1
|
Guo ZC, Cui MH, Yang CX, Dai HL, Yang TY, Zhai LZ, Chen Y, Liu WZ, Wang AJ. Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100410. [PMID: 38572083 PMCID: PMC10987894 DOI: 10.1016/j.ese.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.
Collapse
Affiliation(s)
- Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Xue Yang
- School of Geography and Tourism, Harbin University, Harbin, 150001, China
| | - Hong-Liang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tong-Yi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lin-Zhi Zhai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Botti A, Musmeci E, Matturro B, Vanzetto G, Bosticco C, Negroni A, Rossetti S, Fava F, Biagi E, Zanaroli G. Chemical-physical parameters and microbial community changes induced by electrodes polarization inhibit PCB dechlorination in a marine sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133878. [PMID: 38447365 DOI: 10.1016/j.jhazmat.2024.133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giampietro Vanzetto
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Caterina Bosticco
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
3
|
Zhang X, Wei S, Zhang D, Lu P, Huang Y. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116368. [PMID: 36261973 DOI: 10.1016/j.jenvman.2022.116368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The sulfate-reducing mediate microbial fuel cell (MFC) shows advantages in treating recalcitrant flowback water (FW) from shale gas extraction, but the stability under fluctuant concentrations of sulfate in FW remains unknown. Herein, we investigated the impact of fluctuant sulfate concentrations on the performance of FW treatment in MFCs. Sulfate concentration showed a significant role in the MFC treating FW, with a COD removal of 69.8 ± 9.7% and a peak power density of 2164 ± 396 mW/m3 under 247.5 mg/L sulfate, but only 39.1% and 1216 mW/m3 under 50 mg/L sulfate. The fluctuation of sulfate in a short time allowed to a stable performance, but a longtime intermittent decrease of feeding sulfate concentration significantly inhibited power generation to no more than 512 mW/m3. The sulfur cycling between sulfate and sulfide existed in the system, but the cycling rate became much lower after the longtime intermittent decrease, with resulting to the decreased power generation. Abundant sulfur-oxidizing bacteria (SOB) of Desulfuromonadaceae and Helicobacteraceae in the MFC stably feeding with 247.5 mg/L sulfate supported a high sulfur cycling rate. With the cooperation of abundant sulfate-reducing bacteria (SRB) of Desulfovibrionaceae (capable of producing electricity) on the anode and Desulfobacteraceae in anolyte, this sulfur cycling endowed the MFC with high sulfate tolerance and critically contributed to recalcitrant organics removal and power generation. However, much less SOB of Helicobacteraceae and Campylobacteraceae on the anode with high S0 accumulation on the surface after the longtime intermittent decrease of sulfate likely led to the low sulfur cycling rate. With also less SRB of Marinilabiaceae (capable of producing electricity) and Synergistaceae in the system, this low sulfur cycling rate thus hampered power generation. This research provides an important reference for the bioelectrochemical treatment of wastewater containing recalcitrant organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Shiqiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Yongkui Huang
- National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| |
Collapse
|
4
|
Taheri Dezfouli T, Tabrizi NS, Emtyazjoo M, Javaheri M, Marandi R, Kashefiolasl M. Response surface methodology to investigate the comparison of two carbon-based air cathodes for bio-electrochemical systems. ENVIRONMENTAL TECHNOLOGY 2022; 43:4376-4390. [PMID: 34240687 DOI: 10.1080/09593330.2021.1950840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Bio-electrochemical technologies can generate renewable electrical bioenergy from the oxidation of organic materials through the catalytic reactions of the microorganisms while treating the wastewater. In this study, the use of carbon aerogel as a novel catalyst with high porosity (the total pore volume of 1.84 cm3 g-1) and high surface area (491.7 m2/g) for improving the oxygen reduction reaction (ORR) performance was compared to that of the conventional activated carbon, employed as an air cathode catalyst in bio-electrochemical systems, with the indigenous bacterial consortium. The electrochemical studies revealed the higher power efficiency in the use of carbon aerogel (with the maximum power density and current density of a 675 mWm-2 and 33.1 mAm-2, respectively), compared to the activated carbon (with the maximum power density and current density of 668.98 mWm-2 and 23.2 mAm-2, respectively). The performance of the two materials and optimum conditions for electricity production were examined using the Response Surface Method (RSM) as an optimal design method. Statistical analysis confirmed that the carbon aerogel performed better than the activated carbon in power production and facilitated cathodic redox reactions. Comparison of two catalysts showed that the redox reactions occurred in the presence of carbon aerogel more facilitated and in a wider range, produced 1.2 times more current (the maximum 2.1 and 1.69 mA current). Carbon aerogel, with a suitable load absorbance and resistance to oxidation at urban wastewater pH, can be, therefore, coated on electrodes to facilitate the oxidation-reduction reactions and electricity transmission.
