1
|
Jael Teresa de Jesús QV, Gálvez-Ruíz JC, Márquez Ibarra AA, Leyva-Peralta MA. Perspectives on Berberine and the Regulation of Gut Microbiota: As an Anti-Inflammatory Agent. Pharmaceuticals (Basel) 2025; 18:193. [PMID: 40006007 PMCID: PMC11858814 DOI: 10.3390/ph18020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Berberine is a promising agent for modulating the intestinal microbiota, playing a crucial role in human health homeostasis. This natural compound promotes the growth of beneficial bacteria such as Bacteroides, Bifidobacterium, and Lactobacillus while reducing harmful bacteria such as Escherichia coli. Clinical and preclinical studies demonstrate that Berberine helps regulate T2D and metabolic disorders, improves blood glucose levels during T2D, and reduces lipid profile and chronic inflammation, especially when combined with probiotics. Berberine represents a promising adjuvant therapy for inflammatory diseases, particularly intestinal disorders, due to its multifaceted actions of inhibiting proinflammatory cytokines and pathways during IBS, IBD, and UC and its modulation of gut microbiota and/or enhancement of the integrity of the intestinal epithelial barrier. This review establishes the basis for future treatment protocols with berberine and fully elucidates its mechanisms.
Collapse
Affiliation(s)
| | - Juan-Carlos Gálvez-Ruíz
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico;
| | | | - Mario-Alberto Leyva-Peralta
- Department of Chemical-Biological and Agricultural Sciences, Universidad de Sonora, Unidad Regional Norte, Caborca 83621, Mexico;
| |
Collapse
|
2
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
3
|
Gryaznova M, Smirnova Y, Burakova I, Syromyatnikov M, Chizhkov P, Popov E, Popov V. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiotics Antimicrob Proteins 2024; 16:1240-1250. [PMID: 37365419 DOI: 10.1007/s12602-023-10111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome is one of the main factors affecting human health. It has been proven that probiotics can regulate the metabolism in the host body. A large number of people use probiotics not as medicines, but as a prophylactic supplement. The aim of our study was to evaluate the effect of lactic acid bacteria on the gut microbiome of healthy people using the V3 region of the 16S rRNA gene. Our study showed changes in the generic composition in the gut of healthy people when taking the supplement. There was an increase in the members responsible for the production of short-chain fatty acids in the gut of the host (Blautia, Fusicatenibacter, Eubacterium hallii group, Ruminococcus), as well as bacteria that improve intestinal homeostasis (Dorea and Barnesiella). There was also a decrease in the abundance of bacteria in the genera Catenibacterium, Hungatella, Escherichia-Shigella, and Pseudomonas, associated with an unhealthy profile of the human gut microbiome. An increase in members of the phylum Actinobacteriota was also observed, which has a positive effect on the host organism. Our results indicate that short-term prophylactic use of lactic acid bacteria-based supplements can be effective, as it contributes to a beneficial effect on the gut microbiome of healthy people.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia.
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia.
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| |
Collapse
|
4
|
Wu Y, Li Y, Zheng Q, Li L. The Efficacy of Probiotics, Prebiotics, Synbiotics, and Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Network Meta-Analysis. Nutrients 2024; 16:2114. [PMID: 38999862 PMCID: PMC11243554 DOI: 10.3390/nu16132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder with gut microbiota imbalance playing a significant role. There are increasing numbers of research studies exploring treatment options involving probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT), but it is still uncertain which treatment option is superior. The research was conducted on various databases and unpublished trial data (up to February 2023). Randomized controlled trials (RCTs) were screened for adult patients with IBS comparing interventions with placebo. Probiotics, prebiotics, synbiotics, and FMT were assessed for their impact using mean difference and Bayesian network meta-analysis. Out of 6528 articles, 54 were included for probiotics, 7 for prebiotics/synbiotics, and 6 for FMT. Probiotics showed improvement in IBS symptoms, particularly with Bifidobacterium and Lactobacillus strains. Prebiotics and synbiotics did not show significant improvement. Network meta-analysis indicated the favorable effects of probiotics (OR = 0.53, 95% CI, 0.48 to 0.59) and FMT (OR = 0.46, 95% CI, 0.33 to 0.64) on IBS, with no serious adverse events reported. In short, probiotics and FMT are effective for managing IBS, with Bifidobacterium and Lactobacillus being dominant strains. However, the most effective probiotic combination or strain remains unclear, while prebiotics and synbiotics did not show significant improvement.
Collapse
Affiliation(s)
- Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yuetong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| |
Collapse
|
5
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
6
|
Lluansí A, Llirós M, Carreras-Torres R, Bahí A, Capdevila M, Feliu A, Vilà-Quintana L, Elias-Masiques N, Cueva E, Peries L, Torrealba L, Miquel-Cusachs JO, Sàbat M, Busquets D, López C, Delgado-Aros S, Garcia-Gil LJ, Elias I, Aldeguer X. Impact of bread diet on intestinal dysbiosis and irritable bowel syndrome symptoms in quiescent ulcerative colitis: A pilot study. PLoS One 2024; 19:e0297836. [PMID: 38363772 PMCID: PMC10871487 DOI: 10.1371/journal.pone.0297836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Gut microbiota may be involved in the presence of irritable bowel syndrome (IBS)-like symptomatology in ulcerative colitis (UC) patients in remission. Bread is an important source of dietary fiber, and a potential prebiotic. To assess the effect of a bread baked using traditional elaboration, in comparison with using modern elaboration procedures, in changing the gut microbiota and relieving IBS-like symptoms in patients with quiescent ulcerative colitis. Thirty-one UC patients in remission with IBS-like symptoms were randomly assigned to a dietary intervention with 200 g/d of either treatment or control bread for 8 weeks. Clinical symptomatology was tested using questionnaires and inflammatory parameters. Changes in fecal microbiota composition were assessed by high-throughput sequencing of the 16S rRNA gene. A decrease in IBS-like symptomatology was observed after both the treatment and control bread interventions as reductions in IBS-Symptom Severity Score values (p-value < 0.001) and presence of abdominal pain (p-value < 0.001). The treatment bread suggestively reduced the Firmicutes/Bacteroidetes ratio (p-value = 0.058). In addition, the Firmicutes/Bacteroidetes ratio seemed to be associated with improving IBS-like symptoms as suggested by a slight decrease in patient without abdominal pain (p-value = 0.059). No statistically significant differential abundances were found at any taxonomic level. The intake of a bread baked using traditional elaboration decreased the Firmicutes/Bacteroidetes ratio, which seemed to be associated with improving IBS-like symptoms in quiescent ulcerative colitis patients. These findings suggest that the traditional bread elaboration has a potential prebiotic effect improving gut health (ClinicalTrials.gov ID number of study: NCT05656391).
Collapse
Affiliation(s)
- Aleix Lluansí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Marc Llirós
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Anna Bahí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Montserrat Capdevila
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Anna Feliu
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Laura Vilà-Quintana
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | | | | | - Laia Peries
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Leyanira Torrealba
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Josep Oriol Miquel-Cusachs
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Míriam Sàbat
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital de Santa Caterina, Girona, Spain
| | - David Busquets
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Carmen López
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Sílvia Delgado-Aros
- Gastroenterology Scientific advisor to Elias-Boulanger S.L., Vilassar de Mar, Spain
| | - Librado Jesús Garcia-Gil
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Biology, Universitat de Girona, Girona, Spain
| | - Isidre Elias
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Xavier Aldeguer
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| |
Collapse
|
7
|
Basiji K, Sendani AA, Ghavami SB, Farmani M, Kazemifard N, Sadeghi A, Lotfali E, Aghdaei HA. The critical role of gut-brain axis microbiome in mental disorders. Metab Brain Dis 2023; 38:2547-2561. [PMID: 37436588 DOI: 10.1007/s11011-023-01248-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
The Gut-brain axis is a bidirectional neural and humoral signaling that plays an important role in mental disorders and intestinal health and connects them as well. Over the past decades, the gut microbiota has been explored as an important part of the gastrointestinal tract that plays a crucial role in the regulation of most functions of various human organs. The evidence shows several mediators such as short-chain fatty acids, peptides, and neurotransmitters that are produced by the gut may affect the brain's function directly or indirectly. Thus, dysregulation in this microbiome community can give rise to several diseases such as Parkinson's disease, depression, irritable bowel syndrome, and Alzheimer's disease. So, the interactions between the gut and the brain are significantly considered, and also it provides a prominent subject to investigate the causes of some diseases. In this article, we reviewed and focused on the role of the largest and most repetitive bacterial community and their relevance with some diseases that they have mentioned previously.
Collapse
Affiliation(s)
- Kimia Basiji
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Li R, Roy R. Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Appl Biochem Biotechnol 2023; 195:6809-6823. [PMID: 36930406 DOI: 10.1007/s12010-023-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The gut microbiota widely varies from individual to individual, but the variation shows stability over a period of time. The presence of abundant bacterial taxa is a common structure that determines the microbiota of human being. The presence of this microbiota greatly varies from geographic location, sex, food habits and age. Microbiota existing within the gut plays a significant role in nutrient absorption, development of immunity, curing of diseases and various developmental phases. With change in age, chronology diversification and variation of gut microbiota are observed within human being. But it has been observed that with the enhancement of age the richness of the microbial diversity has shown a sharp decline. The enhancement of age also results in the drift of the characteristic of the microbes associated with the microbiota from commensals to pathogenic. Various studies have shown that age associated gut-dysbiosis may result in decrease in tlongevity along with unhealthy aging. The host signalling pathways regulate the presence of the gut microbiota and their longevity. The presence of various nutrients regulates the presence of various microbial species. Innate immunity can be triggered due to the mechanism of gut dysbiosis resulting in the development of various age-related pathological syndromes and early aging. The gut microbiota possesses the ability to communicate with the host system with the help of various types of biomolecules, epigenetic mechanisms and various types of signalling-independent pathways. Drift in this mechanism of communication may affect the life span along with the health of the host. Thus, this review would focus on the use of gut-microbiota in anti-aging and healthy conditions of the host system.
Collapse
Affiliation(s)
- Ruishan Li
- Guiyang Healthcare Vocational University, Guiyang, China.
