1
|
Lu H, Zhang G, Wang K, Liu K, Gao Y, Chen J, Li Y, Yan J. The Role of Lactiplantibacillus plantarum CGMCC9513 in Alleviating Colitis by Synergistic Enhancement of the Intestinal Barrier Through Modulating Gut Microbiota and Activating the Aryl Hydrocarbon Receptor. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10551-0. [PMID: 40301232 DOI: 10.1007/s12602-025-10551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
Ulcerative colitis (UC) has become a global health issue. This study evaluated whether administering Lactiplantibacillus plantarum CGMCC9513 to dextran sulfate sodium (DSS)-induced colitis mice could alleviate colitis by modulating gut microbiota imbalance and activating the aryl hydrocarbon receptor (AhR) to enhance intestinal barrier function. The anti-inflammatory effect and AhR activation ability of L. plantarum CGMCC9513 were evaluated with lipopolysaccharide (LPS)-induced cell inflammation model; 25 male BALB/c mice were divided into blank group (CNG), model group (DSS), L. plantarum CGMCC9513-treated group (LPDT), and L. plantarum CGMCC9513 control group (LP). The mice were pre-administered L. plantarum CGMCC9513 for 14 days and continued to receive it during DSS induction. Symptoms during induction, goblet cell count, expression of MUC2 and Occludin proteins, and changes in gut microbiota were observed. Subsequently, the expression of cytokines interleukin-10 (IL-10), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and AhR activation status was determined. The study found that L. plantarum CGMCC9513 could alleviate cell inflammation induced by LPS and activate AhR in vitro. For colitis mice, it could reduce colonic mucosal damage and enhance intestinal barrier function. Regarding gut microbiota changes, L. plantarum CGMCC9513 mainly downregulated Bacteroides, Blautia, Escherichia-Shigella, and Lachnospiraceae_ NK4A136_group and upregulated Firmicutes, Lactobacillus. It reduces the risk of bacterial translocation and increases beneficial gut bacteria. L. plantarum CGMCC9513 reduced the expression of pro-inflammatory cytokines TNF-α and IL-1β while increasing the expression of anti-inflammatory cytokine IL-10. Meanwhile, increased expression of AhR and Cytochrome P450 1A1 (CYP1A1) proteins indicated AhR activation by L. plantarum CGMCC9513. In conclusion, L. plantarum CGMCC9513 can synergistically enhance intestinal barrier alleviation in colitis mice by modulating gut microbiota imbalance and activating AhR.
Collapse
Affiliation(s)
- Hongyu Lu
- Medical School of Guangxi University, Nanning, 530004, China
| | - Guoqing Zhang
- Medical School of Guangxi University, Nanning, 530004, China
| | - Kaidi Wang
- Medical School of Guangxi University, Nanning, 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd, Huayuan Industrial Zone, No. 2, Hai Tai Development 2 Road, Tianjin, 300384, China
| | - Yingrui Gao
- Tianjin Shengji Group., Co., Ltd, Huayuan Industrial Zone, No. 2, Hai Tai Development 2 Road, Tianjin, 300384, China
| | - Jinyan Chen
- Tianjin Shengji Group., Co., Ltd, Huayuan Industrial Zone, No. 2, Hai Tai Development 2 Road, Tianjin, 300384, China
| | - Yixiang Li
- Medical School of Guangxi University, Nanning, 530004, China.
| | - Jianhua Yan
- Medical School of Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
da Silva Morais E, Grimaud GM, Warda A, Stephens N, Ross RP, Stanton C. Bacteroides maternus sp. nov., a novel species isolated from human faeces. Sci Rep 2025; 15:13808. [PMID: 40258876 PMCID: PMC12012224 DOI: 10.1038/s41598-025-96846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
A novel bacterial strain, MSB163, was isolated from the stool sample of a healthy mother, 4 weeks after giving birth via vaginal delivery. Taxonomic identification tools revealed that MSB163 belongs to the genus Bacteroides, but it is distinct from any currently known species. The closest related species is Bacteroides cellulosilyticus strain BFG- 250, with an average nucleotide identity (fastANI) of 94.51%. The genome length of MSB163 is 6,440,948 bp and the GC content 42.95%. Two plasmids were identified in the whole genome sequence. MSB163 is a Gram-negative, rod-shaped, non-motile anaerobic bacterium. The optimum growth conditions were at 37 °C, pH 7 and 0% (w/v) NaCl. The respiratory quinones were the menaquinones MK- 10 and MK- 11 and C15:0 ANTEISO was the major fatty acid. The predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phospholipid. According to the taxonomic results and physiological analysis, strain MSB163 represents a novel species of the genus Bacteroides, for which we propose the name Bacteroides maternus, since the type strain was isolated from the stool sample of a mother. B. maternus type strain (MSB163) sequencing can be accessed under the biosample ID SAMN3953129 on NCBI. The strain was deposited on BCCM/LMG Bacteria Collection under the accession number LMG 33,374 and Leibniz Institut DSMZ GMBH under the accession number DSM 117,047.
Collapse
Affiliation(s)
- Emilene da Silva Morais
- Department of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
| | - Ghjuvan M Grimaud
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- Division of Biotechnology and Applied Microbiology, Department of Process in Life Science and Engineering, Lund University, 22100, Lund, Sweden
| | - Alicja Warda
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Niamh Stephens
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland
| | - R Paul Ross
- Department of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, T12 YT20, Ireland.
