resistance in the response to these phenolic acids has also been explored. Caffeic acid (CA, 200 μM) and dihydrocaffeic acid (DHCA, 300 μM) induced an increase in the survival rate of C. elegans under thermal stress. Both compounds also increased the mean and maximum lifespan of the nematode, compared to untreated worms. In general, treatment with these acids led to a reduction in intracellular ROS concentrations, although not always significant. Results of gene expression studies conducted by RT-qPCR showed that the favorable effects of CA and DHCA on oxidative stress and longevity involve the activation of several genes related to insulin/IGF-1 pathway, such as daf-16, daf-18, hsf-1 and sod-3, as well as a sirtuin gene (sir-2.1).
Collapse
Affiliation(s)
- Sofia M. Gutierrez-Zetina
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
- Unidad de Excelencia. Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-500
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
- Unidad de Excelencia. Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
- Unidad de Excelencia. Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| |
Collapse
|
38
|
Dong R, Liu S, Xie J, Chen Y, Zheng Y, Zhang X, Zhao E, Wang Z, Xu H, Yu Q. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Res Int 2021; 143:110263. [PMID: 33992364 DOI: 10.1016/j.foodres.2021.110263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022]
Abstract
Carrot powder digestion was researched utilizing an in vitro standardized static model associated with an in vitro colonic fermentation method to analyze the recovery, catabolism, and potential bioactivity of polyphenols from carrot. Twenty-seven polyphenols and their metabolites (hydroxybenzoic acids, hydroxycinnamic acids and its derivatives, etc.) were identified in samples before and after digestion/colonic fermentation, and the possible colonic pathways for major polyphenols were proposed. Polyphenols had low recovery during different phases of in vitro digestion (oral: -51.4%; gastric: -38%; intestinal: -35.3%, respectively). However, the concentration of polyphenols (p-hydroxybenzoic acid, gallic acid and protocatechuic acid) increased significantly after colonic fermentation for 12 h with 1391.7% recovery, then significantly declined after 48 h. Meanwhile, the released and catabolized polyphenols showed antioxidant activity and α-glucosidase inhibitory capacity (IC50 = 9.91 μg GAE/mL). The microbe community structure was regulated by fecal fermented carrot powder through improving relative abundance (RA) of beneficial microbiota and suppressed RA of various harmful bacteria. This work indicated that polyphenols from carrot potentially play a role in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xingjie Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - En Zhao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zipei Wang
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
39
|
Lamport DJ, Williams CM. Polyphenols and Cognition In Humans: An Overview of Current Evidence from Recent Systematic Reviews and Meta-Analyses. Brain Plast 2021; 6:139-153. [PMID: 33782647 PMCID: PMC7990468 DOI: 10.3233/bpl-200111] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is increasing interest in the impact of dietary influences on the brain throughout the lifespan, ranging from improving cognitive development in children through to attenuating ageing related cognitive decline and reducing risk of neurodegenerative diseases. Polyphenols, phytochemicals naturally present in a host of fruits, vegetables, tea, cocoa and other foods, have received particular attention in this regard, and there is now a substantial body of evidence from experimental and epidemiological studies examining whether their consumption is associated with cognitive benefits. OBJECTIVE The purpose of this overview is to synthesise and evaluate the best available evidence from two sources, namely meta-analyses and systematic reviews, in order to give an accurate reflection of the current evidence base for an association between polyphenols and cognitive benefits. METHOD Four meta-analyses and thirteen systematic reviews published between 2017-2020 were included, and were categorised according to whether they reviewed specific polyphenol-rich foods and classes or all polyphenols. A requirement for inclusion was assessment of a behavioural cognitive outcome in humans. RESULTS A clear and consistent theme emerged that whilst there is support for an association between polyphenol consumption and cognitive benefits, this conclusion is tentative, and by no means definitive. Considerable methodological heterogeneity was repeatedly highlighted as problematic such that the current evidence base does not support reliable conclusions relating to efficacy of specific doses, duration of treatment, or sensitivity in specific populations or certain cognitive domains. The complexity of multiple interactions between a range of direct and indirect mechanisms of action is discussed. CONCLUSIONS Further research is required to strengthen the reliability of the evidence base.