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd, Kolkata, India
| |
Collapse
|
9
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
10
|
Jamshidi P, Farsi Y, Nariman Z, Hatamnejad MR, Mohammadzadeh B, Akbarialiabad H, Nasiri MJ, Sechi LA. Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Mol Sci 2023; 24:14562. [PMID: 37834010 PMCID: PMC10573019 DOI: 10.3390/ijms241914562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Irritable bowel syndrome (IBS) poses a significant challenge due to its poorly understood pathogenesis, substantial morbidity, and often inadequate treatment outcomes. The role of fecal microbiota transplantation (FMT) in managing IBS symptoms remains inconclusive. This systematic review and meta-analysis aimed to ascertain the effectiveness of FMT in relieving symptoms in IBS patients. A thorough search was executed on PubMed/Medline and Embase databases until 14 June 2023, including all studies on FMT use in IBS patients. We examined the efficiency of FMT in reducing patients' symptoms overall and in particular subgroups, classified by placebo preparation, FMT preparation, frequency, and route of administration. Among 1015 identified studies, seven met the inclusion criteria for the meta-analysis. The overall symptomatology of FMT-treated IBS patients did not significantly differ from the control group (Odds Ratio (OR) = 0.99, 95% Confidence Interval (CI) 0.39-2.5). Multiple doses of FMT compared with non-FMT placebo, or single-donor FMT therapy compared with autologous FMT placebo also showed no significant benefit (OR = 0.32, 95%CI (0.07-1.32), p = 0.11, and OR = 1.67, 95%CI (0.59-4.67), p = 0.32, respectively). However, a single dose of multiple-donor FMT administered via colonoscopy (lower gastrointestinal (GI) administration) significantly improved patient symptoms compared with autologous FMT placebo (OR = 2.54, 95%CI (1.20-5.37), p = 0.01, and OR = 2.2, 95%CI (1.20-4.03), p = 0.01, respectively). The studies included in the analysis showed a low risk of bias and no publication bias. In conclusion, lower GI administration of a single dose of multiple-donor FMT significantly alleviates patient complaints compared with the autologous FMT used as a placebo. The underlying mechanisms need to be better understood, and further experimental studies are desired to fill the current gaps.
Collapse
Affiliation(s)
- Parnian Jamshidi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran or (P.J.)
| | - Yeganeh Farsi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Zahra Nariman
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Reza Hatamnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Benyamin Mohammadzadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran or (P.J.)
| | - Hossein Akbarialiabad
- NVH Global Health Academy, Nuvance Health, Danbury, CT 06810, USA
- St George and Sutherland Clinical School, UNSW Medicine, Sydney, NSW 2217, Australia
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran or (P.J.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
11
|
Oh CK, Park JK, Kim YJ, Kim JB. Efficacy and safety of human gut-derived multi-strain probiotics in patients with irritable bowel syndrome: A prospective open-label observation study. Medicine (Baltimore) 2023; 102:e34899. [PMID: 37653742 PMCID: PMC10470732 DOI: 10.1097/md.0000000000034899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/25/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to investigate the efficacy and safety of human gut-derived multi-strain probiotics in patients with irritable bowel syndrome (IBS). This was an open-label, prospective, observational study. Patients with IBS were administered human gut-derived multi-strain probiotics for 4 weeks. The primary and secondary outcomes were based on the overall responder rate of the total IBS severity scoring system (IBS-SSS) score (>50-point decrease) and the IBS quality of life (IBS-QOL) score and IBS-SSS1 subscore (>10-point decrease in both scores), respectively. The estimated response rate is 55%. Of 44 patients, the total IBS-SSS score responder rate was 18.2% and 63.6% of patients at 2 and 4 weeks, respectively (P = .018). Compared with baseline, a significant improvement in the IBS-QOL score was observed in 27.3% and 63.6% of patients at 2 and 4 weeks, respectively (P = .001). Overall improvement rates in the IBS-SSS1 subscore were observed in 29.5% and 61.4% of patients at 2 and 4 weeks, respectively (P < .001). Primary and secondary outcomes were higher at 4 weeks (total IBS-SSS score, 63.6%; IBS-QOL score, 63.6%; IBS-SSS1 subscore, 61.4%) than the estimated responder rate (55%). Human gut-derived multi-strain probiotics have the potential to become an effective and safe treatment option for IBS patients.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| | - Jae Keun Park
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| | - Yu Jin Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| | - Jin Bae Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| |
Collapse
|
12
|
Lindberg G, Mohammadian G. Loose ends in the differential diagnosis of IBS-like symptoms. Front Med (Lausanne) 2023; 10:1141035. [PMID: 37484861 PMCID: PMC10357384 DOI: 10.3389/fmed.2023.1141035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Two thirds of the patients we believed to have IBS in the 1970's have since been possible to diagnose with treatable conditions like bile acid diarrhea, inflammatory bowel disease, microscopic colitis, celiac disease, disaccharide malabsorption, exocrine pancreatic insufficiency, or rare genetic variants. Despite advances in diagnostic techniques a substantial proportion of patients continue suffering from IBS-like symptoms that cannot be explained by current knowledge. Although it is likely that further research will reveal small but important subgroups of patients with treatable mechanisms for IBS-like symptoms, we propose that only two large groups remain for being addressed in the clinic: those with connective tissue disorders such as Ehlers-Danlos syndrome or hypermobility spectrum disorders and those with autism spectrum disorders. Patients with connective tissue disorders exhibit identifiable disturbances of gut motor function and possibly increased gut permeability as underlying mechanisms for IBS-like symptoms. Autism spectrum disorders pose a much more difficult problem in the clinic. Disturbances of perception combined with anxiety and excessive worry about signals from the gut can lead to an endless but futile search for something being wrong. The search can involve large numbers of care givers, no one understanding the patient's suffering. Others may try to change their diet to lessen symptoms, only to find that almost all foods may cause worrying perceptions from the gut. Early recognition of autism spectrum disorders is essential for finding better ways to help patients with gastrointestinal and, as is often the case, extraintestinal symptoms.
Collapse
Affiliation(s)
- Greger Lindberg
- Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
- Neurogastroenterology Unit, Division of Gastroenterology, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Ghazaleh Mohammadian
- Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
- Neurogastroenterology Unit, Division of Gastroenterology, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Roach LA, Meyer BJ, Fitton JH, Winberg P. Oral Supplementation with Algal Sulphated Polysaccharide in Subjects with Inflammatory Skin Conditions: A Randomised Double-Blind Placebo-Controlled Trial and Baseline Dietary Differences. Mar Drugs 2023; 21:379. [PMID: 37504910 PMCID: PMC10381427 DOI: 10.3390/md21070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
We examined the effect of a dietary seaweed extract-sulfated xylorhamnoglucuronan (SXRG84)-on individuals with inflammatory skin conditions. A subgroup analysis of a larger trial was undertaken, where 44 participants with skin conditions were enrolled in a double-blind placebo-controlled crossover design. Subjects ingested either SXRG84 extract (2 g/day) for six weeks and placebo for six weeks, or vice versa. At baseline, six- and twelve-weeks inflammatory markers and the gut microbiota were assessed, as well as skin assessments using the dermatology quality of life index (DQLI), psoriasis area severity index (PASI) and visual analogue scales (VAS). There were significant differences at weeks six and twelve for pro-inflammatory cytokines IFN-γ (p = 0.041), IL-1β (p = 0.030), TNF-α (p = 0.008) and the anti-inflammatory cytokine IL-10 (p = 0.026), determined by ANCOVA. These cytokines were all significantly higher at six weeks post placebo compared to twelve weeks post placebo followed by SXRG84 treatment. A total of 23% of participants reported skin improvements, as measured by VAS (mean difference 3.1, p = 0.0005) and the DQLI score (mean difference -2.0, p = 0.049), compared to the 'non-responders'. Thus, the ingestion of SXRG84 for 6 weeks reduced inflammatory cytokines, and a subset of participants saw improvements.
