1
|
Miao G, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Hsiang T, Jiang D, Cheng J. A Necrotrophic Phytopathogen-Derived GPI-Anchored Protein Functions as an Elicitor to Activate Plant Immunity and Enhance Resistance. MOLECULAR PLANT PATHOLOGY 2025; 26:e70072. [PMID: 40151048 PMCID: PMC11950629 DOI: 10.1111/mpp.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
GPI-anchored proteins are widely distributed in eukaryotic cells. However, their functions are still poorly understood in necrotrophic pathogenic fungi. Here, based on Agrobacterium tumefaciens-mediated transient expression screening, a novel secreted GPI-anchored protein, SsGP1, that induces plant cell death was characterised in Sclerotinia sclerotiorum. The homologues of SsGP1 are broadly distributed among ascomycetes. SsGP1 can activate plant immune responses, including reactive oxygen species (ROS) burst and the up-regulated expression of immunity genes, in a manner that is dependent on BAK1 but independent of SOBIR1. Treatment of plants with SsGP1 protein enhanced the resistance of Nicotiana benthamiana and Arabidopsis thaliana to S. sclerotiorum. Our findings reveal that SsGP1 functions as a pathogen-associated molecular pattern (PAMP) and is recognised by plants in a BAK1-dependent manner.
Collapse
Affiliation(s)
- Guangxing Miao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tom Hsiang
- School of Environmental SciencesUniversity of GuelphGuelphOntarioCanada
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
2
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Development and validation of monoclonal antibodies specific for Candida albicans Als2, Als9-1, and Als9-2. PLoS One 2022; 17:e0269681. [PMID: 35802580 PMCID: PMC9269773 DOI: 10.1371/journal.pone.0269681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal agglutinin-like sequence (Als) cell-surface glycoproteins, best characterized in Candida albicans, mediate adhesive and aggregative interactions with host cells, other microbes, and abiotic surfaces. Monoclonal antibodies (MAbs) specific for each C. albicans Als protein are valuable reagents for gaining insight into Als protein localization and function. This manuscript describes development and validation of MAbs specific for C. albicans Als2, as well as for C. albicans Als9-1 and Als9-2, two protein variants produced from the ALS9 locus. Native C. albicans ALS9 expression levels were not sufficiently high to produce detectable Als9 protein on the wild-type cell surface so MAb validation required production of overexpression strains, each featuring one of the two ALS9 alleles. An anti-Als2 MAb was raised against an N-glycosylated form of the protein immunogen, as well as an Endoglycosidase H-treated immunogen. The MAb raised against the N-glycosylated immunogen proved superior and immunolabeled C. albicans yeast cells and germ tubes, and the surface of Candida dubliniensis and Candida tropicalis yeasts. Als2 was visible on C. albicans yeast cells recovered from a murine model of oral candidiasis, demonstrating Als2 production both in vivo and in vitro. These new MAbs add to the collection of anti-Als MAbs that are powerful tools to better understand the role of Als proteins in C. albicans biology and pathogenesis.
Collapse
|
4
|
Oh SH, Martin-Yken H, Coleman DA, Dague E, Hoyer LL. Development and Use of a Monoclonal Antibody Specific for the Candida albicans Cell-Surface Protein Hwp1. Front Cell Infect Microbiol 2022; 12:907453. [PMID: 35832385 PMCID: PMC9273023 DOI: 10.3389/fcimb.2022.907453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The Candida albicans cell-surface protein Hwp1 functions in adhesion to the host and in biofilm formation. A peptide from the Gln-Pro-rich adhesive domain of Hwp1 was used to raise monoclonal antibody (MAb) 2-E8. MAb 2-E8 specificity for Hwp1 was demonstrated using a hwp1/hwp1 C. albicans isolate and strains that expressed at least one HWP1 allele. Immunofluorescence and atomic force microscopy experiments using MAb 2-E8 confirmed C. albicans germ-tube-specific detection of the Hwp1 protein. MAb 2-E8 also immunolabeled the tips of some Candida dubliniensis germ tubes grown under conditions that maximized HWP1 expression. The phylogeny of HWP1 and closely related genes suggested that the Gln-Pro-rich adhesive domain was unique to C. albicans and C. dubliniensis focusing the utility of MAb 2-E8 on these species. This new reagent can be used to address unanswered questions about Hwp1 and its interactions with other proteins in the context of C. albicans biology and pathogenesis.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hélène Martin-Yken
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - David A. Coleman
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Lois L. Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Bonfim-Mendonça PDS, Tobaldini-Valério FK, Capoci IR, Faria DR, Sakita KM, Arita GS, Negri M, Kioshima ÉS, Svidzinski TI. Different expression levels of ALS and SAP genes contribute to recurrent vulvovaginal candidiasis by Candida albicans. Future Microbiol 2021; 16:211-219. [PMID: 33595345 DOI: 10.2217/fmb-2020-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To study the behavior of Candida albicans in women with vulvovaginal candidiasis (VVC), recurrent VVC (RVVC) and asymptomatic (AS), regarding adhesion on HeLa cells and their ability to express secreted aspartic proteinases (SAP) genes, agglutinin-like sequence (ALS) genes and HWP1. Materials & methods: The adhesion of Candida albicans to HeLa cells was evaluated by colony-forming units, and the expressed genes were evaluated by qRT-PCR. Results: AS and VVC isolates showed greater ability to adhere HeLa cells when compared with RVVC isolate. Nevertheless, RVVC isolate exhibited upregulation of a large number of genes of ALS and SAP gene families and HWP1 gene. Conclusion: The results demonstrated that RVVC isolate expressed significantly important genes for invasion and yeast-host interactions.