Collapse
Affiliation(s)
- Daniel Joseph Lamport
- School of Psychology and Clinical Language Science, University of Reading, Reading, RG66AL, UK
| | | |
Collapse
|
40
|
Coutinho-Wolino KS, de F Cardozo LFM, de Oliveira Leal V, Mafra D, Stockler-Pinto MB. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur J Nutr 2021; 60:3567-3584. [PMID: 33533968 DOI: 10.1007/s00394-021-02491-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite that has attracted attention due to its positive association with several chronic non-communicable diseases such as insulin resistance, atherosclerotic plaque formation, diabetes, cancer, heart failure, hypertension, chronic kidney disease, liver steatosis, cardiac fibrosis, endothelial injury, neural degeneration and Alzheimer's disease. TMAO production results from the fermentation by the gut microbiota of dietary nutrients such as choline and carnitine, which are transformed to trimethylamine (TMA) and converted into TMAO in the liver by flavin-containing monooxygenase 1 and 3 (FMO1 and FMO3). Considering that TMAO is involved in the development of many chronic diseases, strategies have been found to enhance a healthy gut microbiota. In this context, some studies have shown that nutrients and bioactive compounds from food can modulate the gut microbiota and possibly reduce TMAO production. OBJECTIVE This review has as main objective to discuss the studies that demonstrated the effects of food on the reduction of this harmful metabolite. METHODS All relevant articles until November 2020 were included. The articles were searched in Medline through PubMed. RESULTS Both the food is eaten acutely and chronically, by altering the nature of the gut microbiota, influencing colonic TMA production. Furthermore, hepatic production of TMAO by the flavin monooxygenases in the liver may also be influenced by phenolic compounds present in foods. CONCLUSION The evidence presented in this review shows that TMAO levels can be reduced by some bioactive compounds. However, it is crucial to notice that there is significant variation among the studies. Further clinical studies should be conducted to evaluate these dietary components' effectiveness, dose, and intervention time on TMAO levels and its precursors.
Collapse
Affiliation(s)
| | - Ludmila F M de F Cardozo
- Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Viviane de Oliveira Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
41
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
42
|
Pinto T, Aires A, Cosme F, Bacelar E, Morais MC, Oliveira I, Ferreira-Cardoso J, Anjos R, Vilela A, Gonçalves B. Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021; 10:foods10010106. [PMID: 33419090 PMCID: PMC7825428 DOI: 10.3390/foods10010106] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, as well as volatile compounds responsible for aromatic features, play a critical role in the quality of vegetables and medicinal, and aromatic plants (MAPs). The research conducted in recent years has shown that these plants contain biologically active compounds, mainly polyphenols, that relate to the prevention of inflammatory processes, neurodegenerative diseases, cancers, and cardiovascular disorders as well as to antimicrobial, antioxidant, and antiparasitic properties. Throughout the years, many researchers have deeply studied polyphenols and volatile compounds in medicinal and aromatic plants, particularly those associated with consumer's choices or with their beneficial properties. In this context, the purpose of this review is to provide an overview of the presence of volatile and nonvolatile compounds in some of the most economically relevant and consumed vegetables and medicinal and aromatic plants, with an emphasis on bioactive polyphenols, polyphenols as prebiotics, and, also, the most important factors that affect the contents and profiles of the volatile and nonvolatile compounds responsible for the aromatic features of vegetables and MAPs. Additionally, the new challenges for science in terms of improving polyphenol composition and intensifying volatile compounds responsible for the positive characteristics of vegetables and medicinal and aromatic plants are reported.
Collapse
Affiliation(s)
- Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
- Correspondence: ; Tel.: +351-259-350-345
| | - Alfredo Aires
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (A.A.); (M.C.M.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (F.C.); (A.V.)
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Maria Cristina Morais
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (A.A.); (M.C.M.)
| | - Ivo Oliveira
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Jorge Ferreira-Cardoso
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (F.C.); (A.V.)