Collapse
Affiliation(s)
- Lauren A Roach
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Pia Winberg
- Venus Shell Systems Pty Ltd., Nowra, NSW 2540, Australia
| |
Collapse
|
14
|
Qian W, Li W, Chen X, Cui L, Liu X, Yao J, Wang X, Liu Y, Li C, Wang Y, Wang W. Exploring the mechanism of Xingpi Capsule in diarrhea predominant-irritable bowel syndrome treatment based on multiomics technology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154653. [PMID: 36641976 DOI: 10.1016/j.phymed.2023.154653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Xingpi Capsule (XP), a commercially available over-the-counter herbal medicine in China, plays a prominent role in treating diarrhea-predominant irritable bowel syndrome (IBS-D). Nevertheless, the potential mechanisms remain unclear. PURPOSE This study aimed to investigate XP efficacy in IBS-D and elucidate the underlying molecular mechanisms. METHODS A rat IBS-D model was established by senna decoction gavage combined with restraint stress and swimming exhaustion. The changes in rat body weight and stool were recorded daily. Colon pathological changes and the number of colonic goblet cells of rats were observed by hematoxylin-eosin (HE) staining and Alcian blue plus periodic acid-Schiff (AB-PAS) staining, respectively. The expression of Occludin, a tight-junction-associated protein, was examined via immunohistochemistry. Images of colonic microvilli were obtained by TEM. Western blotting (WB) was used to analyze the protein expression of the ASK1/P38 MAPK pathway. The composition of the rat intestinal microbiota was detected by 16S rRNA sequencing. Changes in colonic metabolites were evaluated by liquid chromatography-mass spectrometry (LC-MS). Changes in colon RNA expression were assessed by RNA sequencing (RNA-Seq). The nontoxic range of hypoxanthine (HPX) was screened by Cell Counting Kit-8 (CCK8), the cell model of human colonic epithelial cells (NCM460) induced by lipopolysaccharide (LPS) was established, and the effective concentration of HPX was screened by CCK8. After transfection of pcDNA3.1-MAP3K5, Hoechst 33,342 staining, flow cytometry to detect cell apoptosis, and immunofluorescence to detect the fluorescence changes of ASK1 and ZO-1. WB detection of ASK1/P38 MAPK pathway protein expression changes. RESULTS XP increased the body weight of IBS-D patients and reduced the loose stool rate, loose stool index, and Bristo score. In addition, XP mitigated colon lesions, increased the number of goblet cells and the expression of Occludin, and prevented severe distortion and effacement of the microvillous structure. Specifically, 16S rRNA gene sequence analysis showed that XP decreased the abundance of Desulfurium and Prevotella 9 at the phylum and genus levels while increasing the abundance of Bacteroides at the genus level. RNA-Seq combined with WB validation showed that XP exerted antidiarrheal effects by inhibiting the ASK1/P38 MAPK signaling pathway. Additionally, XP also increased the relative expression level of the metabolite HPX, as revealed by untargeted metabolomics analysis. Impressively, the correlation analysis between 16S rRNA sequencing and LC-MS suggested that HPX and Prevotella 9 are negatively correlated, which indicated that XP might increase the content of HPX by reducing the abundance of Prevotella 9. Meanwhile, a negative correlation between HPX and ASK1 was indicated through RNA-Seq and LC-MS, which suggested that the inhibition of ASK1 (Map3k5) may be ascribed to the increase in HPX after XP treatment. In vitro experiments have proven that HPX can alleviate LPS-induced NCM460 damage, specifically manifested as enhancing cell viability, reducing cell apoptosis, increasing ZO-1 expression, reducing the fluorescence intensity of MAP3K5 in the model group, and inhibiting the expression of ASK1/P38 MAPK pathway proteins. The protective effect of HPX was reversed after transfection with pcDNA 3.1-MAP3K5, which fully demonstrated that the protective mechanism of HPX was achieved by inhibiting MAP3K5 and its downstream pathways. CONCLUSION XP displayed multifaceted protection against IBS-D in rats by regulating the intestinal microbiota, increasing the relative expression level of HPX, a metabolite of the microbiota, and inhibiting the ASK1/P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Weina Qian
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyang Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingwen Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangning Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yizhou Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of Syndrome and Formula, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
15
|
Pakharukova MY, Lishai EA, Zaparina O, Baginskaya NV, Hong SJ, Sripa B, Mordvinov VA. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. PLoS Negl Trop Dis 2023; 17:e0011111. [PMID: 36780567 PMCID: PMC9956601 DOI: 10.1371/journal.pntd.0011111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis are epidemiologically significant food-borne trematodes endemic to diverse climatic areas. O. viverrini and C. sinensis are both recognized to be 1A group of biological carcinogens to human, whereas O. felineus is not. The mechanisms of carcinogenesis by the liver flukes are studied fragmentarily, the role of host and parasite microbiome is an unexplored aspect. METHODOLOGY/PRINCIPAL FINDINGS Specific pathogen free Mesocricetus auratus hamsters were infected with C. sinensis, O. viverrini and O. felineus. The microbiota of the adult worms, colon feces and bile from the hamsters was investigated using Illumina-based sequencing targeting the prokaryotic 16S rRNA gene. The analysis of 43 libraries revealed 18,830,015 sequences, the bacterial super-kingdom, 16 different phyla, 39 classes, 63 orders, 107 families, 187 genera-level phylotypes. O. viverrini, a fluke with the most pronounced carcinogenic potential, has the strongest impact on the host bile microbiome, changing the abundance of 92 features, including Bifidobacteriaceae, Erysipelotrichaceae, [Paraprevotellaceae], Acetobacteraceae, Coriobacteraceae and Corynebacteriaceae bacterial species. All three infections significantly increased Enterobacteriaceae abundance in host bile, reduced the level of commensal bacteria in the gut microbiome (Parabacteroides, Roseburia, and AF12). CONCLUSIONS/SIGNIFICANCE O. felineus, O. viverrini, and C. sinensis infections cause both general and species-specific qualitative and quantitative changes in the composition of microbiota of bile and colon feces of experimental animals infected with these trematodes. The alterations primarily concern the abundance of individual features and the phylogenetic diversity of microbiomes of infected hamsters.
Collapse
Affiliation(s)
- Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Ekaterina A. Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina V. Baginskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Viatcheslav A. Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
17
|
Sanz Morales P, Wijeyesekera A, Robertson MD, Jackson PPJ, Gibson GR. The Potential Role of Human Milk Oligosaccharides in Irritable Bowel Syndrome. Microorganisms 2022; 10:microorganisms10122338. [PMID: 36557589 PMCID: PMC9781515 DOI: 10.3390/microorganisms10122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Irritable Bowel Syndrome (IBS) is the most common gastrointestinal (GI) disorder in Western populations and therefore a major public health/economic concern. However, despite extensive research, psychological and physiological factors that contribute to the aetiology of IBS remain poorly understood. Consequently, clinical management of IBS is reduced to symptom management through various suboptimal options. Recent evidence has suggested human milk oligosaccharides (HMOs) as a potential therapeutic option for IBS. Here, we review literature concerning the role of HMOs in IBS, including data from intervention and in vitro trials. HMO supplementation shows promising results in altering the gut microbiota and improving IBS symptoms, for instance by stimulating bifidobacteria. Further research in adults is required into HMO mechanisms, to confirm the preliminary results available to date and recommendations of HMO use in IBS.
Collapse
Affiliation(s)
- Patricia Sanz Morales
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
- Correspondence: ; Tel.: +44-7843865554
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Margaret Denise Robertson
- Department of Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Peter P. J. Jackson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Glenn R. Gibson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| |
Collapse
|
18
|
Karakan T, Gundogdu A, Alagözlü H, Ekmen N, Ozgul S, Tunali V, Hora M, Beyazgul D, Nalbantoglu OU. Artificial intelligence-based personalized diet: A pilot clinical study for irritable bowel syndrome. Gut Microbes 2022; 14:2138672. [PMID: 36318623 PMCID: PMC9629088 DOI: 10.1080/19490976.2022.2138672] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We enrolled consecutive IBS-M patients (n = 25) according to Rome IV criteria. Fecal samples were obtained from all patients twice (pre-and post-intervention) and high-throughput 16S rRNA sequencing was performed. Six weeks of personalized nutrition diet (n = 14) for group 1 and a standard IBS diet (n = 11) for group 2 were followed. AI-based diet was designed based on optimizing a personalized nutritional strategy by an algorithm regarding individual gut microbiome features. The IBS-SSS evaluation for pre- and post-intervention exhibited significant improvement (p < .02 and p < .001 for the standard IBS diet and personalized nutrition groups, respectively). While the IBS-SSS evaluation changed to moderate from severe in 78% (11 out of 14) of the personalized nutrition group, no such change was observed in the standard IBS diet group. A statistically significant increase in the Faecalibacterium genus was observed in the personalized nutrition group (p = .04). Bacteroides and putatively probiotic genus Propionibacterium were increased in the personalized nutrition group. The change (delta) values in IBS-SSS scores (before-after) in personalized nutrition and standard IBS diet groups are significantly higher in the personalized nutrition group. AI-based personalized microbiome modulation through diet significantly improves IBS-related symptoms in patients with IBS-M. Further large-scale, randomized placebo-controlled trials with long-term follow-up (durability) are needed.
Collapse
Affiliation(s)
- Tarkan Karakan
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey,Metagenomics Division, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey,Enbiosis Biotechnology, Istanbul, Turkey
| | - Hakan Alagözlü
- Yuksek Ihtisas University, Medical Faculty, Gastroenterology Department, Turkey
| | - Nergiz Ekmen
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Seckin Ozgul
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Varol Tunali
- Celal Bayar University, Medical Faculty, Parasitology Department, Manisa, Turkey
| | - Mehmet Hora
- Enbiosis Biotechnology, Istanbul, Turkey,Bioinformatics Division, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | | | - O. Ufuk Nalbantoglu
- Enbiosis Biotechnology, Istanbul, Turkey,Bioinformatics Division, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey,Department of Computer Engineering, Erciyes University, Kayseri, Turkey,CONTACT O. Ufuk Nalbantoglu Celal Bayar University, Medical Faculty, Parasitology Department, Manisa, Turkey
| |
Collapse
|
19
|
Burakova I, Smirnova Y, Gryaznova M, Syromyatnikov M, Chizhkov P, Popov E, Popov V. The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People. Nutrients 2022; 14:3384. [PMID: 36014890 PMCID: PMC9415828 DOI: 10.3390/nu14163384] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a problem of modern health care that causes the occurrence of many concomitant diseases: arterial hypertension, diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. New strategies for the treatment and prevention of obesity are being developed that are based on using probiotics for modulation of the gut microbiota. Our study aimed to evaluate the bacterial composition of the gut of obese patients before and after two weeks of lactic acid bacteria (Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and Lactobacillus delbrueckii) intake. The results obtained showed an increase in the number of members of the phylum Actinobacteriota in the group taking nutritional supplements, while the number of phylum Bacteroidota decreased in comparison with the control group. There has also been an increase in potentially beneficial groups: Bifidobacterium, Blautia, Eubacterium, Anaerostipes, Lactococcus, Lachnospiraceae ND3007, Streptococcus, Escherichia-Shigella, and Lachnoclostridium. Along with this, a decrease in the genera was demonstrated: Faecalibacterium, Pseudobutyrivibrio, Subdoligranulum, Faecalibacterium, Clostridium sensu stricto 1 and 2, Catenibacterium, Megasphaera, Phascolarctobacterium, and the Oscillospiraceae NK4A214 group, which contribute to the development of various metabolic disorders. Modulation of the gut microbiota by lactic acid bacteria may be one of the ways to treat obesity.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
