1
|
Ahmad S, Mohammed M, Mekala LP, Chintalapati S, Chintalapati R. Proteomic and metabolic profiling reveals molecular phenotype associated with chemotrophic growth of Rubrivivax benzoatilyticus JA2 on L-tryptophan. Mol Omics 2025; 21:51-68. [PMID: 39607403 DOI: 10.1039/d4mo00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rubrivivax benzoatilyticus strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sasikala Chintalapati
- Smart Microbiological Services (SMS), Rashtrapathi Road, Secunderabad 500 003, India
| | - Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
3
|
Ramesh R, Sathiyamurthy K, Meganathan V, Athmanathan B. Induction and comparative resuscitation of viable but nonculturable state on Vibrio parahaemolyticus serotypes O3:K6 and O1:K25. Arch Microbiol 2024; 206:376. [PMID: 39141167 DOI: 10.1007/s00203-024-04102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.
Collapse
Affiliation(s)
- Rohini Ramesh
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Baskaran Athmanathan
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
4
|
Cantlay S, Garrison NL, Patterson R, Wagner K, Kirk Z, Fan J, Primerano DA, Sullivan MLG, Franks JM, Stolz DB, Horzempa J. Phenotypic and transcriptional characterization of F. tularensis LVS during transition into a viable but non-culturable state. Front Microbiol 2024; 15:1347488. [PMID: 38380104 PMCID: PMC10877056 DOI: 10.3389/fmicb.2024.1347488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.
Collapse
Affiliation(s)
- Stuart Cantlay
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Nicole L. Garrison
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Rachelle Patterson
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Kassey Wagner
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Zoei Kirk
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Donald A. Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Horzempa
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| |
Collapse
|
5
|
Hastings CJ, Keledjian MV, Musselman LP, Marques CNH. Delayed host mortality and immune response upon infection with P. aeruginosa persister cells. Infect Immun 2023; 91:e0024623. [PMID: 37732789 PMCID: PMC10580972 DOI: 10.1128/iai.00246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Chronic infections are a heavy burden on healthcare systems worldwide. Persister cells are thought to be largely responsible for chronic infection due to their tolerance to antimicrobials and recalcitrance to innate immunity factors. Pseudomonas aeruginosa is a common and clinically relevant pathogen that contains stereotypical persister cells. Despite their importance in chronic infection, there have been limited efforts to study persister cell infections in vivo. Drosophila melanogaster has a well-described innate immune response similar to that of vertebrates and is a good candidate for the development of an in vivo model of infection for persister cells. Similar to what is observed in other bacterial strains, in this work we found that infection with P. aeruginosa persister cells resulted in a delayed mortality phenotype in Caenorhabditis elegans, Arabidopsis thaliana, and D. melanogaster compared to infection with regular cells. An in-depth characterization of infected D. melanogaster found that bacterial loads differed between persister and regular cells' infections during the early stages. Furthermore, hemocyte activation and antimicrobial peptide expression were delayed/reduced in persister infections over the same time course, indicating an initial suppression of, or inability to elicit, the fly immune response. Overall, our findings support the use of D. melanogaster as a model in which to study persister cells in vivo, where this bacterial subpopulation exhibits delayed virulence and an attenuated immune response.
Collapse
Affiliation(s)
- Cody J. Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Maya V. Keledjian
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | | | - Cláudia N. H. Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
6
|
Bai K, Xu X, Wang X, Li Y, Yu C, Jiang N, Li J, Luo L. Transcriptional profiling of Xanthomonas campestris pv. campestris in viable but nonculturable state. BMC Genomics 2023; 24:105. [PMID: 36894875 PMCID: PMC9999588 DOI: 10.1186/s12864-023-09200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Xanthomonas campestris pv. campestris (Xcc) is an important seed-borne plant pathogenic bacteria that can cause a serious threat to cruciferous crops. Bacteria can enter into the viable but non-culturable (VBNC) state under stress conditions, and cause potential risks to agricultural production because the VBNC bacterial cells will evade culture-based detection. However, little is known about the mechanism of VBNC. Our previous study showed that Xcc could be induced into VBNC state by copper ion (Cu2+). RESULTS Here, RNA-seq was performed to explore the mechanism of VBNC state. The results indicated that expression profiling was changed dramatically in the different VBNC stages (0 d, 1 d, 2 d and 10 d). Moreover, metabolism related pathways were enriched according to COG, GO and KEGG analysis of differentially expressed genes (DEGs). The DEGs associated with cell motility were down-regulated, whereas pathogenicity related genes were up-regulated. This study revealed that the high expression of genes related to stress response could trigger the active cells to VBNC state, while the genes involved in transcription and translation category, as well as transport and metabolism category, were ascribed to maintaining the VBNC state. CONCLUSION This study summarized not only the related pathways that might trigger and maintain VBNC state, but also the expression profiling of genes in different survival state of bacteria under stress. It provided a new kind of gene expression profile and new ideas for studying VBNC state mechanism in X. campestris pv. campestris.