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
3
|
Aleksandrova RR, Nieuwenhuis LM, Karmi N, Zhang S, Swarte JC, Björk JR, Gacesa R, Blokzijl H, Connelly MA, Weersma RK, Lisman T, Festen EAM, de Meijer VE. Gut microbiome dysbiosis is not associated with portal vein thrombosis in patients with end-stage liver disease: a cross-sectional study. J Thromb Haemost 2025; 23:1407-1415. [PMID: 39798925 DOI: 10.1016/j.jtha.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Portal vein thrombosis (PVT) is a common complication in patients with end-stage liver disease (ESLD). The portal vein in patients with ESLD is proposedly an inflammatory vascular bed due to translocation of endotoxins and cytokines from the gut. We hypothesized that a proinflammatory gut microbiome and elevated trimethylamine N-oxide (TMAO), a driver of thrombosis, may contribute to PVT development. OBJECTIVES We investigated whether gut microbiome diversity, bacterial species, metabolic pathways, and TMAO levels are associated with PVT in patients with ESLD. METHODS Fecal samples, plasma samples, and data from patients with ESLD and healthy controls were collected through the TransplantLines Biobank and Cohort Study. PVT was defined as a thrombus in the portal vein within a year prior to or after fecal sample collection. Fecal samples were analyzed using Shotgun Metagenomic Sequencing, and TMAO levels were measured in plasma using a Vantera Clinical Analyzer. RESULTS One hundred two patients with ESLD, of which 23 with PVT, and 246 healthy controls were included. No significant difference in gut microbiome diversity was found between patients with PVT and without PVT (P = .18). Both ESLD groups had significantly lower alpha diversity than controls. Bacteroides fragilis and 3 Clostridiales species were increased in patients with PVT compared with without PVT. TMAO levels between the 3 groups were not significantly different. CONCLUSION We observed profound differences in gut microbiota between patients with ESLD and controls, but minimal differences between patients with ESLD with or without PVT. In our cohort, a gut-derived proinflammatory state was not associated with presence of PVT in patients with ESLD.
Collapse
Affiliation(s)
- Rali R Aleksandrova
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lianne M Nieuwenhuis
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Naomi Karmi
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shuyan Zhang
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johann Casper Swarte
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, North Carolina, USA
| | - Rinse K Weersma
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, University of Groningen, Surgical Research Laboratory, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Dong H, Zhuang H, Yu C, Zhang X, Feng T. Interactions between soluble dietary fibers from three edible fungi and gut microbiota. Int J Biol Macromol 2024; 278:134685. [PMID: 39168729 DOI: 10.1016/j.ijbiomac.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Edible fungi are emerging as a valuable dietary fiber source with health benefits, where their bioactivity hinges on their structure. This study targets the structure-activity relationship of soluble dietary fibers from Lentinus edodes (LESDF), Agaricus bisporus (ABSDF), and Hericium erinaceus (HESDF), focusing on their impact on gut microbiota and health. We explored the properties and structures of edible fungi, finding their soluble fibers affect metabolites and gut microbiota by increasing gas and lowering pH. Among these, HESDF demonstrated superior effects (pH: △1.4 ± 0.07; Gas production: △24.5 ± 0.4 mL). Furthermore, different types of edible fungi dietary fiber exhibited distinct capabilities in promoting the production of short-chain fatty acids by gut microorganisms. For instance, ABSDF exceled in acetic acid production (26.12 ± 0.35 mM) and propionic acid production (9.50 ± 0.13 mM), while HESDF stood out in butyric acid production (17.86 ± 0.09 mM). LESDF showed higher levels of Phascolarctobacterium, ABSDF had elevated levels of Ruminococcus, and HESDF displayed increased levels of Faecalibacterium. These results contribute to our understanding of how soluble dietary fiber from different edible fungi impacts gut microbiota and offers insights for the development and utilization of these fibers as functional food.
Collapse
Affiliation(s)
- Huayue Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaowei Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
5
|
Liu Z, Nong K, Qin X, Fang X, Zhang B, Chen W, Wang Z, Wu Y, Shi H, Wang X, Liu Y, Guan Q, Zhang H. The antimicrobial peptide Abaecin alleviates colitis in mice by regulating inflammatory signaling pathways and intestinal microbial composition. Peptides 2024; 173:171154. [PMID: 38242174 DOI: 10.1016/j.peptides.2024.171154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Abaecin is a natural antimicrobial peptide (AMP) rich in proline from bees. It is an important part of the innate humoral immunity of bees and has broad-spectrum antibacterial ability. This study aimed to determine the effect of Abaecin on dextran sulfate sodium (DSS) -induced ulcerative colitis (UC) in mice and to explore its related mechanisms. Twenty-four mice with similar body weight were randomly divided into 4 groups. 2.5% DSS was added to drinking water to induce colitis in mice. Abaecin and PBS were administered rectally on the third, fifth, and seventh days of the experimental period. The results showed that Abaecin significantly alleviated histological damage and intestinal mucosal barrier damage caused by colitis in mice, reduced the concentration of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IFN-γ, and the phosphorylation of NF-κB / MAPK inflammatory signaling pathway proteins, and improved the composition of intestinal microorganisms. These findings suggest that Abaecin may have potential prospects for the treatment of UC.