Collapse
Affiliation(s)
| | | | - Mozhgan Emtyazjoo
- Department of Marine Sciences, Islamic Azad University (North Tehran Branch), Tehran, Iran
| | - Maasomeh Javaheri
- Department of Ceramics, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Reza Marandi
- Department of Environmental Engineering, Islamic Azad University (North Tehran Branch), Tehran, Iran
| | - Morteza Kashefiolasl
- Department of Environmental Engineering, Islamic Azad University (North Tehran Branch), Tehran, Iran
| |
Collapse
|
5
|
Torgeson JM, Rosenfeld CE, Dunshee AJ, Duhn K, Schmitter R, O'Hara PA, Ng GHC, Santelli CM. Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1360-1382. [PMID: 35661843 DOI: 10.1039/d2em00024e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coupled abiotic and biotic processes in the hyporheic zone, where surface water and groundwater mix, play a critical role in the biogeochemical cycling of carbon, nutrients, and trace elements in streams and wetlands. Dynamic hydrologic conditions and anthropogenic pollution can impact redox gradients and biogeochemical response, although few studies examine the resulting hydrobiogeochemical interactions generated within the hyporheic zone. This study examines the effect of hyporheic flux dynamics and anthropogenic sulfate loading on the biogeochemistry of a riparian wetland and stream system. The hydrologic gradient as well as sediment, surface water, and porewater geochemistry chemistry was characterized at multiple points throughout the 2017 spring-summer-fall season at a sulfate-impacted stream flanked by wetlands in northern Minnesota. Results show that organic-rich sediments largely buffer the geochemical responses to brief or low magnitude changes in hydrologic gradient, but sustained or higher magnitude fluxes may variably alter the redox regime and, ultimately, the environmental geochemistry. This has implications for a changing climate that is expected to dramatically alter the hydrological cycle. Further, increased sulfate loading and dissolved or adsorbed ferric iron complexes in the hyporheic zone may induce a cryptic sulfur cycle linked to iron and carbon cycling, as indicated by the abundance of intermediate valence sulfur compounds (e.g., polysulfide, elemental sulfur, thiosulfate) throughout the anoxic wetland and stream-channel sediment column. The observed deviation from a classical redox tower coupled with potential changes in hydraulic gradient in these organic-rich wetland and stream hyporheic zones has implications for nutrient, trace element, and greenhouse gas fluxes into surface water and groundwater, ultimately influencing water quality and global climate.
Collapse
Affiliation(s)
- Joshua M Torgeson
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Carla E Rosenfeld
- Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, USA.
| | - Aubrey J Dunshee
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kelly Duhn
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.
| | - Riley Schmitter
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Patrick A O'Hara
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - G H Crystal Ng
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cara M Santelli
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
6
|
Xie L, Yoshida N, Ishii S, Meng L. Isolation and Polyphasic Characterization of Desulfuromonas versatilis sp. Nov., an Electrogenic Bacteria Capable of Versatile Metabolism Isolated from a Graphene Oxide-Reducing Enrichment Culture. Microorganisms 2021; 9:1953. [PMID: 34576847 PMCID: PMC8465243 DOI: 10.3390/microorganisms9091953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, a novel electrogenic bacterium denoted as strain NIT-T3 of the genus Desulfuromonas was isolated from a graphene-oxide-reducing enrichment culture that was originally obtained from a mixture of seawater and coastal sand. Strain NIT-T3 utilized hydrogen and various organic acids as electron donors and exhibited respiration using electrodes, ferric iron, nitrate, and elemental sulfur. The strain contained C16:1ω7c, C16:0, and C15:0 as major fatty acids and MK-8, 9, and 7 as the major respiratory quinones. Strain NIT-T3 contained four 16S rRNA genes and showed 95.7% similarity to Desulfuromonasmichiganensis BB1T, the closest relative. The genome was 4.7 Mbp in size and encoded 76 putative c-type cytochromes, which included 6 unique c-type cytochromes (<40% identity) compared to those in the database. Based on the physiological and genetic uniqueness, and wide metabolic capability, strain NIT-T3 is proposed as a type strain of 'Desulfuromonas versatilis' sp. nov.