Collapse
Affiliation(s)
- Kaihong Bai
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiaoli Xu
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xudong Wang
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yao Li
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chengxuan Yu
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Na Jiang
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jianqiang Li
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Laixin Luo
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Wagley S. The Viable but Non-Culturable (VBNC) State in Vibrio Species: Why Studying the VBNC State Now Is More Exciting than Ever. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:253-268. [PMID: 36792880 DOI: 10.1007/978-3-031-22997-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
During periods that are not conducive for growth or when facing stressful conditions, Vibrios enter a dormant state called the Viable But Non-Culturable (VBNC) state. In this chapter, I will analyse the role of the VBNC state in Vibrio species survival and pathogenesis and the molecular mechanisms regulating this complex phenomenon. I will emphasise some of the novel findings that make studying the VBNC state now more exciting than ever and its significance in the epidemiology of these pathogens and critical role in food safety.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, UK.
| |
Collapse
|
8
|
Bai K, Jiang N, Chen X, Xu X, Li J, Luo L. RNA-Seq Analysis Discovers the Critical Role of Rel in ppGpp Synthesis, Pathogenicity, and the VBNC State of Clavibacter michiganensis. PHYTOPATHOLOGY 2022; 112:1844-1858. [PMID: 35341314 DOI: 10.1094/phyto-01-22-0023-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO4 in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO4 induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO4. These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Na Jiang
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xing Chen
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xiaoli Xu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| |
Collapse
|
9
|
Kim SB, Lyou ES, Kim MS, Lee TK. Bacterial Resuscitation from Starvation-Induced Dormancy Results in Phenotypic Diversity Coupled with Translational Activity Depending on Carbon Substrate Availability. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02068-8. [PMID: 35788867 DOI: 10.1007/s00248-022-02068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Dormancy is a survival strategy of stressed bacteria inhabiting a various environment. Frequent dormant-active transitions owing to environmental changes play an important role in functional redundancy. However, a proper understanding of the phenotypic changes in bacteria during these transitions remains to be clarified. In this study, orthogonal approaches, such as electron microscopy, flow cytometry, and Raman spectroscopy, which can evaluate phenotypic heterogeneity at the single-cell level, were used to observe morphological and molecular phenotypic changes in resuscitated cells, and RNA sequencing (RNASeq) was used to determine the genetic characteristics associated with phenotypes. Within 12 h of the resuscitation process, morphological (cell size and shape) and physiological (growth and viability) characteristics as well as molecular phenotypes (cellular components) were found to be recovered to the extent that they were similar to those in active cells. The recovery rate and detailed phenotypic properties of the resuscitated cells differed significantly depending on the type or concentration of carbon sources. RNASeq analysis revealed that genes related to translation were significantly upregulated under all resuscitation conditions. The simpler the carbon source (e.g., glucose), the higher the expression of genes involved in cellular repair, and the more complex the carbon source (e.g., beef extract), the higher the expression of genes associated with increased energy production associated with cellular aerobic respiration. This study of phenotypic plasticity of resuscitated cells provides fundamental insight into understanding the adaptive fine-tuning of the microbiome in response to environmental changes and the functional redundancy resulting from phenotype heterogeneity.
Collapse
Affiliation(s)
- Soo Bin Kim
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea
| | - Min Sung Kim
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea
- BioChemical Analysis Group, Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea.
| |
Collapse
|
10
|
Dynamics of proteo-metabolome from Rubrivivax benzoatilyticus JA2 reveals a programed switch-off of phototrophic growth, leading to a non-cultivable state as a hyperglycemic effect. J Proteomics 2022; 260:104569. [DOI: 10.1016/j.jprot.2022.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
|
11
|
Abstract
Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Sara B Hernandez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| |
Collapse
|
12
|
Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog 2021; 17:e1009194. [PMID: 33439894 PMCID: PMC7837498 DOI: 10.1371/journal.ppat.1009194] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. We investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently become resuscitated. The ability to control VBNC cell formation in the laboratory allowed us to selectively isolate VBNC cells using fluorescence activated cell sorting, and to differentiate subpopulations based on their metabolic activity, cell shape and the ability to cause disease in Galleria mellonella. Our results showed that two subpopulations (P1 and P2) of V. parahaemolyticus VBNC cells exist and can remain dormant in the VBNC state for long periods. VBNC subpopulation P2, had a better fitness for survival under stressful conditions and showed 100% revival under favourable conditions. Proteomic analysis of these subpopulations (at two different time points: 12 days (T12) and 50 days (T50) post VBNC) revealed that the proteome of P2 was more similar to that of the starting microcosm culture (T0) than the proteome of P1. Proteins that were significantly up or down-regulated between the different VBNC populations were identified and differentially regulated proteins were assigned into 23 functional groups, the majority being assigned to metabolism functional categories. A lactate dehydrogenase (lldD) protein, responsible for converting lactate to pyruvate, was significantly upregulated in all subpopulations of VBNC cells. Deletion of the lactate dehydrogenase (RIMD2210633:ΔlldD) gene caused cells to enter the VBNC state significantly more quickly compared to the wild-type, and adding lactate to VBNC cells aided their resuscitation and extended the resuscitation window. Addition of pyruvate to the RIMD2210633:ΔlldD strain restored the wild-type VBNC formation profile. This study suggests that lactate dehydrogenase may play a role in regulating the VBNC state.