Collapse
Affiliation(s)
- Patrícia de S Bonfim-Mendonça
- Departamento de Análises Clínicas e Biomedicina. Laboratório Micologia Médica. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil.,Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Flávia K Tobaldini-Valério
- Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Isis Rg Capoci
- Departamento de Análises Clínicas e Biomedicina. Laboratório Micologia Médica. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil.,Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Daniella R Faria
- Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Karina M Sakita
- Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Glaucia S Arita
- Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Melyssa Negri
- Departamento de Análises Clínicas e Biomedicina. Laboratório Micologia Médica. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Érika S Kioshima
- Departamento de Análises Clínicas e Biomedicina. Laboratório Micologia Médica. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil.,Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| | - Terezinha Ie Svidzinski
- Departamento de Análises Clínicas e Biomedicina. Laboratório Micologia Médica. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil.,Programa de Pós-graduação em Biociências e Fisiopatologia. Universidade Estadual de Maringá. Maringá, Paraná, CEP: 87020-900, Brazil
| |
Collapse
|
6
|
Oh SH, Isenhower A, Rodriguez-Bobadilla R, Smith B, Jones J, Hubka V, Fields C, Hernandez A, Hoyer LL. Pursuing Advances in DNA Sequencing Technology to Solve a Complex Genomic Jigsaw Puzzle: The Agglutinin-Like Sequence ( ALS) Genes of Candida tropicalis. Front Microbiol 2021; 11:594531. [PMID: 33552012 PMCID: PMC7856822 DOI: 10.3389/fmicb.2020.594531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The agglutinin-like sequence (ALS) gene family encodes cell-surface adhesins that interact with host and abiotic surfaces, promoting colonization by opportunistic fungal pathogens such as Candida tropicalis. Studies of Als protein contribution to C. tropicalis adhesion would benefit from an accurate catalog of ALS gene sequences as well as insight into relative gene expression levels. Even in the genomics era, this information has been elusive: genome assemblies are often broken within ALS genes because of their extensive regions of highly conserved, repeated DNA sequences and because there are many similar ALS genes at different chromosomal locations. Here, we describe the benefit of long-read DNA sequencing technology to facilitate characterization of C. tropicalis ALS loci. Thirteen ALS loci in C. tropicalis strain MYA-3404 were deduced from a genome assembly constructed from Illumina MiSeq and Oxford Nanopore MinION data. Although the MinION data were valuable, PCR amplification and Sanger sequencing of ALS loci were still required to complete and verify the gene sequences. Each predicted Als protein featured an N-terminal binding domain, a central domain of tandemly repeated sequences, and a C-terminal domain rich in Ser and Thr. The presence of a secretory signal peptide and consensus sequence for addition of a glycosylphosphatidylinositol (GPI) anchor was consistent with predicted protein localization to the cell surface. TaqMan assays were designed to recognize each ALS gene, as well as both alleles at the divergent CtrALS3882 locus. C. tropicalis cells grown in five different in vitro conditions showed differential expression of various ALS genes. To place the C. tropicalis data into a larger context, TaqMan assays were also designed and validated for analysis of ALS gene expression in Candida albicans and Candida dubliniensis. These comparisons identified the subset of highly expressed C. tropicalis ALS genes that were predicted to encode proteins with the most abundant cell-surface presence, prioritizing them for subsequent functional analysis. Data presented here provide a solid foundation for future experimentation to deduce ALS family contributions to C. tropicalis adhesion and pathogenesis.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allyson Isenhower
- Department of Biology, Millikin University, Decatur, IL, United States
| | | | - Brooke Smith
- Department of Biology, Millikin University, Decatur, IL, United States
| | - Jillian Jones
- Department of Biology, Millikin University, Decatur, IL, United States
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Christopher Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lois L Hoyer
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Jung P, Mischo CE, Gunaratnam G, Spengler C, Becker SL, Hube B, Jacobs K, Bischoff M. Candida albicans adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence 2020; 11:1453-1465. [PMID: 33108253 PMCID: PMC7595616 DOI: 10.1080/21505594.2020.1836902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans-related bloodstream infections are often associated with infected central venous catheters (CVC) triggered by microbial adhesion and biofilm formation. We utilized single-cell force spectroscopy (SCFS) and flow chamber models to investigate the adhesion behavior of C. albicans yeast cells and germinated cells to naïve and human blood plasma (HBP)-coated CVC tubing. Germinated cells demonstrated up to 56.8-fold increased adhesion forces to CVC surfaces when compared to yeast cells. Coating of CVCs with HBP significantly increased the adhesion of 60-min germinated cells but not of yeast cells and 30-min germinated cells. Under flow conditions comparable to those in major human veins, germinated cells displayed a flow directional-orientated adhesion pattern to HBP-coated CVC material, suggesting the germ tip to serve as the major adhesive region. None of the above-reported phenotypes were observed with germinated cells of an als3Δ deletion mutant, which displayed similar adhesion forces to CVC surfaces as the isogenic yeast cells. Germinated cells of the als3Δ mutant also lacked a clear flow directional-orientated adhesion pattern on HBP-coated CVC material, indicating a central role for Als3 in the adhesion of germinated C. albicans cells to blood exposed CVC surfaces. In the common model of C. albicans, biofilm formation is thought to be mediated primarily by yeast cells, followed by surface-triggered the formation of hyphae. We suggest an extension of this model in which C. albicans germ tubes promote the initial adhesion to blood-exposed implanted medical devices via the germ tube-associated adhesion protein Als3.