20
|
Portincasa P, Celano G, Serale N, Vitellio P, Calabrese FM, Chira A, David L, Dumitrascu DL, De Angelis M. Clinical and Metabolomic Effects of Lactiplantibacillus plantarum and Pediococcus acidilactici in Fructose Intolerant Patients. Nutrients 2022; 14:2488. [PMID: 35745219 PMCID: PMC9231202 DOI: 10.3390/nu14122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Fructose intolerance (FI) is a widespread non-genetic condition in which the incomplete absorption of fructose leads to gastro-intestinal disorders. The crucial role of microbial dysbiosis on the onset of these intolerance symptoms together with their persistence under free fructose diets are driving the scientific community towards the use of probiotics as a novel therapeutic approach. In this study, we evaluated the prevalence of FI in a cohort composed of Romanian adults with Functional Grastrointestinal Disorders (FGIDs) and the effectiveness of treatment based on the probiotic formulation EQBIOTA® (Lactiplantibacillus plantarum CECT 7484 and 7485 and Pediococcus acidilactici CECT 7483). We evaluated the impact of a 30-day treatment both on FI subjects and healthy volunteers. The gastrointestinal symptoms and fecal volatile metabolome were evaluated. A statistically significant improvement of symptoms (i.e., bloating, and abdominal pain) was reported in FI patient after treatment. On the other hand, at the baseline, the content of volatile metabolites was heterogeneously distributed between the two study arms, whereas the treatment led differences to decrease. From our analysis, how some metabolomics compounds were correlated with the improvement and worsening of clinical symptoms clearly emerged. Preliminary observations suggested how the improvement of gastrointestinal symptoms could be induced by the increase of anti-inflammatory and protective substrates. A deeper investigation in a larger patient cohort subjected to a prolonged treatment would allow a more comprehensive evaluation of the probiotic treatment effects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Nadia Serale
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Paola Vitellio
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Francesco Maria Calabrese
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Alexandra Chira
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Liliana David
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| |
Collapse
|
21
|
Zong S, Ye H, Ye Z, He Y, Zhang X, Ye M. Polysaccharides from Lachnum sp. Inhibited colitis-associated colon tumorigenesis in mice by modulating fecal microbiota and metabolites. Int Immunopharmacol 2022; 108:108656. [PMID: 35390743 DOI: 10.1016/j.intimp.2022.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
It is still uncertain whether the consumption of Lachnum sp. polysaccharides (LEP) alleviates colorectal cancer (CRC) through the gut microbiota. In this study, our efforts are focused on the influence of LEP on CRC, intestinal barrier and inflammation, and fecal microbiota and the metabolites, in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. Results showed that LEP inhibited CRC mouse colon shortening and weight loss, decreased tumor incidence, restored intestinal barrier integrity, and reduced excessive inflammation. LEP consumption significantly altered microbiota overall structure and community, with reduced pernicious bacteria (such as Parabacteroides, Escherichia_Shigella, Desulfovibrio and Helicobacter), and increased beneficial bacterium (such as Alistipes, Alloprevotella and Ruminiclostridium). Fecal-metabolome profile indicated that a total of 43 metabolites were clearly changed, with 10 down-regulated and 33 up-regulated metabolites. In addition, short-chain fatty acids (SCFAs), including acetic acid, propionic acid and n-butyric acid, were significantly increased after LEP administration. Moreover, a strong correlation between the fluctuant gut microbiota and metabolites was found. These findings provided not only deeper insights into the responsibility of LEP for CRC alleviation, and but also the potential of LEP as a promising candidate for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuai Zong
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Hongling Ye
- School of Agriculture, Forestry and Fashion Technology, Anqing Vocational and Technical College, Anqing 246003, China
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaling He
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
22
|
Huang R. Gut Microbiota: A Key Regulator in the Effects of Environmental Hazards on Modulates Insulin Resistance. Front Cell Infect Microbiol 2022; 11:800432. [PMID: 35111696 PMCID: PMC8801599 DOI: 10.3389/fcimb.2021.800432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is a hallmark of Alzheimer’s disease (AD), type II diabetes (T2D), and Parkinson’s disease (PD). Emerging evidence indicates that these disorders are typically characterized by alterations in the gut microbiota composition, diversity, and their metabolites. Currently, it is understood that environmental hazards including ionizing radiation, toxic heavy metals, pesticides, particle matter, and polycyclic aromatic hydrocarbons are capable of interacting with gut microbiota and have a non-beneficial health effect. Based on the current study, we propose the hypothesis of “gut microenvironment baseline drift”. According to this “baseline drift” theory, gut microbiota is a temporarily combined cluster of species sharing the same environmental stresses for a short period, which would change quickly under the influence of different environmental factors. This indicates that the microbial species in the gut do not have a long-term relationship; any split, division, or recombination may occur in different environments. Nonetheless, the “baseline drift” theory considers the critical role of the response of the whole gut microbiome. Undoubtedly, this hypothesis implies that the gut microbiota response is not merely a “cross junction” switch; in contrast, the human health or disease is a result of a rich palette of gut-microbiota-driven multiple-pathway responses. In summary, environmental factors, including hazardous and normal factors, are critical to the biological impact of the gut microbiota responses and the dual effect of the gut microbiota on the regulation of biological functions. Novel appreciation of the role of gut microbiota and environmental hazards in the insulin resistance would shed new light on insulin resistance and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
|
23
|
Gut microbiota in gastrointestinal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:141-151. [DOI: 10.1016/bs.pmbts.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Effect of a Symbiotic Mixture on Fecal Microbiota in Pediatric Patients Suffering of Functional Abdominal Pain Disorders. Processes (Basel) 2021. [DOI: 10.3390/pr9122157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Functional abdominal pain disorders (FAPDs) represent one of the main etiologies of chronic abdominal pain in the pediatric population. A wide spectrum of probiotic or prebiotic mixtures has been evaluated in trials regarding benefits in patients with FAPDs, mainly in the adult population. (2) Methods: This study was interested in evaluating the effect of oral supplementation with a symbiotic mixture on intestinal microbiota in children with functional dyspepsia (FD), irritable bowel syndrome with diarrhea (IBS-D), and irritable bowel syndrome with constipation (IBS-C). A combination of six bacterial strains (Lactobacillus rhamnosus R0011, Lactibacillus casei R0215, Bifidobacterium lactis BI-04, Lactobacillus acidophilus La-14, Bifidobacterium longum BB536, Lactobacillus plantarum R1012) and 210 mg of fructo-oligosaccharides-inulin were administered orally, daily, for 12 weeks and patients were scored for severity of symptoms and fecal microbiota before and after the treatment. (3) Results: The proportion of patients with adequate symptom relief was higher in the IBS-D than in the IBS-C group; however, the difference was not statistically significant (74.4% vs. 61.9%, p = 0.230). There was an increasing proportion of bacterial genera associated with health benefits, for both IBS-C and IBS-D (IBS-C: 31.1 ± 16.7% vs. 47.7 ± 13.5%, p = 0.01; IBS-D: 35.8 ± 16.2% vs. 44.1 ± 15.1%, p = 0.01). (4) Conclusions: Administration of a symbiotic preparation resulted in significant changes to the microbiota and gastrointestinal symptoms in patients with FAPDs.
Collapse
|
25
|
Abstract
Several products consist of probiotics that are available in markets, and their potential uses are growing day by day, mainly because some strains of probiotics promote the health of gut microbiota, especially Furmicutes and Bacteroidetes, and may prevent certain gastrointestinal tract (GIT) problems. Some common diseases are inversely linked with the consumption of probiotics, i.e., obesity, type 2 diabetes, autism, osteoporosis, and some immunological disorders, for which the disease progression gets delayed. In addition to disease mitigating properties, these microbes also improve oral, nutritional, and intestinal health, followed by a robust defensive mechanism against particular gut pathogens, specifically by antimicrobial substances and peptides producing probiotics (AMPs). All these positive attributes of probiotics depend upon the type of microbial strains dispensed. Lactic acid bacteria (LAB) and Bifidobacteria are the most common microbes used, but many other microbes are available, and their use depends upon origin and health-promoting properties. This review article focuses on the most common probiotics, their health benefits, and the alleviating mechanisms against chronic kidney diseases (CKD), type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), and obesity.
Collapse
|
26
|
Vork L, Penders J, Jalanka J, Bojic S, van Kuijk SMJ, Salonen A, de Vos WM, Rajilic-Stojanovic M, Weerts ZZRM, Masclee AAM, Pozuelo M, Manichanh C, Jonkers DMAE. Does Day-to-Day Variability in Stool Consistency Link to the Fecal Microbiota Composition? Front Cell Infect Microbiol 2021; 11:639667. [PMID: 34458156 PMCID: PMC8386168 DOI: 10.3389/fcimb.2021.639667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Stool consistency has been associated with fecal microbial composition. Stool consistency often varies over time, in subjects with and without gastrointestinal disorders, raising the question whether variability in the microbial composition should be considered in microbiota studies. We evaluated within-subject day-to-day variability in stool consistency and the association with the fecal microbiota in irritable bowel syndrome (IBS) and healthy subjects, over seven days. Methods Twelve IBS patients and 12 healthy subjects collected fecal samples during seven consecutive days. Stool consistency was determined by the patient-reported Bristol Stool Scale (BSS) and fecal dry weight percentage. 16S rRNA V4 gene sequencing was performed and microbial richness (alpha diversity; Chao1 index, observed number of species, effective Shannon index) and microbial community structure (beta diversity; Bray-Curtis distance, generalized UniFrac, and taxa abundance on family level) were determined. Results Linear mixed-effects models showed significant associations between stool consistency and microbial richness, but no time effect. This implies that between-subject but not within-subject variation in microbiota over time can partially be explained by variation in stool consistency. Redundancy analysis showed a significant association between stool consistency and microbial community structure, but additional linear mixed-effects models did not demonstrate a time effect on this. Conclusion This study supports an association between stool consistency and fecal microbiota, but no effect of day-to-day fluctuations in stool consistency within seven days. This consolidates the importance of considering stool consistency in gut microbiota research, though confirms the validity of single fecal sampling to represent an individual's microbiota at a given time point. NCT00775060.