Collapse
|
13
|
Niedźwiedź I, Juzwa W, Skrzypiec K, Skrzypek T, Waśko A, Kwiatkowski M, Pawłat J, Polak-Berecka M. Morphological and physiological changes in Lentilactobacillus hilgardii cells after cold plasma treatment. Sci Rep 2020; 10:18882. [PMID: 33144617 PMCID: PMC7609761 DOI: 10.1038/s41598-020-76053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
Atmospheric cold plasma (ACP) inactivation of Lentilactobacillus hilgardii was investigated. Bacteria were exposed to ACP dielectric barrier discharge with helium and oxygen as working gases for 5, 10, and 15 min. The innovative approach in our work for evaluation of bacterial survival was the use in addition to the classical plate culture method also flow cytometry which allowed the cells to be sorted and revealed different physiological states after the plasma treatment. Results showed total inhibition of bacterial growth after 10-min of ACP exposure. However, the analysis of flow cytometry demonstrated the presence of 14.4% of active cells 77.5% of cells in the mid-active state and 8.1% of dead cells after 10 min. In addition, some of the cells in the mid-active state showed the ability to grow again on culture medium, thus confirming the hypothesis of induction of VBNC state in L .hilgardii cells by cold plasma. In turn, atomic force microscopy (AFM) which was used to study morphological changes in L. hilgardii after plasma treatment at particular physiological states (active, mid-active, dead), showed that the surface roughness of the mid-active cell (2.70 ± 0.75 nm) was similar to that of the control sample (2.04 ± 0.55 nm). The lack of considerable changes on the cell surface additionally explains the effective cell resuscitation. To the best of our knowledge, AFM was used for the first time in this work to analyze cells which have been sorted into subpopulations after cold plasma treatment and this is the first work indicating the induction of VBNC state in L. hilgardii cells after exposure to cold plasma.
Collapse
Affiliation(s)
- Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Maria Curie-Skłodowska University, M. Curie-Skłodowska Square 3/22, 20-031, Lublin, Poland
| | - Tomasz Skrzypek
- Laboratory of Confocal and Electron Microscopy, Interdisciplinary Research Center, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Michał Kwiatkowski
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Joanna Pawłat
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| |
Collapse
|
14
|
M Jayakumar J, Balasubramanian D, Reddi G, Almagro-Moreno S. Synergistic role of abiotic factors driving viable but non-culturable Vibrio cholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:454-465. [PMID: 32542975 DOI: 10.1111/1758-2229.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Vibrio cholerae O1, a natural inhabitant of estuarine environments, is found in a dormant, viable but non-culturable (VBNC) state during interepidemic periods. Although the individual roles of abiotic factors affecting VBNC formation have been extensively studied, their interplay in driving this phenomenon remains largely unaddressed. Here, we identified that major abiotic factors synergize with low nutrient conditions governing entry of cells into the VBNC state. Specifically, V. cholerae cells exposed to a combination of alkaline pH and high salinity under aeration at low temperatures (VBNC-inducing conditions) synergize to facilitate rapid entry into VBNC, whereas the opposite conditions prevented entry into the state. The major virulence regulator ToxR, and the stringent response protein RelA played opposing roles, repressing and facilitating VBNC entry respectively. Further, VBNC-inducing conditions negated the effects of ToxR and RelA, facilitating rapid formation of VBNC cells. In summary, this study highlights the synergy between critical abiotic factors and identified ToxR and RelA as two associated regulators, allowing for the persistence of V. cholerae in aquatic environments. Insights obtained in this study will help better understand environmental survival non-sporulating bacteria and transmission of facultative bacterial pathogens.
Collapse
Affiliation(s)
- Jane M Jayakumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| |
Collapse
|
15
|
Paul SS, Takahashi E, Chowdhury G, Miyoshi SI, Mizuno T, Mukhopadhyay AK, Dutta S, Okamoto K. Low Viability of Cholera Toxin-Producing Vibrio cholerae O1 in the Artificial Low Ionic Strength Aquatic Solution. Biol Pharm Bull 2020; 43:1288-1291. [PMID: 32522950 DOI: 10.1248/bpb.b20-00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been well known that Vibrio cholerae inhabit in environmental water. As many patients infected with cholera toxin-producing V. cholerae O1 (toxigenic V. cholerae O1) emerge in Kolkata, India, it has been thought that toxigenic V. cholerae O1 is easily detected in environmental water in Kolkata. However, we could not isolate toxigenic V. cholerae O1 from environmental water in Kolkata, though NAG Vibrio (generic name of V. cholerae non-O1/non-O139) is constantly detected. To clear the reason for the non-isolation of toxigenic V. cholerae O1, we examined the viability of V. cholera O1 and NAG Vibrios in the artificial low ionic strength aquatic solution. We found that the viability of toxigenic V. cholerae O1 in the solution is low, but that of NAG Vibrios is high. Subsequently, we examined the viability of NAG Vibrios possessing cholera toxin gene (ctx) in the same condition and found that the viability of these NAG Vibrios is low. These results indicate that the existence of ctx in V. cholerae affects the viability of V. cholerae in the aquatic solution used in this experiment. We thought that there was closely relation between the low viability of toxigenic V. cholerae O1 in the artificial low ionic strength aquatic solution and the low frequency of isolation of the strain from environmental water.