Collapse
Affiliation(s)
- Zhineng Liu
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Keyi Nong
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xinyun Qin
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xin Fang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Bin Zhang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Wanyan Chen
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Zihan Wang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Yijia Wu
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Huiyu Shi
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xuemei Wang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Qingfeng Guan
- College of Life and Health, Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Ghebrehiwet B, Joseph K, Kaplan AP. The bradykinin-forming cascade in anaphylaxis and ACE-inhibitor induced angioedema/airway obstruction. FRONTIERS IN ALLERGY 2024; 5:1302605. [PMID: 38332896 PMCID: PMC10850323 DOI: 10.3389/falgy.2024.1302605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Anaphylaxis is a potentially life-threatening multi-system allergic reaction to a biological trigger resulting in the release of potent inflammatory mediators from mast cells and basophils and causing symptoms in at least two organ systems that generally include skin, lungs, heart, or gastrointestinal tract in any combination. One exception is profound hypotension as an isolated symptom. There are two types of triggers of anaphylaxis: immunologic and non-Immunologic. Immunologic anaphylaxis is initiated when a foreign antigen directly binds to IgE expressed on mast cells or basophils and induces the release of histamine and other inflammatory substances resulting in vasodilation, vascular leakage, decreased peripheral vascular resistance, and heart muscle depression. If left untreated, death by shock (profound hypotension) or asphyxiation (airway obstruction) can occur. The non-immunologic pathway, on the other hand, can be initiated in many ways. A foreign substance can directly bind to receptors of mast cells and basophils leading to degranulation. There can be immune complex activation of the classical complement cascade with the release of anaphylatoxins C3a and C5a with subsequent recruitment of mast cells and basophils. Finally, hyperosmolar contrast agents can cause blood cell lysis, enzyme release, and complement activation, resulting in anaphylactoid (anaphylactic-like) symptoms. In this report we emphasize the recruitment of the bradykinin-forming cascade in mast cell dependent anaphylactic reactions as a potential mediator of severe hypotension, or airway compromise (asthma, laryngeal edema). We also consider airway obstruction due to inhibition of angiotensin converting enzyme with a diminished rate of endogenous bradykinin metabolism, leading not only to laryngeal edema, but massive tongue swelling with aspiration of secretions.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- Division of Rheumatology, Allergy, and Clinical Immunology, SUNY-Stony Brook, Stony Brook, NY, United States
| | | | - Allen P. Kaplan
- Division of Pulmonary and Critical Care Medicine, The Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Zhang J, Shi B, Lu S, Wang S, Ren X, Liu R, Dong H, Li K, Fouad D, Ataya FS, Mansoor MK, Qamar H, Wu Q. Metagenomic analysis for exploring the potential of Lactobacillus yoelii FYL1 to mitigate bacterial diarrhea and changes in the gut microbiota of juvenile yaks. Microb Pathog 2024; 186:106496. [PMID: 38072228 DOI: 10.1016/j.micpath.2023.106496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Diarrhea in calves is a common disease that results in poor nutrient absorption, poor growth and early death which leads to productivity and economic losses. Therefore, it is important to explore the methods to reduce diarrhea in yak's calves. Efficacy of lactic acid bacteria (LAB) for improvement of bacterial diarrhea is well recognized. For this purpose, two different doses (107 CFU, 1011 CFU) of Lactobacillus yoelii FYL1 isolated from yaks were fed to juvenile yaks exposed to E. coli O78. After a trial period of ten days fresh feces and intestinal contents of the experimental yaks were collected and metagenomics sequencing was performed. It was found that feeding a high dose of Lactobacillus yoelii FYL1 decreased abundance of phylum Firmicutes in the E. coli O78 infected group whereas, it was high in animals fed low dose of Lactobacillu yoelii FYL1. Results also revealed that counts of bacteria from the family Oscillospiraceae, genus Synergistes and Megasphaera were higher in control group whereas, order Bifidobacteriales and family Bifidobacteriaceae were higher in infected group. It was observed that bacterial counts for Pseudoruminococcus were significantly (P < 0.05) higher in animals of group that were given high dose of Lactobacillus yoelii FYL1 (HLAB). Compared to infected group multiple beneficial bacterial genera such as Deinococus and Clostridium were found higher in the animals that were given a low dose of Lactobacillus yoelii FYL1 (LLAB). The abundance of pathogenic bacterial genera that included Parascardovia, Bacteroides and Methanobrevibacter was decreased (P < 0.05) in the lower dose treated group. The results of functional analysis revealed that animals of LLAB had a higher metabolism of terpenoids and polyketides compared to animals of infected group. Virus annotation also presented a significant inhibitory effect of LLAB on some viruses (P < 0.05). It was concluded that L. yoelii FYL1 had an improved effect on gut microbiota of young yaks infected with E. coli O78. This experiment contributes to establish the positive effects of LAB supplementation while treating diarrhea.