Collapse
Affiliation(s)
- Lisa Vork
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana Bojic
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Sander M. J. van Kuijk
- Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Mirjana Rajilic-Stojanovic
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Zsa Zsa R. M. Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ad A. M. Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Marta Pozuelo
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Chaysavanh Manichanh
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Daisy M. A. E. Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
27
|
Naseri K, Dabiri H, Rostami-Nejad M, Yadegar A, Houri H, Olfatifar M, Sadeghi A, Saadati S, Ciacci C, Iovino P, Zali MR. Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterol 2021. [PMID: 34261437 DOI: 10.1186/s12876-021-01868-5.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Recently, dietary restriction of fermentable carbohydrates (a low-FODMAP diet) in combination with a gluten-free diet (GFD) has been proposed to reduce the symptoms in irritable bowel syndrome (IBS) patients. Different studies reported that IBS has been associated with dysbiosis in the gut microbiota. Additionally, a few studies have reported inflammation in the gastrointestinal (GI) system of adults with IBS. In this study, we aimed to investigate the effects of low FODMAP-gluten free diet (LF-GFD) on clinical symptoms, intestinal microbiota diversity, and fecal calprotectin (FC) level in Iranian patients with IBS. DESIGN In this clinical trial study, 42 patients with IBS (Rome IV criteria) underwent LF-GFD intervention for 6 weeks. Symptoms were assessed using the IBS symptom severity scoring (IBS-SSS), and fecal samples were collected at baseline and after intervention and analyzed by quantitative 16 S rRNA PCR assay. The diversity of gut microbiota compared before and after 6 weeks of dietary intervention. FC was also analyzed by the ELISA method. RESULTS Thirty patients (mean age 37.8 ± 10.7 years) completed the 6-week diet. The IBS-SSS was significantly (P = 0.001) reduced after LF-GFD intervention compared to the baseline. Significant microbial differences before and after intervention were noticed in fecal samples. A significant increase was found in Bacteroidetes, and the Firmicutes to Bacteroidetes (F/B) ratio was significantly (P = 0.001) decreased after the dietary intervention. The value of FC was significantly decreased after 6 weeks of dietary intervention (P = 0.001). CONCLUSIONS Our study suggests that patients with IBS under an LF-GFD had a significant improvement in IBS symptoms severity, with reduced FC level following normalization of their gut microbiota composition. Further rigorous trials are needed to establish a long-term efficacy and safety of this dietary intervention for personalized nutrition in IBS. Clinical Trial Registry Number: IRCT20100524004010N26.
Collapse
Affiliation(s)
- Kaveh Naseri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Meysam Olfatifar
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Mohammad Reza Zali
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Naseri K, Dabiri H, Rostami-Nejad M, Yadegar A, Houri H, Olfatifar M, Sadeghi A, Saadati S, Ciacci C, Iovino P, Zali MR. Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterol 2021; 21:292. [PMID: 34261437 PMCID: PMC8278734 DOI: 10.1186/s12876-021-01868-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Recently, dietary restriction of fermentable carbohydrates (a low-FODMAP diet) in combination with a gluten-free diet (GFD) has been proposed to reduce the symptoms in irritable bowel syndrome (IBS) patients. Different studies reported that IBS has been associated with dysbiosis in the gut microbiota. Additionally, a few studies have reported inflammation in the gastrointestinal (GI) system of adults with IBS. In this study, we aimed to investigate the effects of low FODMAP-gluten free diet (LF-GFD) on clinical symptoms, intestinal microbiota diversity, and fecal calprotectin (FC) level in Iranian patients with IBS. DESIGN In this clinical trial study, 42 patients with IBS (Rome IV criteria) underwent LF-GFD intervention for 6 weeks. Symptoms were assessed using the IBS symptom severity scoring (IBS-SSS), and fecal samples were collected at baseline and after intervention and analyzed by quantitative 16 S rRNA PCR assay. The diversity of gut microbiota compared before and after 6 weeks of dietary intervention. FC was also analyzed by the ELISA method. RESULTS Thirty patients (mean age 37.8 ± 10.7 years) completed the 6-week diet. The IBS-SSS was significantly (P = 0.001) reduced after LF-GFD intervention compared to the baseline. Significant microbial differences before and after intervention were noticed in fecal samples. A significant increase was found in Bacteroidetes, and the Firmicutes to Bacteroidetes (F/B) ratio was significantly (P = 0.001) decreased after the dietary intervention. The value of FC was significantly decreased after 6 weeks of dietary intervention (P = 0.001). CONCLUSIONS Our study suggests that patients with IBS under an LF-GFD had a significant improvement in IBS symptoms severity, with reduced FC level following normalization of their gut microbiota composition. Further rigorous trials are needed to establish a long-term efficacy and safety of this dietary intervention for personalized nutrition in IBS. Clinical Trial Registry Number: IRCT20100524004010N26.
Collapse
Affiliation(s)
- Kaveh Naseri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Meysam Olfatifar
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Mohammad Reza Zali
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mitchell SC. Nutrition and sulfur. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:123-174. [PMID: 34112351 DOI: 10.1016/bs.afnr.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulfur is unusual in that it is a mineral that may be taken into the body in both inorganic and organic combinations. It has been available within the environment throughout the development of lifeforms and as such has become integrated into virtually every aspect of biochemical function. It is essential for the nature and maintenance of structure, assists in communication within the organism, is vital as a catalytic assistant in intermediary metabolism and the mechanism of energy flow as well as being involved in internal defense against potentially damaging reactive species and invading foreign chemicals. Recent studies have suggested extended roles for sulfur-containing molecules within living systems. As such, questions have been raised as to whether or not humans are receiving sufficient sulfur within their diet. Sulfur appears to have been the "poor relation" with regards to mineral nutrition. This may be because of difficulties encountered over its multifarious functions, the many chemical guises in which it may be ingested and its complex biochemical interconversions once taken into the body. No established daily requirements have been determined, unlike many minerals, although suggestions have been proposed. Owing to its widespread distribution within dietary components its intake has almost been taken for granted. In the majority of individuals partaking of a balanced diet the supply is deemed adequate, but those opting for specialized or restrictive diets may experience occasional and low-level shortages. In these instances, the careful use of sulfur supplements may be of benefit.
Collapse
Affiliation(s)
- Stephen C Mitchell
- Faculty of Medicine, Imperial College London, London, England, United Kingdom.
| |
Collapse
|
30
|
CBP22, a Novel Bacteriocin Isolated from Clostridium butyricum ZJU-F1, Protects against LPS-Induced Intestinal Injury through Maintaining the Tight Junction Complex. Mediators Inflamm 2021; 2021:8032125. [PMID: 34158805 PMCID: PMC8187061 DOI: 10.1155/2021/8032125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
A novel bacteriocin secreted by Clostridium butyricum ZJU-F1 was isolated using ammonium sulfate fractionation, cation exchange chromatography, affinity chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The bacteriocin, named CBP22, contained 22 amino acids with the sequence PSAWQITKCAGSIAWALGSGIF. Analysis of its structure and physicochemical properties indicated that CBP22 had a molecular weight of 2264.63 Da and a +1 net charge. CBP22 showed activity against E. col K88, E. coli ATCC25922, and S. aureus ATCC26923. The effects and potential mechanisms of bacteriocin CBP22 on the innate immune response were investigated with a lipopolysaccharide- (LPS-) induced mouse model. The results showed that pretreatment with CBP22 prevented LPS-induced impairment in epithelial tissues and significantly reduced serum levels of IgG, IgA, IgM, TNF-α, and sIgA. Moreover, CBP22 treatment increased the expression of the zonula occludens and reduced permeability as well as apoptosis in the jejunum in LPS-treated mice. In summary, CBP22 inhibits the intestinal injury and prevents the gut barrier dysfunction induced by LPS, suggesting the potential use of CBP22 for treating intestinal damage.
Collapse
|
31
|
Rogers AE, Hu YJ, Yue Y, Wissel EF, Petit III RA, Jarrett S, Christie J, Read TD. Shiftwork, functional bowel symptoms, and the microbiome. PeerJ 2021; 9:e11406. [PMID: 34026361 PMCID: PMC8121053 DOI: 10.7717/peerj.11406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There are about 15 million Americans working full-time on evening, night, or rotating shifts. Between 48% and 81.9% of those working rotating or night shifts report abdominal pain, constipation, diarrhea and other symptoms of functional bowel disorders. The basis for this high prevalence of functional bowel disorders, including irritable bowel syndrome (IBS), among shift workers is unknown. Animal studies, however, suggest that circadian disruption, similar to that in shift workers, may contribute to the development of GI complaints among shift workers by altering the composition and normal diurnal rhythmicity of the resident intestinal microbes. Therefore, the present study was designed to determine if there were differences in (1) composition and diversity of the microbiome of night shift workers compared to day shift workers; and (2) the composition and diversity of the microbiome among shift workers experiencing functional bowel symptoms compared to shift workers who did not experience functional bowel symptoms. METHODS Fifty-one full time staff nurses who worked either 12-hour day or night shifts completed demographic information, and the Rome III IBS module. They also collected two samples of gut microbiota before the beginning and at the end of their last work shift on day 14, using validated field-tested methods consistent with the Human Microbiome Project. After DNA extraction, 16S rRNA sequencing and assignment to the genus level was completed, samples were then compared to determine if there were (1) differences in the diversity and profile of the microbiome by shift type; (2) if there were differences in the microbiome by time of day for collection; and (3) whether there were differences in the diversity and profile of the microbiome of nurses with IBS and those without IBS. RESULTS There were no differences in alpha or beta diversity of gut microbiota when specimens from day and night shift nurses were compared. There were however marginal differences in beta diversity when specimens collected at the beginning and end of the shifts were compared, with seven OTUs being differentially abundant when collected from day shift workers in the evening. There were also three OTUs to be differentially abundant in participants reporting IBS symptoms.
Collapse
Affiliation(s)
- Ann E. Rogers
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States of America
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Ye Yue
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Emily F. Wissel
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States of America
| | - Robert A. Petit III
- Investigational Clinical Microbiology Core, Emory University, Atlanta, GA, United States of America
| | - Simone Jarrett
- Einstein Medical Center Philadelphia, Philadelphia, PA, United States of America
| | - Jennifer Christie
- Division of Digestive Diseases, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Timothy D. Read
- Division of Digestive Diseases, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
32
|
Altomare A, Di Rosa C, Imperia E, Emerenziani S, Cicala M, Guarino MPL. Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2021; 13:1506. [PMID: 33946961 PMCID: PMC8146452 DOI: 10.3390/nu13051506] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable Bowel Syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by abdominal pain associated with defecation or a change in bowel habits. Gut microbiota, which acts as a real organ with well-defined functions, is in a mutualistic relationship with the host, harvesting additional energy and nutrients from the diet and protecting the host from pathogens; specific alterations in its composition seem to play a crucial role in IBS pathophysiology. It is well known that diet can significantly modulate the intestinal microbiota profile but it is less known how different nutritional approach effective in IBS patients, such as the low-FODMAP diet, could be responsible of intestinal microbiota changes, thus influencing the presence of gastrointestinal (GI) symptoms. The aim of this review was to explore the effects of different nutritional protocols (e.g., traditional nutritional advice, low-FODMAP diet, gluten-free diet, etc.) on IBS-D symptoms and on intestinal microbiota variations in both IBS-D patients and healthy subjects. To date, an ideal nutritional protocol does not exist for IBS-D patients but it seems crucial to consider the effect of the different nutritional approaches on the intestinal microbiota composition to better define an efficient strategy to manage this functional disorder.