Collapse
Affiliation(s)
- Subha Sankar Paul
- Collaborative Research Center of Okayama University for Infectious Diseases in India
| | - Eizo Takahashi
- Department of Health Pharmacy, Yokohama University of Pharmacy
| | | | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University
| | | | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India
| |
Collapse
|
16
|
Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Front Microbiol 2019; 10:793. [PMID: 31057510 PMCID: PMC6479200 DOI: 10.3389/fmicb.2019.00793] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this state are an altered morphology, low metabolic activity, and lack of growth under standard laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae VBNC cells raised in natural waters was investigated using electron cryo-tomography. This was complemented by a comparison of the proteomes and the peptidoglycan composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell envelope, resulting in improper embedment of flagella and pili. Only minor changes of the peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes in VBNC cells included the production of cluster I chemosensory arrays and change of abundance of cluster II array proteins. Components involved in iron acquisition and storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells, while enzymes of the central carbon metabolism were found at lower levels. Finally, several pathogenicity factors of V. cholerae were less abundant in the VBNC state, potentially limiting their infectious potential. This study gives unprecedented insight into the physiology of VBNC cells and the drastically altered presence of their metabolic and structural proteins.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Lizah T. van der Aart
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gilles P. van Wezel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille Sciences et Technologies, Villeneuve d'Ascq, France
| | - Timo Glatter
- Facility for Bacterial Proteomics and Mass Spectrometry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
17
|
Dey R, Rieger AM, Stephens C, Ashbolt NJ. Interactions of Pseudomonas aeruginosa with Acanthamoeba polyphaga Observed by Imaging Flow Cytometry. Cytometry A 2019; 95:555-564. [PMID: 30985067 DOI: 10.1002/cyto.a.23768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/05/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is abundant in the environment and water systems, with strains that cause serious infections, especially in patients with compromised immune systems. In times of stress or as part of its natural life cycle, P. aeruginosa can adopt a viable but not culturable (VBNC) state, which renders it undetectable by current conventional food and water testing methods and makes it highly resistant to antibiotic treatment. Specific conditions can resuscitate these coccoid VBNC P. aeruginosa cells, which returns them to their active, virulent rod-shaped form. Underreporting the VBNC cells of P. aeruginosa by standard culture-based methods in water distribution systems may therefore pose serious risks to public health. As such, being able to accurately detect and quantify the presence of VBNC P. aeruginosa, especially in a hospital setting, is of critical importance. Herein, we describe a method to analyze VBNC P. aeruginosa using imaging flow cytometry. With this technique, we can accurately distinguish between active and VBNC forms. We also show here that association of VBNC P. aeruginosa with Acanthamoeba polyphaga results in resuscitation of P. aeruginosa to an active form within 2 h. Our approach could provide an alternative, reliable detection method of VBNC P. aeruginosa when coupled with species-specific staining. Most importantly, our experiments demonstrate that the coculture with amoebae can lead to a resuscitation of P. aeruginosa of culturable morphology after only 2 h, indicating that VBNC P. aeruginosa could potentially resuscitate in piped water (healthcare) environments colonized with amoebae. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Stephens
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health (ProvLab), Alberta Health Services, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
19
|
Gupta D, Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR. iTRAQ-based quantitative proteomics reveals insights into metabolic and molecular responses of glucose-grown cells of Rubrivivax benzoatilyticus JA2. J Proteomics 2018; 194:49-59. [PMID: 30597313 DOI: 10.1016/j.jprot.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/28/2023]
Abstract
Anoxygenic photosynthetic bacteria thrive under diverse habitats utilising an extended range of inorganic/organic compounds under different growth modes. Although they display incredible metabolic flexibility, their responses and adaptations to changing carbon regimes is largely unexplored. In the present study, we employed iTRAQ-based global proteomic profiling and physiological studies to uncover the adaptive strategies of a phototrophic bacterium, Rubrivivax benzoatilyticus JA2 to glucose. Strain JA2 displayed altered growth rates, reduced cell size and progressive loss of pigmentation when grown on glucose compared to malate under photoheterotrophic condition. A ten-fold increase in the saturated to unsaturated fatty acid ratio of glucose-grown cells indicates a possible membrane adaptation. Proteomic profiling revealed extensive metabolic remodelling in the