Collapse
Affiliation(s)
- Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Shun’ichi Ishii
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Kanagawa, Japan;
| | - Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| |
Collapse
|
7
|
Guo F, Luo H, Shi Z, Wu Y, Liu H. Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143021. [PMID: 33131858 DOI: 10.1016/j.scitotenv.2020.143021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 05/11/2023]
Abstract
Substrate salinity is a critical factor influencing microbial fuel cells (MFCs) performance and various studies have suggested that increasing substrate salinity first improves MFC performance. However, a further increase in salinity that exceeds the salinity tolerance of exoelectrogens shows negative effects because of inhibited bacterial activity and increased activation losses. In this review, electricity generation and contaminant removal from saline substrates using MFCs are summarized, and results show different optimal salinities for obtaining maximum performance. Then, electroactive bacteria capable of tolerating saline environments and strategies for improving salinity tolerance are discussed. In addition to ohmic resistance and bacterial activity, membrane resistance and catalyst performance will also be affected by substrate salinity, all of which jointly contribute the final overall MFC performance. Therefore, the combined effect of salinity is analyzed to illustrate how the MFC performance changes with increasing salinity. Finally, the challenges and perspectives of MFCs operated in saline environments are discussed.
Collapse
Affiliation(s)
- Fei Guo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huiqin Luo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Zongyang Shi
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Yan Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
8
|
Zhang X, Zhang D, Huang Y, Wu S, Lu P. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. WATER RESEARCH 2020; 185:116270. [PMID: 32784035 DOI: 10.1016/j.watres.2020.116270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The flowback water (FW) from shale gas exploitation can be effectively treated by bioelectrochemical technology, but sulfide overproduction remains to be addressed. Herein, sulfate-reducing bacteria (SRB) meditated microbial fuel cells (MFCs) with anodic potential control were used. COD removal gradually increased to 67.4 ± 5.1% in electrode-potential-control (EPC) MFCs and 78.9 ± 2.4% in the MFC with open circuit (OC-MFC). However, in EPC MFCs sulfate removal stabilized at much lower levels (no more than 19.9 ± 1.9%) along with much lower sulfide concentrations, but in OC-MFC it increased and finally stabilized at 59.9 ± 0.1%. Partial sulfur reuse in EPC MFCs was indicated by the current production. Notably, thiosulfate was specially detected under low potentials and effectively oxidized in EPC MFCs, especially under -0.1 V vs. SHE, which probably related to the sulfur reuse. Metagenomics analysis showed that the anode with -0.1 and -0.2 V likely shunted electrons from cytochromes that used for reducing DsrC-S0 trisulfide and thus contributed to producing thiosulfate and decreasing sulfide production. Meanwhile, the anode with -0.1 V specially accumulated sulfur-oxidizing system (Sox) genes regarding thiosulfate and sulfite oxidation to sulfate, which concurred to the effective thiosulfate oxidation and also indicated the possible direct sulfite oxidation to sulfate during the sulfur cycling. But the anode of -0.2 V highly accumulated genes for thiosulfate and sulfite reduction. Both anodes also distinctly accumulated genes regarding thiosulfate oxidation to tetrathionate and sulfide oxidation to sulfur or polysulfide. Further, sulfur-oxidizing bacteria were specially enriched in EPC MFCs and likely contributed to thiosulfate and sulfite oxidation. Thus, we suggested that the higher electrode potential (e.g. -0.1 V) can shape a cryptic sulfur cycling, in which sulfate was first reduced to sulfite, and then reoxidized to sulfate by forming thiosulfate as an important intermediate or by direct sulfite oxidation. The results provide new sights on the bioelectrochemical treatment of wastewater containing complex organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Shanshan Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Lin S, Hao T, Li X, Xiao Y, Chen G. Pin-point denitrification for groundwater purification without direct chemical dosing: Demonstration of a two-chamber sulfide-driven denitrifying microbial electrochemical system. WATER RESEARCH 2020; 182:115918. [PMID: 32531495 DOI: 10.1016/j.watres.2020.115918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The nitrate concentration in groundwater has been increasing over time due