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| |
Collapse
|
43
|
When polyphenols meet lipids: Challenges in membrane biophysics and opportunities in epithelial lipidomics. Food Chem 2020; 333:127509. [DOI: 10.1016/j.foodchem.2020.127509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
|
44
|
Gu C, Suleria HAR, Dunshea FR, Howell K. Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion. Antioxidants (Basel) 2020; 9:antiox9080762. [PMID: 32824607 PMCID: PMC7464840 DOI: 10.3390/antiox9080762] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The bioaccessibility and activity of polyphenols is dependent on their structure and entrapment in the food matrix. While dietary lipids are known to transit into the colon, the impact of different lipids on the microbiome, and their interactions with dietary polyphenols are largely unknown. Here, we investigated the effect of dietary lipids on the bioaccessibility of polyphenols from purple/black carrots and adaptation of the gut microbiome in a simulated in vitro digestion-fermentation. Coconut oil, sunflower oil, and beef tallow were selected to represent common dietary sources of medium-chain fatty acids (MCFAs), long-chain polyunsaturated fatty acids (PUFAs), and long-chain polysaturated fatty acids (SFAs), respectively. All lipids promoted the bioaccessibility of both anthocyanins and phenolic acids during intestinal digestion with coconut oil exhibiting the greatest protection of anthocyanins. Similar trends were shown in antioxidant assays (2,2-Diphenyl-1-pricrylhydrazyl (DPPH), ferric reducing ability (FRAP), and total phenolic content (TPC)) with higher phytochemical bioactivities observed with the addition of dietary lipids. Most bioactive polyphenols were decomposed during colonic fermentation. Black carrot modulated diversity and composition of a simulated gut microbiome. Dramatic shifts in gut microbiome were caused by coconut oil. Inclusion of sunflower oil improved the production of butyrate, potentially due to the presence of PUFAs. The results show that the impact of polyphenols in the digestive tract should be considered in the context of other components of the diet, particularly lipids.
Collapse
Affiliation(s)
- Chunhe Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
- Correspondence: ; Tel.: +61-470-439-67
| |
Collapse
|
45
|
Zorraquín I, Sánchez-Hernández E, Ayuda-Durán B, Silva M, González-Paramás AM, Santos-Buelga C, Moreno-Arribas MV, Bartolomé B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3789-3802. [PMID: 32167171 DOI: 10.1002/jsfa.10378] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Interactions between polyphenols and gut microbiota are indeed a major issue of current interest in food science research. Knowledge in this subject is progressing as the experimental procedures and analysis techniques do. The aim of this article is to critically review the more leading-edge approaches that have been applied so far in the study of the interactions between grape/wine polyphenols and gut microbiota. This is the case of in vitro dynamic gastrointestinal simulation models that try to mitigate the limitations of simple static models (batch culture fermentations). More complex approaches include the experimentation with animals (mice, rats, pigs, lambs and chicks) and nutritional intervention studies in humans. Main advantages and limitations as well as the most relevant findings achieved by each approach in the study of how grape/wine polyphenols can modulate the composition and/or functionality of gut microbiota, are detailed. Also, common findings obtained by the three approaches (in vitro, animal models and human nutritional interventions) such as the fact that the Firmicutes/Bacteroidetes ratio tends to decrease after the feed/intake/consumption of grape/wine polyphenols are highlighted. Additionally, a nematode (Caenorhabditis elegans) model, previously used for investigating the mechanisms of processes such as aging, neurodegeneration, oxidative stress and inflammation, is presented as an emerging approach for the study of polyphenols interacting gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Salamanca, Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL), Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
47
|
Intermingling of gut microbiota with brain: Exploring the role of probiotics in battle against depressive disorders. Food Res Int 2020; 137:109489. [PMID: 33233143 DOI: 10.1016/j.foodres.2020.109489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Depression is a debilitating psychiatric ailment which exerts disastrous effects on one's mental and physical health. Depression is accountable for augmentation of various life-threatening maladies such as neurodegenerative anomalies, cardiovascular diseases and diabetes. Depressive episodes are recurrent, pose a negative impact on life quality, decline life expectancy and enhance suicidal tendencies. Anti-depression chemotherapy displays marked adverse effects and frequent relapses. Thus, newer therapeutic interventions to prevent or combat depression are desperately required. Discovery of gut microbes as our mutualistic partner was made a long time ago and it is surprising that their functions still continue to expand and as of yet many are still to be uncovered. Experimental studies have revealed astonishing role of gut commensals in gut-brain signaling, immune homeostasis and hormonal regulation. Now, it is a well-established fact that gut microbes can alleviate stress or depression associated symptoms by modulating brain functions. Here in, we provide an overview of physiological alleyways involved in cross-talk between gut and brain, part played by probiotics in regulation of these pathways and use of probiotic bacteria as psychobiotics in various mental or depressive disorders.