glucose-grown cells wherein signal-transduction, selective-transcription, DNA-repair, transport and protein quality control processes were up-regulated to cope with the changing milieu. Proteins involved in DNA replication, translation, electron-transport, photosynthetic machinery were down-regulated possibly to conserve the energy. Glycolysis/gluconeogenesis, TCA cycle and pigment biosynthesis were also down-regulated. The cell has activated alternative energy metabolic pathways viz., fatty acid β-oxidation, glyoxylate, acetate-switch and Entner-Doudoroff pathways. Overall, the present study deciphered the molecular/metabolic events associated with glucose-grown cells of strain JA2 and also unraveled how a carbon source modulates the metabolic phenotypes. SIGNIFICANCE: Anoxygenic photosynthetic bacteria (APB) exhibit incredible metabolic flexibility leading to diverse phenotypes. They thrive under diverse habitat using an array of inorganic/organic compounds as carbon sources, yet their metabolic adaptation to varying carbon regime is mostly unexplored. Present study uncovered the proteomic insights of the cellular responses of strain JA2 to changing carbon sources viz. malate and glucose under photoheterotrophic conditions. Our study suggests that carbon source can also determine the metabolic fate of the cells and reshape the energy dynamics of APB. Here, for the first time study highlighted the plausible carbon source (glucose) mediated regulation of photosynthesis in APB. The study sheds light on the plausible cellular events and adaptive metabolic strategies employed by strain JA2 in presence of non-preferred carbon source. It also revealed new insights into the metabolic plasticity of APB to the changing milieu.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Mujahid Mohammed
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | | |
Collapse
|
20
|
Krzyżek P, Biernat MM, Gościniak G. Intensive formation of coccoid forms as a feature strongly associated with highly pathogenic Helicobacter pylori strains. Folia Microbiol (Praha) 2018; 64:273-281. [PMID: 30449016 PMCID: PMC6529389 DOI: 10.1007/s12223-018-0665-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
The variability of Helicobacter pylori morphology and the heterogeneity of virulence factors expressed by these bacteria play a key role as a driving force for adaptation to the hostile stomach environment. The aim of the study was to determine the relationship between the presence of certain genes encoding virulence factors and H. pylori morphology. One reference and 13 clinical H. pylori strains with a known virulence profile (vacA, cagA, babA2, dupA, and iceA) were used in this study. Bacteria were cultured for 1 h and 24 h in stressogenic culture conditions, i.e., serum-free BHI broths at suboptimal conditions (room temperature and atmosphere, without shaking). H. pylori cell morphology was observed by light and scanning electron microscopy. The vacA polymorphism and the cagA and babA2 presence were positively correlated with the reduction in cell size. Exposure to short-time stressogenic conditions caused more intense transformation to coccoid forms in highly pathogenic H. pylori type I strains (35.83% and 47.5% for type I s1m2 and I s1m1, respectively) than in intermediate-pathogenic type III (8.17%) and low pathogenic type II (9.92%) strains. The inverse relationship was observed for the number of rods, which were more common in type III (46.83%) and II (48.42%) strains than in type I s1m2 (19.25%) or I s1m1 (6.58%) strains. Our results suggest that there is a close relationship between the presence of virulence genes of H. pylori strains and their adaptive morphological features.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Monika M Biernat
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Wroclaw, Poland
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
21
|
Xu T, Cao H, Zhu W, Wang M, Du Y, Yin Z, Chen M, Liu Y, Yang B, Liu B. RNA-seq-based monitoring of gene expression changes of viable but non-culturable state of Vibrio cholerae induced by cold seawater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:594-604. [PMID: 30058121 DOI: 10.1111/1758-2229.12685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the acute diarrheal disease cholera. Entry into a viable but non-culturable (VBNC) state is a survival strategy by which V. cholerae withstands natural stresses and is important for the transition between the aquatic and host environments during the V. cholerae life cycle. In this study, the formation of VBNC V. cholerae induced by cold seawater exposure was investigated using RNA sequencing (RNA-seq). The analysis revealed that the expression of 1420 genes was changed on VBNC state formation. In the VBNC cells, genes related to biofilm formation, chitin utilization and stress responses were upregulated, whereas those related to cell division, morphology and ribosomal activity were mainly downregulated. The concurrent acquisition of a carbon source and the arrest of cell division in cells with low metabolic activity help bacteria increase their resistance to unfavourable environments. Moreover, two transcriptional regulators, SlmA and MetJ, were found to play roles in both VBNC formation and intestinal colonization, suggesting that some genes may function in both processes. This acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance and may help control future cholera infections and outbreaks.