to the intensive use of nitrogen fertilizer. Current nitrate removal technologies are restricted by the high operational cost or the inevitable secondary contaminations. This study proposed a two-chamber sulfide-driven denitrifying microbial electrochemical system to denitrify nitrate in its cathode chamber. Instead of conventional organic substrates, sulfide is oxidized in the anode chamber to generate electrons for cathodic denitrification. Long-term performance of this novel system was evaluated over 200 days (100 cycles) of batch-fed operation. With the assistance of anodic microorganisms, sulfide can be directly oxidized to sulfate thus avoiding passivating the anode. Catalyzed by the cathodic microorganisms, complete denitrification was realized with neither nitrite nor nitrous oxide accumulation. Benefiting from the electroautotrophic behavior of the functional microorganisms, high electron utilization efficiencies were achieved, 80% and 85% for the anode (sulfide oxidation) and the cathode (denitrification) respectively. Both observed electrode potentials and microbial analyses revealed that cytochrome c is the crucial electron transfer mediator in the cathodic electron transfer for denitrification. Based on the analysis of planktonic and biofilm microbial samples, anodic and cathodic extracellular electron transfer bioprocesses are proposed, both the direct and mediated electron transfers involved, as were revealed by immobilized and planktonic functional microorganisms, respectively. This study demonstrates the feasibility of purifying nitrate-contaminated groundwater without sacrificing its water quality in a separate mode of treatment. This concept can be extended to a broader field, in which the water requires bio-polishing without introducing unwanted secondary pollution like the post-denitrification of wastewater effluents.
Collapse
Affiliation(s)
- Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau.
| | - Xiling Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
10
|
Hemalatha M, Shanthi Sravan J, Venkata Mohan S. Self-induced bioelectro-potential influence on sulfate removal and desalination in microbial fuel cell. BIORESOURCE TECHNOLOGY 2020; 309:123326. [PMID: 32311657 DOI: 10.1016/j.biortech.2020.123326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This study focused on treatment of sulfate-rich produced water (PW) using microbial fuel cell (MFC) with biotic anode (bAC) and abiotic cathode (aCC) separated by a cation exchange membrane (CEM). MFC was operated under varied circuitry modes - open circuit (OC-without resistance) and closed circuit (CC-applied resistance (1kΩ)) to evaluate and assess the removal of sulfates and salts with simultaneous carbon utilization. The OC and CC operations depicted sulfates removal efficiency of 38% and 56%, salinity removal of 12% and 21% and COD removal of 47% and 58%, respectively. Both OC and CC showed K+ decrement in bAC and increment in aCC with a comparatively higher efficiency of ionic mobility in CC operation. Maximum open circuit voltage (OCV) of 498 mV (OC) was observed with redox catalytic peak currents from cyclic voltammetry [Anode/cathode, 3.5/-4.9 mA (OC); 6.9/-7.9 mA (CC)]. Dominance of Proteobacteria and Actinobacteria with specific enrichment of sulfate reducing bacteria (SRB) and halophiles was observed in bAC at the end of operation.
Collapse
Affiliation(s)
- Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India.
| |
Collapse
|
11
|
Guo Y, Wei X, Zhang S. Simultaneous removal of organics, sulfide and ammonium coupled with electricity generation in a loop microbial fuel cell system. BIORESOURCE TECHNOLOGY 2020; 305:123082. [PMID: 32135350 DOI: 10.1016/j.biortech.2020.123082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A loop microbial fuel cell (MFC) system consisting of a denitrifying organics/sulfide removal MFC and a nitrification chamber was developed, and its performance at different feeding ratios of total organic carbon to sulfide (TOC/S) and dissolved oxygen (DO) levels of cathodic feeding were investigated. High feeding TOC/S ratio favored elemental sulfur production and anodic electron recovery. Introducing oxygen into the cathode enhanced nitrogen removal and electricity generation but hindered elemental sulfur production. At the optimal feeding TOC/S mass ratio of 4.69 and cathodic feeding DO of 4.2 mg/L, 100% of TOC, 100% of sulfide and 82.6 ± 0.9% of total nitrogen were removed, achieving a sulfur production percentage of 35.1 ± 4.4% and a coulombic efficiency of 53.0 ± 2.2%. Cathodic nitrogen removal was catalyzed by denitrifiers, nitrifiers and anammox bacteria. This work provided a novel approach for simultaneously removing organics, sulfide and ammonium coupled with electricity generation from wastewater.