Collapse
|
48
|
Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia Equolifaciens Strain That Does Not Produce Equol. Biomolecules 2020; 10:biom10060950. [PMID: 32586036 PMCID: PMC7355428 DOI: 10.3390/biom10060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Isoflavones are transformed in the gut into more estrogen-like compounds or into inactive molecules. However, neither the intestinal microbes nor the pathways leading to the synthesis of isoflavone-derived metabolites are fully known. In the present work, 73 fecal isolates from three women with an equol-producing phenotype were considered to harbor equol-related genes by qPCR. After typing, 57 different strains of different taxa were tested for their ability to act on the isoflavones daidzein and genistein. Strains producing small to moderate amounts of dihydrodaidzein and/or O-desmethylangolensin (O-DMA) from daidzein and dihydrogenistein from genistein were recorded. However, either alone or in several strain combinations, equol producers were not found, even though one of the strains, W18.34a (also known as IPLA37004), was identified as Adlercreutzia equolifaciens, a well-described equol-producing species. Analysis and comparison of A. equolifaciens W18.34a and A. equolifaciens DSM19450T (an equol producer bacterium) genome sequences suggested a deletion in the former involving a large part of the equol operon. Furthermore, genome comparison of A. equolifaciens and Asaccharobacter celatus (other equol-producing species) strains from databases indicated many of these also showed deletions within the equol operon. The present results contribute to our knowledge to the activity of gut bacteria on soy isoflavones.
Collapse
|
49
|
The Impact of Polyphenol on General Nutrient Metabolism in the Monogastric Gastrointestinal Tract. J FOOD QUALITY 2020. [DOI: 10.1155/2020/5952834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyphenols are bioactive compounds occurring in plant foods, which are considered significant owing to their contribution to human health and the prevention of chronic diseases. Phenolic compounds mainly depend on plant food structure and the interaction with other food constituents, mostly proteins, lipids, and carbohydrates. The interaction with the food matrices can obstruct or enhance nutrient accessibility and availability and even impair others. Food digestion is a complex process where ingested foods are converted to nutrients via mechanical and enzymatic alterations. The absorption of nutrients predominantly occurs in the small and large intestine, respectively. The metabolised product, however, is the main bioactive component due to their ability to enter the systemic circulation and reach the targeted organs. There is limited knowledge on the cellular uptake, phenolic metabolite, and polyphenolic effect in the gastrointestinal ecosystem. Therefore, improved understanding of the biological properties and stages of dietary phenols is essential for the effective utilization of their therapeutic potentials. This review will explore, summarise, and collate current information on how polyphenols influence nutrient metabolism, bioavailability, and the biotransformation stages.
Collapse
|
50
|
Zhou N, Gu X, Zhuang T, Xu Y, Yang L, Zhou M. Gut Microbiota: A Pivotal Hub for Polyphenols as Antidepressants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6007-6020. [PMID: 32394713 DOI: 10.1021/acs.jafc.0c01461] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyphenols, present in a broad range of plants, have been thought to be responsible for many beneficial health effects, such as an antidepressant. Despite that polyphenols can be absorbed in the small intestine directly, most of them have low bioavailability and reach the large intestine without any modifications due to their complex structures. The interaction between microbial communities and polyphenols in the intestine is important for the latter to exert antidepressant effects. Gut microbiota can improve the bioavailability of polyphenols; in turn, polyphenols can maintain the intestinal barrier as well as the community of the gut microbiota in normal status. Furthermore, gut microbita catabolize polyphenols to more active, better-absorbed metabolites, further ameliorating depression through the microbial-gut-brain (MGB) axis. Based on this evidence, the review illustrates the potential role of gut microbiota in the processes of polyphenols or their metabolites acting as antidepressants and further envisions the gut microbiota as therapeutic targets for depression.
Collapse
Affiliation(s)
- Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Gu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|