Collapse
Affiliation(s)
- Jingbo Zhang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Bin Shi
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China; Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, 850009, China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Wang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Xiaoli Ren
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Ruidong Liu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hammad Qamar
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qingxia Wu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
8
|
Gao Y, Mo S, Cao H, Zhi Y, Ma X, Huang Z, Li B, Wu J, Zhang K, Jin L. The efficacy and mechanism of Angelica sinensis (Oliv.) Diels root aqueous extract based on RNA sequencing and 16S rDNA sequencing in alleviating polycystic ovary syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155013. [PMID: 37639812 DOI: 10.1016/j.phymed.2023.155013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) leads to persistent anovulation, hyperandrogenism, insulin resistance, and polycystic ovary, and is mainly characterized by menstrual disorders, and reproductive dysfunction. Angelica sinensis (Oliv.) Diels root has been used in many classical formulas of traditional Chinese medicine, and is commonly used to treat various gynecological diseases. PURPOSE To investigate the protective effect of water extract of A. sinensis root (WEA) on PCOS rats, and the mechanism by RNA sequencing, and 16S rDNA sequencing. METHODS The PCOS rat model was established by letrozole combined with high-fat diet (gavage; 2 months), and treated with WEA (gavage; 2 g/kg, 4 g/kg or 8 g/kg; 1 month). To evaluate the therapeutic effect of WEA on PCOS rats, vaginal smear, hematoxylin-eosin staining, and biochemical indicators detection were performed. The rat ovarian tissue was analyzed by RNA sequencing, and the results were verified by qRT-PCR, and Western blot. 16S rDNA sequencing was used to analyze the gut microbiota of rats. RESULTS The results of the vaginal smear, and hematoxylin-eosin staining showed that WEA improved estrous cycle disorder, and ovarian tissue lesions. WEA (4 g/kg or 8 g/kg; 1 months) alleviated hormone disorders, insulin resistance, and dyslipidemia. RNA sequencing showed that WEA intervention significantly changed the expressions of 2756 genes, which were enriched in phosphatidylinositol3-kinase/phosphorylated protein kinase B (PI3K/AKT), peroxisome proliferator-activated receptor (PPAR), mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK), and insulin signaling pathways. 16S rDNA sequencing found that WEA increased the species diversity of gut microbiota, and regulated the abundance of some microbiota (genus level: Dubosiella, Bifidobacterium, Coriobacteriaceae (UCG-002), and Treponema; species level: Bifidobacterium animalis, Lactobacillus murinus, and Lactobacillus johnsonii). CONCLUSION WEA regulated hormone, and glycolipid metabolism disorders, thereby relieving the PCOS induced by letrozole combined with high-fat diet. The mechanism was related to the regulation of PI3K/AKT, PPAR, MAPK, AMPK, and insulin signaling pathways in ovarian tissues, and the maintenance of gut microbiota homeostasis. Clarifying the efficacy and mechanism of WEA in alleviating PCOS based on RNA sequencing and 16S rDNA sequencing will guide the more reasonable clinical use of WEA.
Collapse
Affiliation(s)
- Ya Gao
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China; Gansu Pharmaceutical Industry Innovation Research Institute, College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China; Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Siyi Mo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Yueping Zhi
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Xiaohui Ma
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China; Gansu Pharmaceutical Industry Innovation Research Institute, College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhipeng Huang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Ling Jin
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China; Gansu Pharmaceutical Industry Innovation Research Institute, College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
9
|
LI C, YANG Y, FENG C, LI H, QU Y, WANG Y, WANG D, WANG Q, GUO J, SHI T, SUN X, WANG X, HOU Y, SUN Z, YANG T. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome. J TRADIT CHIN MED 2023; 43:1176-1189. [PMID: 37946480 PMCID: PMC10623263 DOI: 10.19852/j.cnki.jtcm.20231018.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe the efficacy of moxibustion in the treatment of chronic fatigue syndrome (CFS) and explore the effects on gut microbiota and metabolic profiles. METHODS Forty-eight male Sprague-Dawley rats were randomly assigned to control group (Con), CFS model group (Mod, established by multiple chronic stress for 35 d), MoxA group (CFS model with moxibustion Shenque (CV8) and Guanyuan (CV4), 10 min/d, 28 d) and MoxB group (CFS model with moxibustion Zusanli (ST36), 10 min/d, 28 d). Open-field test (OFT) and Morris-water-maze test (MWMT) were determined for assessment the CFS model and the therapeutic effects of moxibustion.16S rRNA gene sequencing analysis based gut microbiota integrated untargeted liquid chromatograph-mass spectrometer (LC-MS) based fecal metabolomics were executed, as well as Spearman correlation analysis, was utilized to uncover the functional relevance between the potential metabolites and gut microbiota. RESULTS The results of our behavioral tests showed that moxibustion improved the performance of CFS rats in the OFT and the MWMT. Microbiome profiling analysis revealed that the gut microbiomes of CFS rats were less diverse with altered composition, including increases in pro-inflammatory species (such as Proteobacteria) and decreases in anti-inflammatory species (such as Bacteroides, Lactobacillus, Ruminococcus, and Prevotella). Moxibustion partially normalized these changes in the gut microbiota. Furthermore, CFS was associated with metabolic disorders, which were effectively ameliorated by moxibustion. This was demonstrated by the normalization of 33 microbiota-related metabolites, including mannose (P = 0.001), aspartic acid (P = 0.009), alanine (P = 0.007), serine (P = 0.000), threonine (P = 0.027), methionine (P = 0.023), 5-hydroxytryptamine (P = 0.008), alpha-linolenic acid (P = 0.003), eicosapentaenoic acid (P = 0.006), hypoxanthine (P = 0.000), vitamin B6 (P = 0.000), cholic acid (P = 0.013), and taurocholate (P = 0.002). Correlation analysis showed a significant association between the perturbed fecal microbiota and metabolite levels, with a notable negative relationship between LCA and Bacteroides. CONCLUSIONS In this study, we demonstrated that moxibustion has an antifatigue-like effect. The results from the 16S rRNA gene sequencing and metabolomics analysis suggest that the therapeutic effects of moxibustion on CFS are related to the regulation of gut microorganisms and their metabolites. The increase in Bacteroides and decrease in LCA may be key targets for the moxibustion treatment of CFS.