Collapse
Affiliation(s)
- Philipp Jung
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Clara E Mischo
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Gubesh Gunaratnam
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | | | - Sören L Becker
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI) , Jena, Germany.,Institute of Microbiology, Friedrich Schiller University , Jena, Germany
| | - Karin Jacobs
- Experimental Physics, Saarland University , Saarbrücken, Germany.,Max Planck School Matter to Life , Heidelberg, Jahnstr. 29, D-69120, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| |
Collapse
|
8
|
Oh SH, Smith B, Miller AN, Staker B, Fields C, Hernandez A, Hoyer LL. Agglutinin-Like Sequence ( ALS) Genes in the Candida parapsilosis Species Complex: Blurring the Boundaries Between Gene Families That Encode Cell-Wall Proteins. Front Microbiol 2019; 10:781. [PMID: 31105652 PMCID: PMC6499006 DOI: 10.3389/fmicb.2019.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
The agglutinin-like sequence (Als) proteins are best-characterized in Candida albicans and known for their role in adhesion of the fungal cell to host and abiotic surfaces. ALS sequences are often misassembled in whole-genome sequence data because each species has multiple ALS loci that contain similar sequences, most notably tandem copies of highly conserved repeated sequences. The Candida parapsilosis species complex includes Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis, three distinct but closely related species. Using publicly available genome resources, de novo genome assemblies, and laboratory experimentation including Sanger sequencing, five ALS genes were characterized in C. parapsilosis strain CDC317, three in C. orthopsilosis strain 90-125, and four in C. metapsilosis strain ATCC 96143. The newly characterized ALS genes shared similar features with the well-known C. albicans ALS family, but also displayed unique attributes such as novel short, imperfect repeat sequences that were found in other genes encoding fungal cell-wall proteins. Evidence of recombination between ALS sequences and other genes was most obvious in CmALS2265, which had the 5' end of an ALS gene and the repeated sequences and 3' end from the IFF/HYR family. Together, these results blur the boundaries between the fungal cell-wall families that were defined in C. albicans. TaqMan assays were used to quantify relative expression for each ALS gene. Some measurements were complicated by the assay location within the ALS gene. Considerable variation was noted in relative gene expression for isolates of the same species. Overall, however, there was a trend toward higher relative gene expression in saturated cultures rather than younger cultures. This work provides a complete description of the ALS genes in the C. parapsilosis species complex and a toolkit that promotes further investigations into the role of the Als proteins in host-fungal interactions.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Brooke Smith
- Department of Biology, Millikin University, Decatur, IL, United States
| | | | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children’s Hospital, Seattle, WA, United States
| | - Christopher Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lois L. Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Characterization of the Candida orthopsilosis agglutinin-like sequence (ALS) genes. PLoS One 2019; 14:e0215912. [PMID: 31017950 PMCID: PMC6481836 DOI: 10.1371/journal.pone.0215912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Agglutinin like sequence (Als) cell-wall proteins play a key role in adhesion and virulence of Candida species. Compared to the well-characterized Candida albicans ALS genes, little is known about ALS genes in the Candida parapsilosis species complex. Three incomplete ALS genes were identified in the genome sequence for Candida orthopsilosis strain 90–125 (GenBank assembly ASM31587v1): CORT0C04210 (named CoALS4210), CORT0C04220 (CoALS4220) and CORT0B00800 (CoALS800). To complete the gene sequences, new data were derived from strain 90–125 using Illumina (short-read) and Oxford Nanopore (long-read) methods. Long-read sequencing analysis confirmed the presence of 3 ALS genes in C. orthopsilosis 90–125 and resolved the gaps located in repetitive regions of CoALS800 and CoALS4220. In the new genome assembly (GenBank PQBP00000000), the CoALS4210 sequence was slightly longer than in the original assembly. C. orthopsilosis Als proteins encoded features well-known in C. albicans Als proteins such as a secretory signal peptide, N-terminal domain with a peptide-binding cavity, amyloid-forming region, repeated sequences, and a C-terminal site for glycosylphosphatidylinositol anchor addition that, in yeast, suggest localization of the proteins in the cell wall. CoAls4210 and CoAls800 lacked the classic C. albicans Als tandem repeats, instead featuring short, imperfect repeats with consensus motifs such as SSSEPP and GSGN. Quantitative RT-PCR showed differential regulation of CoALS genes by growth stage in six genetically diverse C. orthopsilosis clinical isolates, which also exhibited length variation in the ALS alleles, and strain-specific gene expression patterns. Overall, long-read DNA sequencing methodology was instrumental in generating an accurate assembly of CoALS genes, thus revealing their unconventional features and first insights into their allelic variability within C. orthopsilosis clinical isolates.