Collapse
Affiliation(s)
- Yanli Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xia Wei
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
12
|
Kong G, Song D, Guo J, Sun G, Zhu C, Chen F, Yang Y, Xu M. Lack of Periplasmic Non-heme Protein SorA Increases Shewanella decolorationis Current Generation. Front Microbiol 2020; 11:262. [PMID: 32158435 PMCID: PMC7052111 DOI: 10.3389/fmicb.2020.00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial extracellular electron transport (EET) plays an important role in many natural and engineering processes. Some periplasmic non-heme redox proteins usually coexist with c-type cytochromes (CTCs) during the EET process. However, in contrast to CTCs, little is known about the roles of these non-heme redox proteins in EET. In this study, the transcriptome of Shewanella decolorationis S12 showed that the gene encoding a periplasmic sulfite dehydrogenase molybdenum-binding subunit SorA was significantly up-regulated during electrode respiration in microbial fuel cells (MFCs) compared with that during azo-dye reduction. The maximum current density of MFCs catalyzed by a mutant strain lacking SorA (ΔsorA) was 25% higher than that of wild strain S12 (20 vs. 16 μA/cm2). Both biofilm formation and the current generation of the anodic biofilms were increased by the disruption of sorA, which suggests that the existence of SorA in S. decolorationis S12 inhibits electrode respiration. In contrast, disruption of sorA had no effect on respiration by S. decolorationis S12 with oxygen, fumarate, azo dye, or ferric citrate as electron acceptors. This is the first report of the specific effect of a periplasmic non-heme redox protein on EET to electrode and provides novel information for enhancing bacterial current generation.
Collapse
Affiliation(s)
- Guannan Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Da Song
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jun Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Guoping Sun
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chunjie Zhu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yonggang Yang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.
Collapse
|
14
|
Sudirjo E, Buisman CJN, Strik DPBTB. Marine Sediment Mixed With Activated Carbon Allows Electricity Production and Storage From Internal and External Energy Sources: A New Rechargeable Bio-Battery With Bi-Directional Electron Transfer Properties. Front Microbiol 2019; 10:934. [PMID: 31156566 PMCID: PMC6527962 DOI: 10.3389/fmicb.2019.00934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Marine sediment has a great potential to generate electricity with a bioelectrochemical system (BES) like the microbial fuel cell (MFC). In this study, we investigated the potential of marine sediment and activated carbon (AC) to generate and store electricity. Both internal and external energy supply was validated for storage behavior. Four types of anode electrode compositions were investigated. Two types were mixtures of different volumes of AC and Dutch Eastern Scheldt marine sediment (67% AC and 33% AC) and the others two were 100% AC or 100% marine sediment based. Each composition was duplicated. Operating these BES's under MFC mode with solely marine sediment as the anode electron donor resulted in the creation of a bio-battery. The recharge time of such bio-battery does depend on the fuel content and its usage. The results show that by usage of marine sediment and AC electricity was generated and stored. The 100% AC and the 67% AC mixed with marine sediment electrode were over long term potentiostatic controlled at -100 mV vs. Ag/AgCl which resulted in a cathodic current and an applied voltage. After switching back to the MFC operation mode at 1000 Ω external load, the electrode turned into an anode and electricity was generated. This supports the hypothesis that external supply electrical energy was recovered via bi-directional electron transfer. With open cell voltage experiments these AC marine bioanodes showed internal supplied electric charge storage up to 100 mC at short self-charging times (10 and 60 s) and up to 2.4°C (3,666 C/m3 anode) at long charging time (1 h). Using a hypothetical cell voltage of 0.2 V, this value represents an internal electrical storage density of 0.3 mWh/kg AC marine anode. Furthermore it was remarkable that the BES with 100% marine sediment based electrode also acted like a capacitor similar to the charge storage behaviors of the AC based bioanodes with a maximum volumetric storage of 1,373 C/m3 anode. These insights give opportunities to apply such BES systems as e.g., ex situ bio-battery to store and use electricity for off-grid purpose in remote areas.