Collapse
Affiliation(s)
- Chaoran LI
- 1 Department of Acupuncture, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Yan YANG
- 2 Department of Chinese Medical Literature, College of Basic Medicine, Heilongjiang University of Chinese medicine, Harbin 150040, China
| | - Chuwen FENG
- 3 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Heng LI
- 7 Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China
| | - Yuanyuan QU
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Yulin WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Delong WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Qingyong WANG
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing GUO
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tianyu SHI
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xiaowei SUN
- 4 Department of Acupuncture, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xue WANG
- 8 Department of Acupuncture, Chongqing Changshou District People's Hospital, Chongqing 401220, China
| | - Yunlong HOU
- 9 College of integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, and National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei 050000, China
| | - Zhongren SUN
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tiansong YANG
- 10 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, and Traditional Chinese Medicine Informatics Key Laboratory of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
10
|
Fei Y, Li S, Wang Z, Ma Y, Fang J, Liu G. IRW (Ile-Arg-Trp) Alleviates DSS-Induced Intestinal Injury by Remodeling Gut Microbiota and Regulating Fecal SCFA Levels. Nutrients 2023; 15:nu15040953. [PMID: 36839309 PMCID: PMC9963393 DOI: 10.3390/nu15040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 02/17/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of unknown etiology with a progressive and destructive course and an increasing incidence worldwide. Dietary peptides have a variety of biological functions and are effective anti-inflammatories and antioxidants, making them a prospective class of material for treating intestinal inflammation. Our study investigated the association between Ile-Arg-Trp (IRW), a dietary oligopeptide, and intestinal microbial changes during the relief of colitis using different concentrations of IRW. We found that IRW can significantly alleviate mouse colonic barrier damage caused by dextran sulphate sodium salt (DSS) and promote intestinal health. The results of microbial community composition showed that the relative abundance of Bacillota and Lactobacillus in the gut microbiota at different concentrations of IRW was significantly increased and that the abundance of Bacteroides was suppressed. Surprisingly, the relative abundance of Odoribacter also received regulation by IRW concentration and had a positive correlation with acetic acid. IRW at 0.02 mg/mL and 0.04 mg/mL significantly altered the abundance of Bacillota, Odoribacter, and Lactobacillus.
Collapse
|
11
|
Wang X, Cao Y, Zhi Y. Throat microbiota alterations in patients with hereditary angioedema. World Allergy Organ J 2022; 15:100694. [PMID: 36254183 PMCID: PMC9526235 DOI: 10.1016/j.waojou.2022.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Xue Wang
- Department of Allergy & Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Immunologic Diseases, Beijing, China
| | - Yang Cao
- Department of Allergy & Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Immunologic Diseases, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuxiang Zhi
- Department of Allergy & Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Immunologic Diseases, Beijing, China
- Corresponding author. Shuaifuyuan, Wangfujing, Beijing 100730, PR China.
| |
Collapse
|
12
|
Phan QT, Solis NV, Lin J, Swidergall M, Singh S, Liu H, Sheppard DC, Ibrahim AS, Mitchell AP, Filler SG. Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathog 2022; 18:e1010681. [PMID: 35797411 PMCID: PMC9295963 DOI: 10.1371/journal.ppat.1010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma V. Solis
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Jianfeng Lin
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc Swidergall
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shakti Singh
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Hong Liu
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ashraf S. Ibrahim
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Scott G. Filler
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Characterization of Microbial Shifts during the Production and Ripening of Raw Ewe Milk-Derived Idiazabal Cheese by High-Throughput Sequencing. BIOLOGY 2022; 11:biology11050769. [PMID: 35625497 PMCID: PMC9138791 DOI: 10.3390/biology11050769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Idiazabal is a traditional cheese produced from raw ewe milk in the Basque Country (Southwestern Europe). The sensory properties of raw milk cheeses have been attributed, among other factors, to microbial shifts that occur during the production and ripening processes. In this study, we used high-throughput sequencing technologies to investigate the microbiota of Latxa ewe raw milk and the dynamics during cheese production and ripening processes. The microbiota of raw milk was composed of lactic acid bacteria (LAB), environmental bacteria and non-desirable bacteria. Throughout the cheese making and ripening processes, the growth of LAB was promoted, whereas that of non-desirable and environmental bacteria was inhibited. Moreover, some genera not reported previously in raw ewe milk were detected and clear differences were observed in the bacterial composition of raw milk and cheese among producers, in relation to LAB and environmental or non-desirable bacteria, some of which could be attributed to the production of flavour related compounds. Abstract In this study, we used high-throughput sequencing technologies (sequencing of V3–V4 hypervariable regions of 16S rRNA gene) to investigate for the first time the microbiota of Latxa ewe raw milk and the bacterial shifts that occur during the production and ripening of Idiazabal cheese. Results revealed several bacterial genera not reported previously in raw ewe milk and cheese, such as Buttiauxella and Obesumbacterium. Both the cheese making and ripening processes had a significant impact on bacterial communities. Overall, the growth of lactic acid bacteria (LAB) (Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus and Carnobacterium) was promoted, whereas that of non-desirable and environmental bacteria was inhibited (such as Pseudomonas and Clostridium). However, considerable differences were observed among producers. It is noteworthy that the starter LAB (Lactococcus) predominated up to 30 or 60 days of ripening and then, the growth of non-starter LAB (Lactobacillus, Leuconostoc, Enterococcus and Streptococcus) was promoted. Moreover, in some cases, bacteria related to the production of volatile compounds (such as Hafnia, Brevibacterium and Psychrobacter) also showed notable abundance during the first few weeks of ripening. Overall, the results of this study enhance our understanding of microbial shifts that occur during the production and ripening of a raw ewe milk-derived cheese (Idiazabal), and could indicate that the practices adopted by producers have a great impact on the microbiota and final quality of this cheese.
Collapse
|
14
|
Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 2021; 14:547-554. [PMID: 33299088 PMCID: PMC7724625 DOI: 10.1038/s41385-020-00365-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Humans share a core intestinal microbiome and yet human microbiome differs by genes, species, enterotypes (ecology), and gene count (microbial diversity). Achievement of microbiota metagenomic analysis has revealed that the microbiome gene count is a key stratifier of health in several immune disorders and clinical conditions. We review here the progress of the metagenomic pipeline analysis, and how this has allowed us to define the host-microbe symbiosis associated with a healthy status. The link between host-microbe symbiosis disruption, the so-called dysbiosis and chronic diseases or iatrogenic conditions is highlighted. Finally, opportunities to use microbiota modulation, with specific nutrients and/or live microbes, as a target for personalized nutrition and therapy for the maintenance, preservation, or restoration of host-microbe symbiosis are discussed.