Collapse
|
10
|
Yang C, Scoffield J, Wu R, Deivanayagam C, Zou J, Wu H. Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Mol Oral Microbiol 2018; 33:283-291. [PMID: 29570954 DOI: 10.1111/omi.12223] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans and Candida albicans are frequently co-isolated from dental plaque of children with early childhood caries (ECC) and are only rarely found in children without ECC, suggesting that these species interact in a manner that contributes to the pathogenesis of ECC. Previous studies have demonstrated that glucans produced by S. mutans are crucial for promoting the formation of biofilm and cariogenicity with C. albicans; however, it is unclear how non-glucan S. mutans biofilm factors contribute to increased biofilm formation in the presence of C. albicans. In this study we examined the role of S. mutans antigen I/II in two-species biofilms with C. albicans, and determined that antigen I/II is important for the incorporation of C. albicans into the two-species biofilm and is also required for increased acid production. The interaction is independent of the proteins Als1 and Als3, which are known streptococcal receptors of C. albicans. Moreover, antigen I/II is required for the colonization of both S. mutans and C. albicans during co-infection of Drosophila melanogaster in vivo. Taken together, these results demonstrate that antigen I/II mediates the increase of C. albicans numbers and acid production in the two-species biofilm, representing new activities associated with this known S. mutans adhesin.
Collapse
Affiliation(s)
- C Yang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - J Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Deivanayagam
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Zou
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Granger BL. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS One 2018; 13:e0191194. [PMID: 29329339 PMCID: PMC5766240 DOI: 10.1371/journal.pone.0191194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/30/2017] [Indexed: 02/06/2023] Open
Abstract
Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall-anchored Ywp1 were previously created by others, and were further explored here. As above, rare cells with much greater accessibility of the HA epitopes were isolated, and also found to exhibit greater exposure of Ywp1 and β-1,3-glucan. The placement of the HA cassette inhibited the normal N-glycosylation and propeptide cleavage of Ywp1, but the wall-anchored Ywp1-HA-Ywp1 still accumulated in the cell wall of yeast forms. Bifunctional transformation cassettes were used to additionally tag these molecules with Gfp, generating soluble Ywp1-HA-Gfp and wall-anchored Ywp1-HA-Gfp-Ywp1 molecules. The former revealed unexpected electrophoretic properties caused by the HA insertion, while the latter further highlighted differences between the presence of a tagged Ywp1 molecule (as revealed by Gfp fluorescence) and its accessibility in the cell wall to externally applied antibodies specific for HA, Gfp and Ywp1, with accessibility being greatest in the rapidly expanding walls of budding daughter cells. These strains and results increase our understanding of cell wall properties and how C. albicans masks itself from recognition by the human immune system.
Collapse
Affiliation(s)
- Bruce L. Granger
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
13
|
Lyden A, Lombardi L, Sire W, Li P, Simpson JC, Butler G, Lee GU. Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans. NANOSCALE 2017; 9:15911-15922. [PMID: 29019498 DOI: 10.1039/c7nr04724j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Candida albicans is the lead fungal pathogen of nosocomial bloodstream infections worldwide and has mortality rates of 43%. Nanoparticles have been identified as a means to improve medical outcomes for Candida infections, enabling sample concentration, serving as contrast agents for in vivo imaging, and delivering therapeutics. However, little is known about how nanoparticles interact with the fungal cell wall. In this report we used laser scanning confocal microscopy to examine the interaction of fluorescent polystyrene nanoparticles of specific surface chemistry and diameter with C. albicans and mutant strains deficient in various C. albicans surface proteins. Carboxylate-functionalized nanoparticles adsorbed mainly to the hyphae of wild-type C. albicans. The dissociative binding constant of the nanoparticles was ∼150, ∼30 and ∼2.5 pM for 40, 100 nm and 200 nm diameter particles, respectively. A significant reduction in particle binding was observed with a Δals3 strain compared to wild-type strains, identifying the Als3 adhesin as the main mediator of this nanoparticle adhesion. In the absence of Als3, nanoparticles bound to germ tubes and yeast cells in a pattern resembling the localization of Als1, indicating Als1 also plays a role. Nanoparticle surface charge was shown to influence binding - positively charged amine-functionalized nanoparticles failed to bind to the hyphal cell wall. Binding of carboxylate-functionalized nanoparticles was observed in the presence of serum, though interactions were reduced. These observations show that Als3 and Als1 are important targets for nanoparticle-mediated diagnostics and therapeutics, and provide direction for optimal diameter and surface characteristics of nanoparticles that bind to the fungal cell wall.