Collapse
Affiliation(s)
- Tingting Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Wei Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Yuhui Du
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Zhiqiu Yin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Chen
- Lab of Microbiology, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, People's Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Parlindungan E, Dekiwadia C, Tran KT, Jones OA, May BK. Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Ferdous J, Sultana R, Rashid RB, Tasnimuzzaman M, Nordland A, Begum A, Jensen PKM. A Comparative Analysis of Vibrio cholerae Contamination in Point-of-Drinking and Source Water in a Low-Income Urban Community, Bangladesh. Front Microbiol 2018; 9:489. [PMID: 29616005 PMCID: PMC5867346 DOI: 10.3389/fmicb.2018.00489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae (V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from "point-of-drinking" and "source" in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds (P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14-42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds (p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85-29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19-18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Rebeca Sultana
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark.,International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.,Institute of Health Economics, University of Dhaka, Dhaka, Bangladesh
| | - Ridwan B Rashid
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Tasnimuzzaman
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Andreas Nordland
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Orruño M, Kaberdin VR, Arana I. Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments. World J Microbiol Biotechnol 2017; 33:45. [PMID: 28161849 DOI: 10.1007/s11274-017-2218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
In their natural ecosystems, bacteria are continuously exposed to changing environmental factors including physicochemical parameters (e.g. temperature, pH, etc.), availability of nutrients as well as interaction(s) with other organisms. To increase their tolerance and survival under adverse conditions, bacteria trigger a number of adaptation mechanisms. One of the well-known adaptation responses of the non-spore-forming bacteria is the acquisition of the viable but non-culturable (VBNC) state. This phenotype is induced by different stress factors (e.g. low temperature) and is characterized by the temporal loss of culturability, which can potentially be restored. Moreover, this response can be combined with the bust and boom strategy, which implies the death of the main population of the stressed cells (or their entry into the VBNC state) upon stress, thus enabling the remaining cells (i.e. residual culturable population) to subsist at the expense of the dead or/and VBNC cells. In this review, we discuss the characteristics of the VBNC state, its biological significance and contribution to bacterial survival.
Collapse
Affiliation(s)
- M Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain
| | - V R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - I Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain.
| |
Collapse
|
25
|
Kopprio GA, Streitenberger ME, Okuno K, Baldini M, Biancalana F, Fricke A, Martínez A, Neogi SB, Koch BP, Yamasaki S, Lara RJ. Biogeochemical and hydrological drivers of the dynamics of Vibrio species in two Patagonian estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:646-656. [PMID: 27871750 DOI: 10.1016/j.scitotenv.2016.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The ecology of the most relevant Vibrio species for human health and their relation to water quality and biogeochemistry were studied in two estuaries in Argentinian Patagonia. Vibrio cholerae and Vibrio parahaemolyticus were reported in >29% of cases at the Río Colorado and Río Negro estuaries. Neither the pandemic serogroups of Vibrio cholerae O1, Vibrio cholerae O139 nor the cholera toxin gene were detected in this study. However, several strains of V. cholerae (not O1 or O139) are able to cause human disease or acquire pathogenic genes by horizontal transfer. Vibrio vulnificus was detected only in three instances in the microplankton fraction of the Río Negro estuary. The higher salinity in the Río Colorado estuary and in marine stations at both estuaries favours an abundance of culturable Vibrio. The extreme peaks for ammonium, heterotrophic bacteria and faecal coliforms in the Río Negro estuary supported a marked impact on sewage discharge. Generally, the more pathogenic strains of Vibrio have a faecal origin. Salinity, pH, ammonium, chlorophyll a, silicate and carbon/nitrogen ratio of suspended organic particulates were the primary factors explaining the distribution of culturable bacteria after distance-based linear models. Several effects of dissolved organic carbon on bacterial distribution are inferred. Global change is expected to increase the trophic state and the salinisation of Patagonian estuaries. Consequently, the distribution and abundance of Vibrio species is projected to increase under future changing baselines. Adaptation strategies should contribute to sustaining good water quality to buffer climate- and anthropogenic- driven impacts.
Collapse
Affiliation(s)
- Germán A Kopprio
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany.
| | - M Eugenia Streitenberger
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Kentaro Okuno
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mónica Baldini
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Florencia Biancalana
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| | - Anna Fricke
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Ana Martínez
- Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Sucharit B Neogi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Boris P Koch
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Marine Chemistry, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Rubén J Lara
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| |
Collapse
|
26
|
Fernández-Delgado M, García-Amado MA, Contreras M, Incani RN, Chirinos H, Rojas H, Suárez P. Survival, induction and resuscitation of Vibrio cholerae from the viable but non-culturable state in the Southern Caribbean Sea. Rev Inst Med Trop Sao Paulo 2015; 57:21-6. [PMID: 25651322 PMCID: PMC4325519 DOI: 10.1590/s0036-46652015000100003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2014] [Indexed: 12/21/2022] Open
Abstract
The causative agent of cholera, Vibrio cholerae, can enter into a viable but non-culturable (VBNC) state in response to unfavorable conditions. The aim of this study was to evaluate the in situ survival of V. cholerae in an aquatic environment of the Southern Caribbean Sea, and its induction and resuscitation from the VBNC state. V. cholerae non-O1, non-O139 was inoculated into diffusion chambers placed at the Cuare Wildlife Refuge, Venezuela, and monitored for plate, total and viable cells counts. At 119 days of exposure to the environment, the colony count was < 10 CFU/mL and a portion of the bacterial population entered the VBNC state. Additionally, the viability decreased two orders of magnitude and morphological changes occurred from rod to coccoid cells. Among the aquatic environmental variables, the salinity had negative correlation with the colony counts in the dry season. Resuscitation studies showed significant recovery of cell cultivability with spent media addition (p < 0.05). These results suggest that V. cholerae can persist in the VBNC state in this Caribbean environment and revert to a cultivable form under favorable conditions. The VBNC state might represent a critical step in cholera transmission in susceptible areas.