Collapse
|
15
|
Abstract
The functional diversity of the mammalian intestinal microbiome far exceeds that of the host organism, and microbial genes contribute substantially to the well-being of the host. However, beneficial gut organisms can also be pathogenic when present in the gut or other locations in the body. Among dominant beneficial bacteria are several species of Bacteroides, which metabolize polysaccharides and oligosaccharides, providing nutrition and vitamins to the host and other intestinal microbial residents. These topics and the specific organismal and molecular interactions that are known to be responsible for the beneficial and detrimental effects of Bacteroides species in humans comprise the focus of this review. The complexity of these interactions will be revealed.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara,Okara, PunjabPakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
| |
Collapse
|
16
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Valerio L, Riva N. Head, Neck, and Abdominopelvic Septic Thrombophlebitis: Current Evidence and Challenges in Diagnosis and Treatment. Hamostaseologie 2020; 40:301-310. [PMID: 32726825 DOI: 10.1055/a-1177-5127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Septic thrombophlebitis (STP) is a complex, cross-disciplinary clinical condition that combines a localized infection with a neighboring venous thrombosis. STP can occur at several possible anatomic sites, such as dural sinuses, jugular vein (Lemierre syndrome), portal vein (pylephlebitis), and pelvic veins. Its high mortality in the preantibiotic era improved considerably with the introduction of modern antibiotics. However, little evidence exists to date to guide its clinical management. The incidence of STP or its risk factors may be increasing, and its mortality may still be considerable. These trends would have far-reaching implications, especially in the setting of increasing resistance to antimicrobial agents. No clinical assessment tools exist to support patient screening or guide treatment in STP. Few interventional studies exist on the efficacy and safety of anticoagulation. Recommendations on its indications, duration, and the agents of choice are mostly based on evidence derived from small observational studies. While all forms of STP pose similar challenges, future research may benefit from the distinction between bacteria-associated, virus-associated, and mycosis-associated thrombophlebitis. Addressing these gaps in evidence would enhance our ability to diagnose this condition and treat patients effectively.
Collapse
Affiliation(s)
- Luca Valerio
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Nicoletta Riva
- Department of Pathology and Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
18
|
Murthy HS, Gharaibeh RZ, Al-Mansour Z, Kozlov A, Trikha G, Newsome RC, Gauthier J, Farhadfar N, Wang Y, Kelly DL, Lybarger J, Jobin C, Wang GP, Wingard JR. Baseline Gut Microbiota Composition Is Associated with Major Infections Early after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:2001-2010. [PMID: 32717434 DOI: 10.1016/j.bbmt.2020.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023]
Abstract
Infection is a major cause of morbidity and mortality after hematopoietic cell transplantation (HCT). Gut microbiota (GM) composition and metabolites provide colonization resistance against dominance of potential pathogens, and GM dysbiosis following HCT can be deleterious to immune reconstitution. Little is known about the composition, diversity, and evolution of GM communities in HCT patients and their association with subsequent febrile neutropenia (FN) and infection. Identification of markers before HCT that predict subsequent infection could be useful in developing individualized antimicrobial strategies. Fecal samples were collected prospectively from 33 HCT recipients at serial time points: baseline, post-conditioning regimen, neutropenia onset, FN onset (if present), and hematologic recovery. GM was assessed by 16S rRNA sequencing. FN and major infections (ie, bloodstream infection, typhlitis, invasive fungal infection, pneumonia, and Clostridium difficile enterocolitis) were identified. Significant shifts in GM composition and diversity were observed during HCT, with the largest alterations occurring after initiation of antibiotics. Loss of diversity persisted without a return to baseline at hematologic recovery. GM in patients with FN was enriched in Mogibacterium, Bacteroides fragilis, and Parabacteroides distasonis, whereas increased abundance of Prevotella, Ruminococcus, Dorea, Blautia, and Collinsella was observed in patients without fever. A baseline protective GM profile (BPGMP) was predictive of protection from major infection. The BPGMP was associated with subsequent major infections with 77% accuracy and an area under the curve of 79%, with sensitivity, specificity, and positive and negative predictive values of 0.71, 0.91, 0.77, and 0.87, respectively. Our data show that large shifts in GM composition occur early after HCT, and differences in baseline GM composition are associated with the development of subsequent major infections.
Collapse
Affiliation(s)
- Hemant S Murthy
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Raad Z Gharaibeh
- UF Health Cancer Center, Gainesville, Florida; Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Zeina Al-Mansour
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Andrew Kozlov
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gaurav Trikha
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Rachel C Newsome
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Josee Gauthier
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Nosha Farhadfar
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Yu Wang
- Division of Quantitative Sciences And Biostatistics, University of Florida Health Cancer Center, Gainesville, Florida
| | - Debra Lynch Kelly
- UF Health Cancer Center, Gainesville, Florida; College of Nursing, University of Florida, Gainesville, Florida
| | - John Lybarger
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christian Jobin
- UF Health Cancer Center, Gainesville, Florida; Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gary P Wang
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - John R Wingard
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida.