Collapse
Affiliation(s)
- Amy Lyden
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu H, Sobue T, Bertolini M, Thompson A, Vickerman M, Nobile CJ, Dongari-Bagtzoglou A. S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence 2017; 8:1602-1617. [PMID: 28481721 DOI: 10.1080/21505594.2017.1326438] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans and Streptococcus oralis are ubiquitous oral commensal organisms. Under host-permissive conditions these organisms can form hypervirulent mucosal biofilms. C. albicans biofilm formation is controlled by 6 master transcriptional regulators: Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1. The objective of this work was to test whether any of these regulators play a role in cross-kingdom interactions between C. albicans and S. oralis in oral mucosal biofilms, and identify downstream target gene(s) that promote these interactions. Organotypic mucosal constructs and a mouse model of oropharyngeal infection were used to analyze mucosal biofilm growth and fungal gene expression. By screening 6 C. albicans transcription regulator reporter strains we discovered that EFG1 was strongly activated by interaction with S. oralis in late biofilm growth stages. EFG1 gene expression was increased in polymicrobial biofilms on abiotic surfaces, mucosal constructs and tongue tissues of mice infected with both organisms. EFG1 was required for robust Candida-streptococcal biofilm growth in organotypic constructs and mouse oral tissues. S. oralis stimulated C. albicans ALS1 gene expression in an EFG1-dependent manner, and Als1 was identified as a downstream effector of the Efg1 pathway which promoted C. albicans-S. oralis coaggregation interactions in mixed biofilms. We conclude that S. oralis induces an increase in EFG1 expression in C. albicans in late biofilm stages. This in turn increases expression of ALS1, which promotes coaggregation interactions and mucosal biofilm growth. Our work provides novel insights on C. albicans genes which play a role in cross-kingdom interactions with S. oralis in mucosal biofilms.
Collapse
Affiliation(s)
- Hongbin Xu
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Takanori Sobue
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Martinna Bertolini
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Angela Thompson
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | | | - Clarissa J Nobile
- c School of Natural Sciences, University of California , Merced, Merced , CA , USA
| | | |
Collapse
|
15
|
Hoyer LL, Cota E. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Front Microbiol 2016; 7:280. [PMID: 27014205 PMCID: PMC4791367 DOI: 10.3389/fmicb.2016.00280] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 01/09/2023] Open
Abstract
Approximately two decades have passed since the description of the first gene in the Candida albicans ALS (agglutinin-like sequence) family. Since that time, much has been learned about the composition of the family and the function of its encoded cell-surface glycoproteins. Solution of the structure of the Als adhesive domain provides the opportunity to evaluate the molecular basis for protein function. This review article is formatted as a series of fundamental questions and explores the diversity of the Als proteins, as well as their role in ligand binding, aggregative effects, and attachment to abiotic surfaces. Interaction of Als proteins with each other, their functional equivalence, and the effects of protein abundance on phenotypic conclusions are also examined. Structural features of Als proteins that may facilitate invasive function are considered. Conclusions that are firmly supported by the literature are presented while highlighting areas that require additional investigation to reveal basic features of the Als proteins, their relatedness to each other, and their roles in C. albicans biology.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
16
|
Cota E, Hoyer LL. The Candida albicans agglutinin-like sequence family of adhesins: functional insights gained from structural analysis. Future Microbiol 2015; 10:1635-548. [PMID: 26438189 DOI: 10.2217/fmb.15.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida albicans colonizes many host sites suggesting its interaction with diverse ligands. Candida albicans adhesion is mediated by a number of proteins including those in the Als (agglutinin-like sequence) family, which have been studied intensively. The recent solution of the Als binding domain structure ended years of speculation regarding the molecular mechanism for Als adhesive function. Als adhesins bind flexible C termini from a broad collection of proteins, providing the basis for adhesion to various cell types and perhaps for C. albicans broad tissue tropism. Understanding adhesive functions at the molecular level will reveal the sequence of events in C. albicans pathogenesis, from host recognition to complex interactions such as development of polymicrobial biofilms or disseminated disease.
Collapse
Affiliation(s)
- Ernesto Cota
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
17
|
Chan CXJ, Joseph IG, Huang A, Jackson DN, Lipke PN. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures. PLoS One 2015; 10:e0129152. [PMID: 26047318 PMCID: PMC4457901 DOI: 10.1371/journal.pone.0129152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.