Collapse
Affiliation(s)
- Annamaria Altomare
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Elena Imperia
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Sara Emerenziani
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| | - Michele Cicala
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| |
Collapse
|
33
|
Wang Q, Guo A, Sheng M, Zhou H. The changes of respiratory microbiome between mild and severe asthma patients. Microbiol Immunol 2021; 65:204-213. [PMID: 33629787 DOI: 10.1111/1348-0421.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/01/2022]
Abstract
Due to the increased number of patients suffering from asthma, the mechanism of this disease has been subject to much attention from the public and finding a cure for this disease is urgent. A changed abundance of the microbiome has been proven to play an important role in the genesis and development of asthma. In this study, the abundance and the function of the microbiome were studied. It was found that there were significant changes in the components and the function of the microbiome when asthma changed from mild to severe. This study could help us to better understand the relationship between asthma and the respiratory microbiome.
Collapse
Affiliation(s)
- Qunzhi Wang
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - An Guo
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - Meiling Sheng
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
34
|
Ivashkin KV, Grechishnikova VR, Reshetova MS, Ivashkin VT. Irritable Bowel and Bacterial Overgrowth Syndromes: a Bacterial Link Hypothesis of Functional Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2021; 31:54-63. [DOI: 10.22416/1382-4376-2021-31-1-54-63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim. Assessment of the irritable bowel syndrome (IBS) and small intestinal bacterial overgrowth syndrome (SIBO) interlinkage.Key points. SIBO may represent a "peripheral" mechanism of IBS, aside to nonspecific inflammation, increased epithelial permeability and local immune system activation. In various assays, the SIBO rate in IBS patients was 4-46% vs. 0-13% in an intact cohort. A limited diagnosability of SIBO obscures the SIBO-IBS causal interplay. Impaired motility in IBS may predispose to the SIBO development. Proinflammatory cytokines and mediators in SIBO, in turn, provoke visceral hypersensitivity and intense motility, the key IBS factors. Both conditions relate to qualitative and quantitative changes in microbiota, which warrants the application of probiotic Lactobacillus and Bifidobacterium strains.Conclusion. Further research into the SIBO-IBS interface is required for developing optimal probiotic-based therapies.
Collapse
Affiliation(s)
- K. V. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - M. S. Reshetova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V. T. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
35
|
Yi Q, Liu J, Zhang Y, Qiao H, Chen F, Zhang S, Guan W. Anethole Attenuates Enterotoxigenic Escherichia coli-Induced Intestinal Barrier Disruption and Intestinal Inflammation via Modification of TLR Signaling and Intestinal Microbiota. Front Microbiol 2021; 12:647242. [PMID: 33841372 PMCID: PMC8027122 DOI: 10.3389/fmicb.2021.647242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the effects of dietary anethole supplementation on the growth performance, intestinal barrier function, inflammatory response, and intestinal microbiota of piglets challenged with enterotoxigenic Escherichia coli K88. Thirty-six weaned piglets (24 ± 1 days old) were randomly allocated into four treatment groups: (1) sham challenge (CON); (2) Escherichia coli K88 challenge (ETEC); (3) Escherichia coli K88 challenge + antibiotics (ATB); and (4) Escherichia coli K88 challenge + anethole (AN). On day 12, the piglets in the ETEC, ATB, and AN group were challenged with 10 mL E. coli K88 (5 × 109 CFU/mL), whereas the piglets in the CON group were orally injected with 10 mL nutrient broth. On day 19, all the piglets were euthanized for sample collection. The results showed that the feed conversion ratio (FCR) was increased in the Escherichia coli K88-challenged piglets, which was reversed by the administration of antibiotics or anethole (P < 0.05). The duodenum and jejunum of the piglets in ETEC group exhibited greater villous atrophy and intestinal morphology disruption than those of the piglets in CON, ATB, and AN groups (P < 0.05). Administration of anethole protected intestinal barrier function and upregulated mucosal layer (mRNA expression of mucin-1 in the jejunum) and tight junction proteins (protein abundance of ZO-1 and Claudin-1 in the ileum) of the piglets challenged with Escherichia coli K88 (P < 0.05). In addition, administration of antibiotics or anethole numerically reduced the plasma concentrations of IL-1β and TNF-α (P < 0.1) and decreased the mRNA expression of TLR5, TLR9, MyD88, IL-1β, TNF-α, IL-6, and IL-10 in the jejunum of the piglets after challenge with Escherichia coli K88 (P < 0.05). Dietary anethole supplementation enriched the abundance of beneficial flora in the intestines of the piglets. In summary, anethole can improve the growth performance of weaned piglets infected by ETEC through attenuating intestinal barrier disruption and intestinal inflammation.
Collapse
Affiliation(s)
- Qingyuan Yi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaxin Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yufeng Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hanzhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Oliver L, Ramió-Pujol S, Amoedo J, Malagón M, Serrano M, Bahí A, Lluansí A, Torrealba L, Busquets D, Pardo L, Serra-Pagès M, Aldeguer X, Garcia-Gil J. A Novel Grape-Derived Prebiotic Selectively Enhances Abundance and Metabolic Activity of Butyrate-Producing Bacteria in Faecal Samples. Front Microbiol 2021; 12:639948. [PMID: 33833742 PMCID: PMC8021714 DOI: 10.3389/fmicb.2021.639948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients have different faecal microbiota profiles compared to healthy controls. Prebiotics intake influences intestinal microbiota composition which in turn influence the growth of short-chain fatty acids (SCFA) producing bacteria. This study aimed to evaluate the capacity of Previpect, a new prebiotic obtained from grapes fibre, to balance the dysbiosis found in patients with intestinal disorders. This was achieved through the analysis of specific bacterial markers and SCFA production using an in vitro fermentation system and comparing the obtained results with those obtained with other commercial prebiotics. Fresh faecal samples from patients with IBD (N = 6), IBS (N = 3), and control subjects (N = 6) were used. Previpect showed high fermentative ability enabling the growth of butyrate producing bacteria and increasing SCFA concentration up to 2.5-fold. Previpect is a promising prebiotic which may be used as a therapeutic strategy towards promotion of intestinal microbiota restoration, microbial healing, and as a preventive supplement for healthy individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Bahí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | - Aleix Lluansí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | | | - David Busquets
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Laura Pardo
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | | - Xavier Aldeguer
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
37
|
Jandee S, Chuensakul S, Maneerat S. No distinction in the gut microbiota between diarrhea predominant-irritable bowel syndrome and healthy subjects: matched case-control study in Thailand. Gut Pathog 2021; 13:16. [PMID: 33658063 PMCID: PMC7927257 DOI: 10.1186/s13099-021-00406-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Alteration in the gut microbiota has been proposed in irritable bowel syndrome (IBS) pathogenesis, especially in the diarrheal type (IBS-D). We conducted this study to evaluate the fecal microbiota in Thai IBS-D patients when compared with healthy subjects as well as to evaluate the effects of probiotics on changes in the gut microbiota correlated with symptoms. Methods A matched case–control study was conducted on diagnosed IBS-D patients, based on the Rome IV criteria and healthy controls. Stool samples were collected in preservation tubes. Bacterial deoxyribonucleic acid extraction was performed and amplified. Next, 16S ribosomal ribonucleic acid genes sequencing was performed to identify the microbiome in both the groups. IBS-D patients were provided with a probiotic mixture that was rich in Lactobacillus acidophillus and Bifidobacterium bifidum over 8 weeks. Changes in the symptoms, stool characteristics, and fecal microbiota were evaluated and compared with the corresponding baseline values. Results Twenty IBS-D patients with 20 age and gender-matched controls were included in this study. The baseline characteristics were not significantly different between the groups, including the mode of birth and the history of breastfeeding in infancy. No significant difference was noted in the fecal microbiota between the IBS-D patients and controls. The IBS symptom severity scales (IBS-SSS) were not statistically different after probiotic prescription; although, the bowel movements, the sense of urgency to go to the toilet and passing of mucous stool had obviously decreased. No change was noted in the fecal microbiota after receiving the experimental probiotic, except for an increase in the proportion of B. bifidum. Conclusion Alteration in the gut microbiota composition was probably not the main pathogenic mechanism in the Thai IBS-D patients assessed in this study. However, modifying microbiomes with potentially protective bacteria seems to be a beneficial therapy. Thai Clinical trial registry: TCTR20191211006, Date of registration: 10 Dec 2019. Retrospectively registered, Clinical trial URL: www.clinicaltrials.in.th
Collapse
Affiliation(s)
- Sawangpong Jandee
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Suppana Chuensakul
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Suppasil Maneerat
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
38
|
Sometti D, Ballan C, Wang H, Braun C, Enck P. Effects of the antibiotic rifaximin on cortical functional connectivity are mediated through insular cortex. Sci Rep 2021; 11:4479. [PMID: 33627763 PMCID: PMC7904800 DOI: 10.1038/s41598-021-83994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
It is well-known that antibiotics affect commensal gut bacteria; however, only recently evidence accumulated that gut microbiota (GM) can influence the central nervous system functions. Preclinical animal studies have repeatedly highlighted the effects of antibiotics on brain activity; however, translational studies in humans are still missing. Here, we present a randomized, double-blind, placebo-controlled study investigating the effects of 7 days intake of Rifaximin (non-absorbable antibiotic) on functional brain connectivity (fc) using magnetoencephalography. Sixteen healthy volunteers were tested before and after the treatment, during resting state (rs), and during a social stressor paradigm (Cyberball game—CBG), designed to elicit feelings of exclusion. Results confirm the hypothesis of an involvement of the insular cortex as a common node of different functional networks, thus suggesting its potential role as a central mediator of cortical fc alterations, following modifications of GM. Also, the Rifaximin group displayed lower connectivity in slow and fast beta bands (15 and 25 Hz) during rest, and higher connectivity in theta (7 Hz) during the inclusion condition of the CBG, compared with controls. Altogether these results indicate a modulation of Rifaximin on frequency-specific functional connectivity that could involve cognitive flexibility and memory processing.