Collapse
Affiliation(s)
| | - María Alexandra García-Amado
- Centro de Biofísica y Bioquímica, Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, Edo. Miranda, Venezuela
| | - Monica Contreras
- Centro de Biofísica y Bioquímica, Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, Edo. Miranda, Venezuela
| | - Renzo Nino Incani
- Departamento de Parasitología, Universidad de Carabobo, Valencia, Edo. Carabobo, Venezuela
| | | | - Héctor Rojas
- Instituto de Inmunología, Universidad Central de Venezuela, Caracas, Venezuela
| | - Paula Suárez
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Caracas, Venezuela
| |
Collapse
|
27
|
Shibata Y, Nomoto R, Osawa R. Enhanced Resistance to Several Abiotic Stresses in Vibrio cholerae during Starvation. Jpn J Infect Dis 2015; 68:415-9. [PMID: 25866118 DOI: 10.7883/yoken.jjid.2014.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we investigated whether Vibrio cholerae cells exposed to nutrient-limited conditions developed resistance to abiotic stresses because of which most, if not all, starved cells turn coccoid in shape and exhibited marked resistance to freezing, low pH, and chlorine, but not against bile.
Collapse
Affiliation(s)
- Yusuke Shibata
- Department of Bioresource Science, Graduate School Agricultural Science, Kobe University
| | | | | |
Collapse
|
28
|
Almagro-Moreno S, Kim TK, Skorupski K, Taylor RK. Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state. PLoS Genet 2015; 11:e1005145. [PMID: 25849031 PMCID: PMC4388833 DOI: 10.1371/journal.pgen.1005145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.
Collapse
Affiliation(s)
- Salvador Almagro-Moreno
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Tae K. Kim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
29
|
Justice SS, Harrison A, Becknell B, Mason KM. Bacterial differentiation, development, and disease: mechanisms for survival. FEMS Microbiol Lett 2014; 360:1-8. [PMID: 25228010 DOI: 10.1111/1574-6968.12602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022] Open
Abstract
Bacteria have the exquisite ability to maintain a precise diameter, cell length, and shape. The dimensions of bacteria size and shape are a classical metric in the distinction of bacterial species. Much of what we know about the particular morphology of any given species is the result of investigations of planktonic cultures. As we explore deeper into the natural habitats of bacteria, it is increasingly clear that bacteria can alter their morphology in response to the environment in which they reside. Specific morphologies are also becoming recognized as advantageous for survival in hostile environments. This is of particular importance in the context of both colonization and infection in the host. There are multiple examples of bacterial pathogens that use morphological changes as a mechanism for evasion of host immune responses and continued persistence. This review will focus on two systems where specific morphological changes are essential for persistence in animal models of human disease. We will also offer insight into the mechanism underlying the morphological changes and how these morphotypes aid in persistence. Additional examples of morphological changes associated with survival will be presented.
Collapse
Affiliation(s)
- Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University School of Medicine, Columbus, OH, USA
| | | | | | | |
Collapse
|
30
|
Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front Public Health 2014; 2:103. [PMID: 25133139 PMCID: PMC4116801 DOI: 10.3389/fpubh.2014.00103] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 11/07/2022] Open
Abstract
Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only can the VBNC state be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf), which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology, and infectious disease management; and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.
Collapse
Affiliation(s)
| | - Amit Ghosh
- National Institute of Cholera and Enteric Diseases (NICED) , Kolkata , India
| | - Gururaja P Pazhani
- National Institute of Cholera and Enteric Diseases (NICED) , Kolkata , India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED , Kolkata , India
| |
Collapse
|
31
|
Cava F, de Pedro MA. Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol 2014; 18:46-53. [PMID: 24607990 DOI: 10.1016/j.mib.2014.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 12/26/2022]
Abstract
The peptidoglycan (PG) sacculus once thought to be just a reinforcing, static and uniform structure, is fast becoming recognized as a dynamic cell constituent involved in every aspect of bacterial physiology. Recent advances showed that in addition to 'classical' tasks-as an essential element to define bacterial shape, size, division and resistance to osmotic stress-the sacculus plays very important roles in many other fields. The very few chemical and structural changes that were once considered as bizarre, or maybe exotic exceptions, are now universally accepted as fundamental pieces in bacterial cell wall adaptation to different kinds of environmental stresses; immune response; intra-specific and inter-specific signalling and antibiotics, just to mention a few. Most, if not all, of these implications are a consequence of the enormous adaptability of PG metabolism to cope with changing conditions, a characteristic for which the term plasticity is proposed. Here we overview and comment on a number of recent contributions on the cell wall adaptive responses to environmental challenges that has greatly impacted the already high complexity of the PG biology field. These new evidences have revived the interest in PG plasticity as an exciting and trendy topic in current microbiology which considers this variability as the trustworthy picture of bacterial PG in nature.