Collapse
Affiliation(s)
- Cho X. J. Chan
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- Haskins Laboratories and the Department of Chemistry and Physical Sciences, Pace University, New York, New York, United States of America
| | - Ivor G. Joseph
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Andy Huang
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Desmond N. Jackson
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Peter N. Lipke
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nobbs AH, Jenkinson HF. Interkingdom networking within the oral microbiome. Microbes Infect 2015; 17:484-92. [PMID: 25805401 DOI: 10.1016/j.micinf.2015.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Different sites within the oropharynx harbour unique microbial communities. Co-evolution of microbes and host has resulted in complex interkingdom circuitries. Metabolic signalling is crucial to these processes, and novel microbial communication factors are progressively being discovered. Resolving interkingdom networks will lead to better understanding of oral health or disease aetiology.
Collapse
Affiliation(s)
- Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom.
| |
Collapse
|
19
|
Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by atomic force microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:57-65. [DOI: 10.1016/j.nano.2014.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
|
20
|
Hoyer LL, Oh SH, Jones R, Cota E. A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins. Front Microbiol 2014; 5:564. [PMID: 25408685 PMCID: PMC4219490 DOI: 10.3389/fmicb.2014.00564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023] Open
Abstract
C. albicans binds various bacteria, including the oral commensal Streptococcus gordonii. Published reports documented the role of C. albicans Als3 and S. gordonii SspB in this interaction, and the importance of the Als N-terminal domain (NT-Als) in C. albicans adhesion. Here, we demonstrate that Als1 also binds S. gordonii. We also describe use of the NT-Als crystal structure to design mutations that precisely disrupt peptide-binding cavity (PBC) or amyloid-forming region (AFR) function in Als3. C. albicans displaying Als3 PBC mutant proteins showed significantly reduced binding to S. gordonii; mutation of the AFR did not affect the interaction. These observations present an enigma: the Als PBC binds free C termini of ligands, but the SspB C terminus is covalently linked to peptidoglycan and thus unavailable as a ligand. These observations and the predicted SspB elongated structure suggest that partial proteolysis of streptococcal cell wall proteins is necessary for recognition by Als adhesins.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Soon-Hwan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Rhian Jones
- Department of Life Sciences, Imperial College London London, UK
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
21
|
Role of force-sensitive amyloid-like interactions in fungal catch bonding and biofilms. EUKARYOTIC CELL 2014; 13:1136-42. [PMID: 24681687 DOI: 10.1128/ec.00068-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Candida albicans Als adhesin Als5p has an amyloid-forming sequence that is required for aggregation and formation of model biofilms on polystyrene. Because amyloid formation can be triggered by force, we investigated whether laminar flow could activate amyloid formation and increase binding to surfaces. Shearing Saccharomyces cerevisiae cells expressing Als5p or C. albicans at 0.8 dyne/cm(2) increased the quantity and strength of cell-to-surface and cell-to-cell binding compared to that at 0.02 dyne/cm(2). Thioflavin T fluorescence showed that the laminar flow also induced adhesin aggregation into surface amyloid nanodomains in Als5p-expressing cells. Inhibitory concentrations of the amyloid dyes thioflavin S and Congo red or a sequence-specific anti-amyloid peptide decreased binding and biofilm formation under flow. Shear-induced binding also led to formation of robust biofilms. There was less shear-activated increase in adhesion, thioflavin fluorescence, and biofilm formation in cells expressing the amyloid-impaired V326N-substituted Als5p. Similarly, S. cerevisiae cells expressing Flo1p or Flo11p flocculins also showed shear-dependent binding, amyloid formation, biofilm formation, and inhibition by anti-amyloid compounds. Together, these results show that laminar flow activated amyloid formation and led to enhanced adhesion of yeast cells to surfaces and to biofilm formation.
Collapse
|
22
|
Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. EUKARYOTIC CELL 2013; 13:2-9. [PMID: 24243791 DOI: 10.1128/ec.00250-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.
Collapse
|
23
|
Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans. Antimicrob Agents Chemother 2013; 57:3498-506. [PMID: 23669379 DOI: 10.1128/aac.00105-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human health, respectively. We used atomic force microscopy (AFM) to explore the effects of caspofungin, an antifungal drug used in hospitals, on these two species. Our nanoscale investigation revealed similar, but also different, behaviors of the two yeasts in response to treatment with the drug. While administration of caspofungin induced deep cell wall remodeling in both yeast species, as evidenced by a dramatic increase in chitin and decrease in β-glucan content, changes in cell wall composition were more pronounced with C. albicans cells. Notably, the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the Young modulus of the cell was three times lower for C. albicans cells than for S. cerevisiae cells and increased proportionally with the increase of chitin, suggesting differences in the molecular organization of the cell wall between the two yeast species. Also, at a low dose of caspofungin (i.e., 0.5× MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of cells expressing adhesion proteins. Interestingly, this morphology was lost at high doses of the drug (i.e., 4× MIC). However, the treatment of S. cerevisiae cells with high doses of caspofungin resulted in impairment of cytokinesis. Altogether, the use of AFM for investigating the effects of antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms of action on fungal cells, as well as unraveling unexpected effects on cell division and fungal adhesion.