Collapse
Affiliation(s)
- Davide Sometti
- MEG-Center, University of Tübingen, Tübingen, Germany. .,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| | - Chiara Ballan
- MEG-Center, University of Tübingen, Tübingen, Germany.,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Huiying Wang
- AAK, Department of Special Nutrition, AAK China Ltd, Shanghai, China
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,CIMeC, Center for Mind/Brain Research, University of Trento, Trento, Italy
| | - Paul Enck
- Department of Internal Medicine VI, University Hospital, Tübingen, Germany
| |
Collapse
|
39
|
Zhang J, Rodríguez F, Navas MJ, Costa-Hurtado M, Almagro V, Bosch-Camós L, López E, Cuadrado R, Accensi F, Pina-Pedrero S, Martínez J, Correa-Fiz F. Fecal microbiota transplantation from warthog to pig confirms the influence of the gut microbiota on African swine fever susceptibility. Sci Rep 2020; 10:17605. [PMID: 33077775 PMCID: PMC7573625 DOI: 10.1038/s41598-020-74651-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of a devastating hemorrhagic disease (ASF) that affects both domestic pigs and wild boars. Conversely, ASFV circulates in a subclinical manner in African wild pigs, including warthogs, the natural reservoir for ASFV. Together with genetic differences, other factors might be involved in the differential susceptibility to ASF observed among Eurasian suids (Sus scrofa) and African warthogs (Phacochoerus africanus). Preliminary evidence obtained in our laboratory and others, seems to confirm the effect that environmental factors might have on ASF infection. Thus, domestic pigs raised in specific pathogen-free (SPF) facilities were extremely susceptible to highly attenuated ASFV strains that were innocuous to genetically identical domestic pigs grown on conventional farms. Since gut microbiota plays important roles in maintaining intestinal homeostasis, regulating immune system maturation and the functionality of the innate/adaptive immune responses, we decided to examine whether warthog fecal microbiota transplantation (FMT) to domestic pigs affects host susceptibility to ASFV. The present work demonstrates that warthog FMT is not harmful for domestic weaned piglets, while it modifies their gut microbiota; and that FMT from warthogs to pigs confers partial protection against attenuated ASFV strains. Future work is needed to elucidate the protective mechanisms exerted by warthog FMT.
Collapse
Affiliation(s)
- Jinya Zhang
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Maria Jesus Navas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Vanessa Almagro
- Veterinary Service Zoo Barcelona, Parc Ciudadella s/n 08003, Barcelona, Spain
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Raul Cuadrado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Francesc Accensi
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Jorge Martínez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
40
|
Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? J Biomed Sci 2020; 27:95. [PMID: 32981524 PMCID: PMC7520957 DOI: 10.1186/s12929-020-00688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Due to a lack of specific or sensitive biomarkers, drug discovery advances have been limited for individuals suffering from irritable bowel syndrome (IBS). While current therapies provide symptomatic relief, inflammation itself is relatively neglected, despite the presence of chronic immune activation and innate immune system dysfunction. Moreover, considering the microgenderome concept, gender is a significant aetiological risk factor. We believe that we have pinpointed a "missing link" that connects gender, dysbiosis, diet, and inflammation in the context of IBS, which may be manipulated as therapeutic target. The trace aminergic system is conveniently positioned at the interface of the gut microbiome, dietary nutrients and by-products, and mucosal immunity. Almost all leukocyte populations express trace amine associated receptors and significant amounts of trace amines originate from both food and the gut microbiota. Additionally, although IBS-specific data are sparse, existing data supports an interpretation in favour of a gender dependence in trace aminergic signalling. As such, trace aminergic signalling may be altered by fluctuations of especially female reproductive hormones. Utilizing a multidisciplinary approach, this review discusses potential mechanisms of actions, which include hyperreactivity of the immune system and aberrant serotonin signalling, and links outcomes to the symptomology clinically prevalent in IBS. Taken together, it is feasible that the additional level of regulation by the trace aminergic system in IBS has been overlooked, until now. As such, we suggest that components of the trace aminergic system be considered targets for future therapeutic action, with the specific focus of reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa.
| |
Collapse
|
41
|
Carco C, Young W, Gearry RB, Talley NJ, McNabb WC, Roy NC. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front Cell Infect Microbiol 2020; 10:468. [PMID: 33014892 PMCID: PMC7509092 DOI: 10.3389/fcimb.2020.00468] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Caterina Carco
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Richard B Gearry
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Mortaş H, Bilici S, Karakan T. The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiol Int 2020; 37:1067-1081. [PMID: 32602753 DOI: 10.1080/07420528.2020.1778717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Day and night cycles are the most important cue for the central clock of human beings, and they are also important for the gut clock. The aim of the study is to determine the differences in the gut microbiota of rotational shift workers when working the day versus night shift. Fecal samples and other data were collected from 10 volunteer male security officers after 4 weeks of day shift work (07:00-15:00 h) and also after 2 weeks of night shift work (23:00-07:00 h). In total, 20 stool samples were collected for analysis of gut microbiota (10 subjects x 2 work shifts) and stored at -80°C until analysis by 16 S rRNA sequencing. The relative abundances of Bacteroidetes were reduced and those of Actinobacteria and Firmicutes increased when working the night compared to day shift. Faecalibacterium abundance was found to be a biomarker of the day shift work. Dorea longicatena and Dorea formicigenerans were significantly more abundant in individuals when working the night shift. Rotational day and night shift work causes circadian rhythm disturbance with an associated alteration in the abundances of gut microbiota, leading to the concern that such induced alteration of gut microbiota may at least partially contribute to an increased risk of future metabolic syndrome and gastrointestinal pathology.
Collapse
Affiliation(s)
- Hande Mortaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Tarkan Karakan
- Department of Internal Medicine Gastroenterology, Faculty of Medicine, Gazi University , Ankara, Turkey
| |
Collapse
|
43
|
Bayrak M. Metabolic syndrome, depression, and fibromyalgia syndrome prevalence in patients with irritable bowel syndrome: A case-control study. Medicine (Baltimore) 2020; 99:e20577. [PMID: 32502027 PMCID: PMC7306332 DOI: 10.1097/md.0000000000020577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although both metabolic syndrome (MetS) and irritable bowel syndrome (IBS) have been linked with altered gut microbiota, only a few studies investigated the association between them. Hence, we aimed to evaluate the prevalence of MetS along with depression and fibromyalgia syndrome (FMS) in IBS patients.This was a case-control study in which 3808 consecutive patients who attended outpatient clinics of Erzurum Regional Training and Research Hospital between May 2019 and August 2019 were evaluated in terms of IBS with Rome-IV criteria. Out of 486 patients who were diagnosed as IBS, 176 patients were excluded for various reasons. Control subjects were randomly selected from IBS-negative subjects. MetS was diagnosed based on International Diabetes Federation criteria. Depression, anxiety disorder, and FMS were assessed via Hamilton Depression Scale, Beck Anxiety Inventory, and American College of Rheumatology criteria, respectively. Blood samples were obtained to measure biochemical parameters.Study group included 310 IBS patients, and control group included 304 subjects. The prevalence of the MetS was significantly higher among IBS patients compared with controls (36.8% vs 21.7%, respectively, P = .006). The rate of obesity was 18.1% among IBS subjects, and 10.2% in the controls. The prevalence of fibromyalgia (30% vs 3%, respectively, P < .001), anxiety-disorder (39.7% vs 10.2%, P < .001) and depression (8.1% vs 4.9%, P < .001) were significantly higher in IBS group than controls.Metabolic syndrome and obesity were significantly more frequent in IBS patients compared with controls. FMS, anxiety disorder, and depression were also more common among IBS patients.
Collapse
|
44
|
Pensec C, Gillaizeau F, Guenot D, Bessard A, Carton T, Leuillet S, Campone M, Neunlist M, Blottière HM, Le Vacon F. Impact of pemetrexed chemotherapy on the gut microbiota and intestinal inflammation of patient-lung-derived tumor xenograft (PDX) mouse models. Sci Rep 2020; 10:9094. [PMID: 32499509 PMCID: PMC7272463 DOI: 10.1038/s41598-020-65792-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy remains the gold standard for advanced cancer. Pemetrexed, a chemotherapeutic agent used in non-small cell lung cancer, can induce significant side effects in patients. Although microbiota’s role in the efficacy and/or toxicity of chemotherapy agents has been demonstrated, the impacts of pemetrexed on the gut microbiota and on gastrointestinal inflammation remain unknown. The objective of this study was to evaluate the impact of pemetrexed and the tumor graft on the gut microbiota composition in immunodeficient mice. The faecal microbiota composition was studied with metabarcoding before, 24-h and one week after treatment. The colon epithelial barrier integrity was evaluated by histological examination, intestinal permeability measurement, and selected cytokines quantification. The tumor graft induced some variations in the microbiota composition. Pemetrexed further increased the relative abundance of Enterobacteriaceae and 3 families from the Firmicutes phylum: Enterococcaceae, Lactobacillaceae and Streptococcaceae. Pemetrexed also significantly altered the epithelial barrier integrity, which was associated with early inflammation. This pilot study shows that the association of a lung tumor graft with pemetrexed causes an alteration in the microbiota composition. Such information increases our knowledge about the impact of chemotherapy on the microbiota, which could help to minimize side effects and improve therapeutic effectiveness in the future.