| |
Collapse
|
19
|
Suárez J, Stencel A. A part‐dependent account of biological individuality: why holobionts are individuals
and
ecosystems simultaneously. Biol Rev Camb Philos Soc 2020; 95:1308-1324. [DOI: 10.1111/brv.12610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javier Suárez
- Department of Philosophy, Logos/BIAP University of Barcelona C/Montalegre 6 Barcelona E‐08001 Spain
- Egenis – The Centre for the Study of Life Sciences University of Exeter St. German's Rd Exeter EX4 4PJ U.K
| | - Adrian Stencel
- Institute of Philosophy Jagiellonian University Kraków 31‐044 Poland
| |
Collapse
|
20
|
Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2019; 432:765-785. [PMID: 31857085 DOI: 10.1016/j.jmb.2019.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The human gut is colonized by hundreds of trillions of microorganisms whose acquisition begins during early infancy. Species from the Bacteroides genus are ubiquitous commensals, comprising about thirty percent of the human gut microbiota. Bacteroides fragilis is one of the least abundant Bacteroides species, yet is the most common anaerobe isolated from extraintestinal infections in humans. A subset of B. fragilis strains carry a genetic element that encodes a metalloprotease enterotoxin named Bacteroides fragilis toxin, or BFT. Toxin-bearing strains, or Enterotoxigenic B. fragilis (ETBF) cause acute and chronic intestinal disease in children and adults. Despite this association with disease, around twenty percent of the human population appear to be asymptomatic carriers of ETBF. BFT damages the colonic epithelial barrier by inducing cleavage of the zonula adherens protein E-cadherin and initiating a cell signaling response characterized by inflammation and c-Myc-dependent pro-oncogenic hyperproliferation. As a consequence, mice harboring genetic mutations that predispose to colonic inflammation or tumor formation are uniquely susceptible to toxin-mediated injury. The recent observation of ETBF-bearing biofilms in colon biopsies from humans with colon cancer susceptibility loci strongly suggests that ETBF is a driver of colorectal cancer. This article will address ETBF biology from a host-pathobiont perspective, including clinical data, analysis of molecular mechanisms of disease, and the complex ecological context of the human gut.
Collapse
Affiliation(s)
- Ezequiel Valguarnera
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110.
| |
Collapse
|
21
|
Šket R, Debevec T, Kublik S, Schloter M, Schoeller A, Murovec B, Vogel Mikuš K, Makuc D, Pečnik K, Plavec J, Mekjavić IB, Eiken O, Prevoršek Z, Stres B. Intestinal Metagenomes and Metabolomes in Healthy Young Males: Inactivity and Hypoxia Generated Negative Physiological Symptoms Precede Microbial Dysbiosis. Front Physiol 2018; 9:198. [PMID: 29593560 PMCID: PMC5859311 DOI: 10.3389/fphys.2018.00198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/23/2018] [Indexed: 12/26/2022] Open
Abstract
We explored the metagenomic, metabolomic and trace metal makeup of intestinal microbiota and environment in healthy male participants during the run-in (5 day) and the following three 21-day interventions: normoxic bedrest (NBR), hypoxic bedrest (HBR) and hypoxic ambulation (HAmb) which were carried out within a controlled laboratory environment (circadian rhythm, fluid and dietary intakes, microbial bioburden, oxygen level, exercise). The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for the NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (~4,000 m simulated altitude) for HBR and HAmb interventions, respectively. Shotgun metagenomes were analyzed at various taxonomic and functional levels, 1H- and 13C -metabolomes were processed using standard quantitative and human expert approaches, whereas metals were assessed using X-ray fluorescence spectrometry. Inactivity and hypoxia resulted in a significant increase in the genus Bacteroides in HBR, in genes coding for proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence, defense and mucin degradation, such as beta-galactosidase (EC3.2.1.23), α-L-fucosidase (EC3.2.1.51), Sialidase (EC3.2.1.18), and α-N-acetylglucosaminidase (EC3.2.1.50). In contrast, the microbial metabolomes, intestinal element and metal profiles, the diversity of bacterial, archaeal and fungal microbial communities were not significantly affected. The observed progressive decrease in defecation frequency and concomitant increase in the electrical conductivity (EC) preceded or took place in absence of significant changes at the taxonomic, functional gene, metabolome and intestinal metal profile levels. The fact that the genus Bacteroides and proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence and mucin degradation were enriched at the end of HBR suggest that both constipation and EC decreased intestinal metal availability leading to modified expression of co-regulated genes in Bacteroides genomes. Bayesian network analysis was used to derive the first hierarchical model of initial inactivity mediated deconditioning steps over time. The PlanHab wash-out period corresponded to a profound life-style change (i.e., reintroduction of exercise) that resulted in stepwise amelioration of the negative physiological symptoms, indicating that exercise apparently prevented the crosstalk between the microbial physiology, mucin degradation and proinflammatory immune activities in the host.
Collapse
Affiliation(s)
- Robert Šket
- Group for Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne Schoeller
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Boštjan Murovec
- Machine Vision Laboratory, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Vogel Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Damjan Makuc
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Klemen Pečnik
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Igor B Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Zala Prevoršek
- Group for Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Group for Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Center for Clinical Neurophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Saliva-Induced Clotting Captures Streptococci: Novel Roles for Coagulation and Fibrinolysis in Host Defense and Immune Evasion. Infect Immun 2016; 84:2813-23. [PMID: 27456827 PMCID: PMC5038080 DOI: 10.1128/iai.00307-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcal pharyngitis is among the most common bacterial infections, but the molecular mechanisms involved remain poorly understood. Here we investigate the interactions among three major players in streptococcal pharyngitis: streptococci, plasma, and saliva. We find that saliva activates the plasma coagulation system through both the extrinsic and the intrinsic pathways, entrapping the bacteria in fibrin clots. The bacteria escape the clots by activating host plasminogen. Our results identify a potential function for the intrinsic pathway of coagulation in host defense and a corresponding role for fibrinolysis in streptococcal immune evasion.