Collapse
|
24
|
Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL. Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 2013; 12:2331-9. [PMID: 22685022 DOI: 10.1002/pmic.201100588] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We used a brief trypsin treatment followed by peptide separation and identification using nano-LC followed by off-line MS/MS to identify the surface proteins on live Candida albicans organisms growing in biofilms and planktonic yeast cells and hyphae. One hundred thirty-one proteins were present in at least two of the three replicates of one condition and distributed in various combinations of the three growth conditions. Both previously reported and new surface proteins were identified and these were distributed between covalently attached proteins and noncovalently attached proteins of the cell wall.
Collapse
Affiliation(s)
- Vital Vialás
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription 2012; 3:315-22. [PMID: 23117819 PMCID: PMC3630188 DOI: 10.4161/trns.22281] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Candida albicans is a commensal microorganism of the human microbiome; it is also the most prevalent fungal pathogen of humans. Many infections caused by C. albicans are a direct consequence of its proclivity to form biofilms—resilient, surface-associated communities of cells where individual cells acquire specialized properties that are distinct from those observed in suspension cultures. We recently identified the transcriptional network that orchestrates the formation of biofilms in C. albicans. These results set the stage for understanding how biofilms are formed and, once formed, how the specialized properties of biofilms are elaborated. This information will provide new insight for understanding biofilms in more detail and may lead to improvements in preventing and treating biofilm-based infections in the future.
Collapse
Affiliation(s)
- Emily P Fox
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
26
|
Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL, Naglik JR. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One 2012; 7:e33362. [PMID: 22428031 PMCID: PMC3299778 DOI: 10.1371/journal.pone.0033362] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/10/2012] [Indexed: 12/29/2022] Open
Abstract
The fungus C. albicans uses adhesins to interact with human epithelial surfaces in the processes of colonization and pathogenesis. The C. albicans ALS (agglutinin-like sequence) gene family encodes eight large cell-surface glycoproteins (Als1-Als7 and Als9) that have adhesive function. This study utilized C. albicans Δals mutant strains to investigate the role of the Als family in oral epithelial cell adhesion and damage, cytokine induction and activation of a MAPK-based (MKP1/c-Fos) signaling pathway that discriminates between yeast and hyphae. Of the eight Δals mutants tested, only the Δals3 strain showed significant reductions in oral epithelial cell adhesion and damage, and cytokine production. High fungal:epithelial cell multiplicities of infection were able to rescue the cell damage and cytokine production phenotypes, demonstrating the importance of fungal burden in mucosal infections. Despite its adhesion, damage and cytokine induction phenotypes, the Δals3 strain induced MKP1 phosphorylation and c-Fos production to a similar extent as control cells. Our data demonstrate that Als3 is involved directly in epithelial adhesion but indirectly in cell damage and cytokine induction, and is not the factor targeted by oral epithelial cells to discriminate between the yeast and hyphal form of C. albicans.
Collapse
Affiliation(s)
- Celia Murciano
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, United Kingdom
- * E-mail: (JN); (CM)
| | - David L. Moyes
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Manohursingh Runglall
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Priscila Tobouti
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Ayesha Islam
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Lois L. Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Julian R. Naglik
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, United Kingdom
- * E-mail: (JN); (CM)
| |
Collapse
|
27
|
Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP. Portrait of Candida albicans adherence regulators. PLoS Pathog 2012; 8:e1002525. [PMID: 22359502 PMCID: PMC3280983 DOI: 10.1371/journal.ppat.1002525] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/21/2011] [Indexed: 12/20/2022] Open
Abstract
Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to elucidate relationships among these transcription factors, with two major goals: to extend our understanding of transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1, and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C. albicans.