Collapse
Affiliation(s)
- Cindy Pensec
- Biofortis Mérieux NutriSciences, 44800, Saint Herblain, France.,IMODI Consortium:
| | | | - Dominique Guenot
- IMODI Consortium:.,Université de Strasbourg (Unistra), EA 3430, U1113 IRFAC, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67200, Strasbourg, France
| | - Anne Bessard
- TENS, INSERM U1235, Institut des Maladies de l'Appareil Digestif du CHU de Nantes, Université de Nantes, 44035 Nantes, France
| | - Thomas Carton
- Biofortis Mérieux NutriSciences, 44800, Saint Herblain, France.,IMODI Consortium:
| | - Sébastien Leuillet
- Biofortis Mérieux NutriSciences, 44800, Saint Herblain, France.,IMODI Consortium:
| | | | - Michel Neunlist
- TENS, INSERM U1235, Institut des Maladies de l'Appareil Digestif du CHU de Nantes, Université de Nantes, 44035 Nantes, France
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,MetaGenoPolis, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Françoise Le Vacon
- Biofortis Mérieux NutriSciences, 44800, Saint Herblain, France. .,IMODI Consortium:, .
| |
Collapse
|
45
|
Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ortega-Santos CP, Ter Haar JA, Arciero PJ, Antonio J. The athletic gut microbiota. J Int Soc Sports Nutr 2020; 17:24. [PMID: 32398103 PMCID: PMC7218537 DOI: 10.1186/s12970-020-00353-w] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors, such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power, aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing, and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the role of influencing athletic performance is of considerable interest to athletes who work to improve their results in competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond athletics as understanding optimal fitness has applications for overall health and wellness in larger communities. Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more “health-associated” gut microbiota. Such features include a higher abundance of health-promoting bacterial species, increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI, 53202, USA
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | | - Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, 37204, USA
| | - Nicholas P West
- School of Medical Research and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | | | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4253, USA
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | | | | | - Craig J Wissent
- Jamieson Wellness Inc., 4025 Rhodes Drive, Windsor, Ontario, N8W 5B5, Canada
| | - Marco Pane
- Bioloab Research, Via E. Mattei 3, 28100, Novara, Italy
| | - Douglas S Kalman
- Scientific Affairs, Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario, Canada
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, L3 3AF, UK
| | | | | | - Paul J Arciero
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY, USA
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
46
|
Del Val C, Bondar AN. Diversity and sequence motifs of the bacterial SecA protein motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183319. [PMID: 32335021 DOI: 10.1016/j.bbamem.2020.183319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
SecA is an essential component of the Sec protein secretion pathway in bacteria. Secretory proteins targeted to the Sec pathway by their N-terminal signal peptide bind to SecA, which couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the membrane-embedded SecYEG protein translocon. The phylogenetic diversity of bacteria raises the important question as to whether the region of SecA where the pre-protein binds has conserved sequence features that might impact the reaction mechanism of SecA. To address this question we established a large data set of SecA protein sequences and implemented a protocol to cluster and analyze these sequences according to features of two of the SecA functional domains, the protein binding domain and the nucleotide-binding domain 1. We identify remarkable sequence diversity of the protein binding domain, but also conserved motifs with potential role in protein binding. The N-terminus of SecA has sequence motifs that could help anchor SecA to the membrane. The overall sequence length and net estimated charge of SecA sequences depend on the organism.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Departmrent of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; University of Granada, Andalusian Research Institute in Data Science and Computational Intelligence, E-18071 Granada, Spain.
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, D-14195 Berlin, Germany.
| |
Collapse
|
47
|
Esquerre N, Basso L, Defaye M, Vicentini FA, Cluny N, Bihan D, Hirota SA, Schick A, Jijon HB, Lewis IA, Geuking MB, Sharkey KA, Altier C, Nasser Y. Colitis-Induced Microbial Perturbation Promotes Postinflammatory Visceral Hypersensitivity. Cell Mol Gastroenterol Hepatol 2020; 10:225-244. [PMID: 32289500 PMCID: PMC7301239 DOI: 10.1016/j.jcmgh.2020.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model. METHODS Mice were given dextran sodium sulfate (DSS) to induce colitis and were allowed to recover. The microbiome was perturbed by using antibiotics as well as fecal microbial transplant (FMT). Visceral and somatic sensitivity were assessed by recording visceromotor responses to colorectal distention and using hot plate/automated Von Frey tests, respectively. Calcium imaging of isolated dorsal root ganglia neurons was used as an in vitro correlate of nociception. The microbiome composition was evaluated via 16S rRNA gene variable region V4 amplicon sequencing, whereas fecal short-chain fatty acids (SCFAs) were assessed by using targeted mass spectrometry. RESULTS Postinflammatory DSS mice developed visceral and somatic hyperalgesia. Antibiotic administration during DSS recovery induced visceral, but not somatic, hyperalgesia independent of inflammation. FMT of postinflammatory DSS stool into antibiotic-treated mice increased visceral hypersensitivity, whereas FMT of control stool reversed antibiotics' sensitizing effects. Postinflammatory mice exhibited both increased SCFA-producing species and fecal acetate/butyrate content compared with controls. Capsaicin-evoked calcium responses were increased in naive dorsal root ganglion neurons incubated with both sodium butyrate/propionate alone and with colonic supernatants derived from postinflammatory mice. CONCLUSIONS The microbiome plays a central role in postinflammatory visceral hypersensitivity. Microbial-derived SCFAs can sensitize nociceptive neurons and may contribute to the pathogenesis of postinflammatory visceral pain.
Collapse
Affiliation(s)
- Nicolas Esquerre
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary
| | - Lilian Basso
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Fernando A Vicentini
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Nina Cluny
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | | | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary
| | - Humberto B Jijon
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary
| | - Markus B Geuking
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Microbiology, Immunity and Infectious Diseases, Cumming School of Medicine, University of Calgary
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Christophe Altier
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary.
| |
Collapse
|
48
|
Agnello M, Carroll LN, Imam N, Pino R, Palmer C, Varas I, Greene C, Hitschfeld M, Gupta S, Almonacid DE, Hoaglin MC. Gut microbiome composition and risk factors in a large cross-sectional IBS cohort. BMJ Open Gastroenterol 2020; 7:e000345. [PMID: 32518661 PMCID: PMC7254124 DOI: 10.1136/bmjgast-2019-000345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is difficult to diagnose and treat due to its inherent heterogeneity and unclear aetiology. Although there is evidence suggesting the importance of the microbiome in IBS, this association remains poorly defined. In the current study, we aimed to characterise a large cross-sectional cohort of patients with self-reported IBS in terms of microbiome composition, demographics, and risk factors. Design Individuals who had previously submitted a stool sample for 16S microbiome sequencing were sent a comprehensive survey regarding IBS diagnosis, demographics, health history, comorbidities, family history, and symptoms. Log ratio-transformed abundances of microbial taxa were compared between individuals reporting a diagnosis of IBS without any comorbidities and individuals reporting no health conditions. Univariable testing was followed by a multivariable logistic regression model controlling for relevant confounders. Results Out of 6386 respondents, 1692 reported a diagnosis of IBS without comorbidities and 1124 reported no health conditions. We identified 3 phyla, 15 genera, and 19 species as significantly associated with IBS after adjustment for confounding factors. Demographic risk factors include a family history of gut disorders and reported use of antibiotics in the last year. Conclusion The results of this study confirm important IBS risk factors in a large cohort and support a connection for microbiome compositional changes in IBS pathogenesis. The results also suggest clinical relevance in monitoring and investigating the microbiome in patients with IBS. Further, the exploratory models described here provide a foundation for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire Greene
- Medical Affairs, uBiome, San Francisco, California, USA
| | | | - Sarah Gupta
- Medical Affairs, uBiome, San Francisco, California, USA
| | | | | |
Collapse
|
49
|
Liu Y, Yuan X, Li L, Lin L, Zuo X, Cong Y, Li Y. Increased Ileal Immunoglobulin A Production and Immunoglobulin A-Coated Bacteria in Diarrhea-Predominant Irritable Bowel Syndrome. Clin Transl Gastroenterol 2020; 11:e00146. [PMID: 32352710 PMCID: PMC7145038 DOI: 10.14309/ctg.0000000000000146] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Immune activation and intestinal microbial dysbiosis could induce diarrhea-predominant irritable bowel syndrome (IBS-D). We examined the roles of ileal immunoglobulin A (IgA) and IgA-coated bacteria in IBS-D pathogenesis. METHODS Peripheral blood, fecal samples, and ileal and cecal biopsies were collected from 32 healthy volunteers and 44 patients with IBS-D. Quantitative reverse transcriptase polymerase chain reaction was used to assess differential gene expression. IgA levels in the blood and fecal samples were quantified by an enzyme-linked immunosorbent assay. IgA cells were assessed by immunofluorescence imaging. Flow-cytometry-based IgA bacterial cell sorting and 16S rRNA gene sequencing (IgA-SEQ) was used to isolate and identify fecal IgA bacteria. RESULTS Fecal IgA, particularly IgA1, was upregulated in patients with IBS-D. IgA class switch and B cell-activating factor-receptor were increased in the terminal ileum of patients. The intestinal microbiota composition was altered in patients compared with that in controls. IgA-SEQ showed that the proportion of fecal IgA-coated bacteria was increased significantly in patients with IBS-D. IgA bacteria in patients with IBS-D showed higher abundances of Escherichia-Shigella, Granulicatella, and Haemophilus compared with healthy controls and IgA bacteria in patients with IBS-D. The Escherichia-Shigella IgA coating index was positively correlated with anxiety and depression. The Escherichia-Shigella relative abundance, luminal IgA activity, and some altered IgA-coated bacteria were positively associated with the clinical manifestations of IBS-D. DISCUSSION Microbial dysbiosis may promote the terminal ileal mucosa to produce higher levels of IgA, increasing the proportion of IgA-coated bacteria by activating IgA class switching, which might regulate local inflammation and clinical manifestations in IBS-D. IgA may mediate the effects of microbial dysbiosis on the pathogenesis of IBS-D.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xunyi Yuan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
50
|
Louwies T, Johnson AC, Orock A, Yuan T, Greenwood-Van Meerveld B. The microbiota-gut-brain axis: An emerging role for the epigenome. Exp Biol Med (Maywood) 2019; 245:138-145. [PMID: 31805777 DOI: 10.1177/1535370219891690] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Tijs Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Albert Orock
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|