Collapse
Affiliation(s)
- Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå 90187, Sweden.
| | - Miguel A de Pedro
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| |
Collapse
|
32
|
Pinto D, Santos MA, Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 2013; 41:61-76. [PMID: 23848175 DOI: 10.3109/1040841x.2013.794127] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viable but nonculturable (VBNC) cells were recognized 30 years ago; and despite decades of research on the topic, most results are disperse and apparently incongruous. Since its description, a huge controversy arose regarding the ecological significance of this state: is it a degradation process without real significance for bacterial life cycles or is it an adaptive strategy of bacteria to cope with stressful conditions? In order to solve the molecular mechanisms of VBNC state induction and resuscitation, researchers in the field must be aware and overcome common issues delaying research progress. In this review, we discuss the intrinsic characteristic features of VBNC cells, the first clues on what is behind the VBNC state's induction, the models proposed for their resuscitation and the current methods to prove not only that cells are in VBNC state but also that they are able to resuscitate.
Collapse
Affiliation(s)
- Daniela Pinto
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon , Lisbon , Portugal
| | | | | |
Collapse
|
33
|
Kassem II, Chandrashekhar K, Rajashekara G. Of energy and survival incognito: a relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni. Front Microbiol 2013; 4:183. [PMID: 23847606 PMCID: PMC3705167 DOI: 10.3389/fmicb.2013.00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a Gram-negative food-borne bacterium that can cause mild to serious diseases in humans. A variety of stress conditions including exposure to formic acid, a weak organic acid, can cause C. jejuni to form viable but non-culturable cells (VBNC), which was proposed as a potential survival mechanism. The inability to detect C. jejuni VBNC using standard culturing techniques may increase the risk of exposure to foods contaminated with this pathogen. However, little is known about the cellular mechanisms and triggers governing VBNC formation. Here, we discuss novel mechanisms that potentially affect VBNC formation in C. jejuni and emphasize the impact of formic acid on this process. Specifically, we highlight findings that show that impairing inorganic polyphosphate (poly-P) metabolism reduces the ability of C. jejuni to form VBNC in a medium containing formic acid. We also discuss the potential effect of poly-P and formate metabolism on energy homeostasis and cognate VBNC formation. The relationship between poly-P metabolism and VBNC formation under acid stress has only recently been identified and may represent a breakthrough in understanding this phenomenon and its impact on food safety.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | | | | |
Collapse
|
34
|
Mishra A, Taneja N, Sharma M. Viability kinetics, induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio cholerae O1 in freshwater microcosm. J Appl Microbiol 2012; 112:945-53. [PMID: 22324483 DOI: 10.1111/j.1365-2672.2012.05255.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To study the induction of a viable but nonculturable (VBNC) state in Vibrio cholerae O1 in freshwater, in response to cold temperatures (4°C) and starvation. METHODS AND RESULTS Vibrio cholerae O1 cells were inoculated in freshwater microcosm and incubated at 4°C. The cells became coccoid, rugose and subsequently nonculturable by day 16 on tryptic soy agar (TSA) and by day 23 on TSA-SP, while 87 and 65% of the cells retained their membrane integrity, respectively. Viable cells were observed until day 30 using direct fluorescent antibody-direct viable count method. In vitro resuscitation was demonstrated by temperature upshift. Utilizing 16S rRNA as an endogenous control, the DNA pol II (27·43-fold), fliG (12·44-fold), ABC transporter (27·11-fold), relA (60·76-fold) and flaC (15·29-fold) were significantly up-regulated in VBNC cells, while the expression of fadL-3 was comparable. The expression of DNA pol II, fliG, ABC transporter, relA and flaC was 3·3, 1·1, 5·9, 5·8 and 1·2-fold, respectively, for resuscitated cells. VBNC cells were found to be virulent, as ctxA and tcpA were expressed. CONCLUSIONS Vibrio cholerae undergoes both phenotypic alteration and genotypic modulation to protect itself from stress in freshwater. SIGNIFICANCE AND IMPACT OF THE STUDY Induction and resuscitation of the VBNC state in freshwater is important for an understanding of the epidemiology of cholera in the freshwater environment.
Collapse
Affiliation(s)
- A Mishra
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|