Collapse
Affiliation(s)
- Jonathan S. Finkel
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth M. Hill
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jigar V. Desai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jeniel E. Nett
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Heather Taff
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carmelle T. Norice
- Department of Microbiology, Columbia University, New York, New York, United States of America
| | - David R. Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
28
|
Kuhn DM, Vyas VK. The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 2012; 12:398-414. [DOI: 10.1111/j.1567-1364.2011.00785.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/21/2011] [Indexed: 12/25/2022] Open
Affiliation(s)
- Duncan M. Kuhn
- Whitehead Institute for Biomedical Research; 9 Cambridge Center; Cambridge; MA; USA
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research; 9 Cambridge Center; Cambridge; MA; USA
| |
Collapse
|
29
|
Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012; 148:126-38. [PMID: 22265407 PMCID: PMC3266547 DOI: 10.1016/j.cell.2011.10.048] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 10/14/2022]
Abstract
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
Collapse
Affiliation(s)
- Clarissa J Nobile
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Coleman DA, Oh SH, Manfra-Maretta SL, Hoyer LL. A monoclonal antibody specific for Candida albicans Als4 demonstrates overlapping localization of Als family proteins on the fungal cell surface and highlights differences between Als localization in vitro and in vivo. ACTA ACUST UNITED AC 2011; 64:321-33. [PMID: 22106872 DOI: 10.1111/j.1574-695x.2011.00914.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/09/2023]
Abstract
The Candida albicans agglutinin-like sequence (ALS) family encodes large cell surface glycoproteins that function in adhesion of the fungus to host and abiotic surfaces. Monoclonal antibodies (mAbs) specific for each Als protein were developed to study Als localization on the C. albicans surface. An anti-Als4 mAb demonstrated that Als4 covers the surface of yeast cells, with a greater abundance of Als4 on cells grown at 30 °C compared to 37 °C. On germ tubes, Als4 is localized in a restricted area proximal to the mother yeast. Immunolabeling with several anti-Als mAbs showed overlapping localization of Als1 and Als4 on yeast cells and Als1, Als3 and Als4 on germ tubes. Overlapping localization of Als proteins was also observed on yeast and hyphae recovered from mouse models of disseminated and oral candidiasis. Differences between Als localization in vivo and in vitro suggested changes in regulation of Als production in the host compared to the culture flask. Characterization with the anti-Als mAbs reveals the simultaneous presence and differences in relative abundance of Als proteins, creating an accurate image of Als representation and localization that can be used to guide conclusions regarding individual and collective Als protein function.
Collapse
Affiliation(s)
- David A Coleman
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | |
Collapse
|
31
|
Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, de Koster CG, de Koning LJ, Klis FM. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology (Reading) 2011; 157:2297-2307. [DOI: 10.1099/mic.0.049395-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans to switch from yeast to hyphal growth is essential for its virulence. The walls and especially the covalently attached wall proteins are involved in the primary host–pathogen interactions. Three hyphal induction methods were compared, based on fetal calf serum, the amino sugar N-acetylglucosamine (GlcNAc) and the mammalian cell culture medium Iscove’s modified Dulbecco’s medium (IMDM). GlcNAc and IMDM were preferred, allowing stable hyphal growth over a prolonged period without significant reversion to yeast growth and with high biomass yields. We employed Fourier transform-MS combined with a 15N-metabolically labelled reference culture as internal standard for relative quantification of changes in the wall proteome upon hyphal induction. A total of 21 wall proteins were quantified. Our induction methods triggered a similar response characterized by (i) a category of wall proteins showing strongly increased incorporation levels (Als3, Hwp2, Hyr1, Plb5 and Sod5), (ii) another category with strongly decreased levels (Rhd3, Sod4 and Ywp1) and (iii) a third one enriched for carbohydrate-active enzymes (including Cht2, Crh11, Mp65, Pga4, Phr1, Phr2 and Utr2) and showing only a limited response. This is, to our knowledge, the first systematic, quantitative analysis of the changes in the wall proteome of C. albicans upon hyphal induction. Finally, we propose new wall-protein-derived candidates for vaccine development.
Collapse
Affiliation(s)
- Clemens J. Heilmann
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Alice G. Sorgo
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Adriaan R. Siliakus
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Henk L. Dekker
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Chris G. de Koster
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Leo J. de Koning
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Zhao X, Oh SH, Coleman DA, Hoyer LL. ALS51, a newly discovered gene in the Candida albicans ALS family, created by intergenic recombination: analysis of the gene and protein, and implications for evolution of microbial gene families. ACTA ACUST UNITED AC 2011; 61:245-57. [PMID: 21208290 DOI: 10.1111/j.1574-695x.2010.00769.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Candida albicans ALS family has eight genetic loci, each encoding a large glycoprotein. Als protein function is discussed most frequently in terms of adhesion to host and abiotic surfaces. Analyses of C. albicans strain WO-1 indicated variation within the ALS1 locus compared with other isolates such as SC5314. Investigation revealed a recombination between the contiguous ALS5 and ALS1 loci to generate a new coding region, named ALS51, because it encodes the 5' domain of ALS5 fused in-frame to the tandem repeat region and 3' domain of ALS1. ALS51 was detected in 11 isolates (4.6%) from a collection of 239 C. albicans strains of diverse origin and clade assignment. The 12 ALS51-positive strains identified in this study represented three different ALS family genotypes with respect to the presence and copy number of ALS51, ALS5 and ALS1. ALS51 transcription was detected by real-time reverse-transcription-PCR in WO-1. Although the cell-surface abundance of Als51 on WO-1 and Als5 on SC5314 was too low to visualize by indirect immunofluorescence using an anti-Als5 monoclonal antibody, both proteins were observed on Western blots of β-1,6-glucanase-digested C. albicans cell walls. Characterization of ALS51 illustrates one of the recombination mechanisms that generate diversity within C. albicans gene families.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | | | | | | |
Collapse
|