Collapse
|
23
|
Kenne E, Nickel KF, Long AT, Fuchs TA, Stavrou EX, Stahl FR, Renné T. Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med 2015; 278:571-85. [PMID: 26373901 DOI: 10.1111/joim.12430] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasma protein factor XII (FXII) activates the procoagulant and proinflammatory contact system that drives both the kallikrein-kinin system and the intrinsic pathway of coagulation. When zymogen FXII comes into contact with negatively charged surfaces, it auto-activates to the serine proteaseactivated FXII (FXIIa). Recently, various in vivo activators of FXII have been identified including heparin, misfolded protein aggregates, polyphosphate and nucleic acids. Murine models have established a central role of FXII in arterial and venous thrombosis. Despite its central function in thrombosis, deficiency in FXII does not impair haemostasis in animals and humans. In a preclinical cardiopulmonary bypass system in large animals, the FXIIa-blocking antibody 3F7 prevented thrombosis; however, in contrast to traditional anticoagulants, bleeding was not increased. In addition to its function in thrombosis, FXIIa initiates formation of the inflammatory mediator bradykinin. This mediator increases vascular leak, causes vasodilation, and induces chemotaxis with implications for septic, anaphylactic and allergic disease states. Therefore, targeting FXIIa appears to be a promising strategy for thromboprotection without associated bleeding risks but with anti-inflammatory properties.
Collapse
Affiliation(s)
- E Kenne
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - K F Nickel
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A T Long
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - T A Fuchs
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E X Stavrou
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - F R Stahl
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Renné
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Loof TG, Deicke C, Medina E. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Front Cell Infect Microbiol 2014; 4:128. [PMID: 25309880 PMCID: PMC4161043 DOI: 10.3389/fcimb.2014.00128] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/27/2014] [Indexed: 02/02/2023] Open
Abstract
The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.
Collapse
Affiliation(s)
- Torsten G Loof
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Christin Deicke
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
25
|
Tamayo D, Hernández O, Muñoz-Cadavid C, Cano LE, González A. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen. Mem Inst Oswaldo Cruz 2014; 108:488-93. [PMID: 23827999 DOI: 10.1590/s0074-0276108042013015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination.
Collapse
Affiliation(s)
- Diana Tamayo
- Molecular and Cell Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | | | | | | | | |
Collapse
|
26
|
Nishimura M, Ohkawara T, Kagami-Katsuyama H, Sekiguchi S, Taira T, Tsukada M, Shibata H, Nishihira J. Alteration of intestinal flora by the intake of enzymatic degradation products of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with improvement of skin condition. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol 2013; 80:730-40. [PMID: 24242237 DOI: 10.1128/aem.03313-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host.
Collapse
|
28
|
Tamayo D, Hernández O, Muñoz-Cadavid C, Cano LE, González A. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen. Mem Inst Oswaldo Cruz 2013; 108. [PMID: 23827999 PMCID: PMC3970625 DOI: 10.1590/0074-0276108042013015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination.
Collapse
Affiliation(s)
| | - Orville Hernández
- Molecular and Cell Biology Unit,Facultad de Ciencias de la Salud, Institución Universitaria Colegio
Mayor de Antioquia, Medellín, Colombia
| | - Cesar Muñoz-Cadavid
- Medical and Experimental Mycology Unit, Corporación para
Investigaciones Biológicas, Medellín, Colombia
| | - Luz Elena Cano
- Medical and Experimental Mycology Unit, Corporación para
Investigaciones Biológicas, Medellín, Colombia,Escuela de Microbiología
| | - Angel González
- Escuela de Microbiología,Basic and Applied Microbiology Research Group, Universidad de
Antioquia, Medellín, Colombia,Corresponding author:
| |
Collapse
|
29
|
Abstract
Activation of the plasma contact system triggers several cascade systems such as the kallikrein-kinin system, the intrinsic pathway of coagulation, the classical complement cascade and the fibrinolytic system. Recent studies have shown a critical role of the contact system for arterial and venous thrombus formation and thromboembolic disease. In contrast, the function of the contact system for host-defense reactions and its physiological functions have remained enigmatic. Experimental animal studies and clinical data have linked the contact system to bacterial infections with implications for sepsis disease. The present review summarizes the role of the contact system and its activation for bacterial infections.
Collapse
Affiliation(s)
- Katrin Faye Nickel
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | |
Collapse
|
30
|
Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J Virol 2012; 86:11333-44. [PMID: 22896612 DOI: 10.1128/jvi.01549-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.
Collapse
|
31
|
Wollein Waldetoft K, Svensson L, Mörgelin M, Olin AI, Nitsche-Schmitz DP, Björck L, Frick IM. Streptococcal surface proteins activate the contact system and control its antibacterial activity. J Biol Chem 2012; 287:25010-8. [PMID: 22648411 PMCID: PMC3408149 DOI: 10.1074/jbc.m112.373217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Group G streptococci (GGS) are important bacterial pathogens in humans. Here, we investigated the interactions between GGS and the contact system, a procoagulant and proinflammatory proteolytic cascade that, upon activation, also generates antibacterial peptides. Two surface proteins of GGS, protein FOG and protein G (PG), were found to bind contact system proteins. Experiments utilizing contact protein-deficient human plasma and isogenic GGS mutant strains lacking FOG or PG showed that FOG and PG both activate the procoagulant branch of the contact system. In contrast, only FOG induced cleavage of high molecular weight kininogen, generating the proinflammatory bradykinin peptide and additional high molecular weight kininogen fragments containing the antimicrobial peptide NAT-26. On the other hand, PG protected the bacteria against the antibacterial effect of NAT-26. These findings underline the significance of the contact system in innate immunity and demonstrate that GGS have evolved surface proteins to exploit and modulate its effects.
Collapse
|