Collapse
Affiliation(s)
- Emilius Sudirjo
- Government of Landak Regency, West Kalimantan, Indonesia.,Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Zhang X, Zhang D, Huang Y, Zhang K, Lu P. Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell. WATER RESEARCH 2018; 147:461-471. [PMID: 30343202 DOI: 10.1016/j.watres.2018.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The high volume of flowback water (FW) generated during shale gas exploitation is highly saline, and contains complex organics, iron, heavy metals, and sulfate, thereby posing a significant challenge for the environmental management of the unconventional natural gas industry. Herein, the treatment of FW in a sulfur-cycle-mediated microbial fuel cell (MFC) is reported. Simultaneous removal efficiency for chemical oxygen demand (COD) and total iron from a synthetic FW was achieved, at 72 ± 7% and 90.6 ± 8.7%, respectively, with power generation of 2667 ± 529 mW/m3 in a closed-circuit MFC (CC-MFC). However, much lower iron removal (38.5 ± 4.5%) occurred in the open-circuit MFC (OC-MFC), where the generated FeS fine did not precipitate because of sulfide supersaturation. Enrichment of both sulfur-oxidizing bacteria (SOB), namely Helicobacteraceae in the anolyte and the electricity-producing bacteria, namely Desulfuromonadales on the anode likely accelerated the sulfur cycle through the biological and bioelectrochemical oxidation of sulfide in the anodic chamber, and effectively increased the molar ratio of total iron to sulfide, thus alleviating sulfide supersaturation in the closed circuitry. Enrichment of SOB in the anolyte might be attributed to the formation of FeS electricity wire and likely contributed to the stable high power generation. Bacteroidetes, Firmicutes, Proteobacteria, and Chloroflexi enriched in the anodic chamber were responsible for degrading complex organics in the FW. The treatment of real FW in the sulfur-cycle-mediated MFC also achieved high efficiency. This research provides a promising approach for the treatment of wastewater containing organic matters, heavy metals, and sulfate by using a sulfur-cycle-mediated MFC.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Kai Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
16
|
Daghio M, Vaiopoulou E, Aulenta F, Sherry A, Head I, Franzetti A, Rabaey K. Anode potential selection for sulfide removal in contaminated marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:498-503. [PMID: 30145477 DOI: 10.1016/j.jhazmat.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Sulfate reducing microorganisms are typically involved in hydrocarbon biodegradation in the sea sediment, with their metabolism resulting in the by-production of toxic sulfide. In this context, it is of utmost importance identifying the optimal value for anodic potential which ensures efficient toxic sulfide removal. Along this line, in this study the (bio)electrochemical removal of sulfide was tested at anodic potentials of -205 mV, +195 mV and +300 mV (vs Ag/AgCl), also in the presence of a pure culture of the sulfur-oxidizing bacterium Desulfobulbus propionicus. Current production, sulfide concentration and sulfate concentration were monitored over time. At the end of the experiment sulfur deposition on the electrodes and the microbial communities were characterized by SEM-EDS and by next generation sequencing of the 16S rRNA gene respectively. Results confirmed that current production was linked to sulfide removal and D. propionicus promoted back oxidation of deposited sulfur to sulfate. The highest electron recovery was observed at +195 mV vs Ag/AgCl, and the lowest sulfur deposition was obtained at -205 mV vs Ag/AgCl anode polarization.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences-University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Eleni Vaiopoulou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B- 9000 Ghent, Belgium; Concawe, Environmental Science for the European Refining Industry, Boulevard du Souverain 165, B-1160 Brussels, Belgium.
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29, 300, 00015, Monterotondo, RM, Italy
| | - Angela Sherry
- School of Natural and Environmental Sciences, 3rd Floor Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian Head
- School of Natural and Environmental Sciences, 3rd Floor Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences-University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B- 9000 Ghent, Belgium
| |
Collapse
|
17
|
Lin S, Mackey HR, Hao T, Guo G, van Loosdrecht MCM, Chen G. Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. WATER RESEARCH 2018; 143:399-415. [PMID: 29986249 DOI: 10.1016/j.watres.2018.06.051] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Sulfide prevails in both industrial and municipal waste streams and is one of the most troublesome issues with waste handling. Various technologies and strategies have been developed and used to deal with sulfide for decades, among which biological means make up a considerable portion due to their low operation requirements and flexibility. Sulfur bacteria play a vital role in these biotechnologies. In this article, conventional biological approaches dealing with sulfide and functional microorganisms are systematically reviewed. Linking the sulfur cycle with other nutrient cycles such as nitrogen or phosphorous, and with continued focus of waste remediation by sulfur bacteria, has led to emerging biotechnologies. Furthermore, opportunities for energy harvest and resource recovery based on sulfur bacteria are also discussed. The electroactivity of sulfur bacteria indicates a broad perspective of sulfur-based bioelectrochemical systems in terms of bioelectricity production and bioelectrochemical synthesis. The considerable PHA accumulation, high yield and anoxygenic growth conditions in certain phototrophic sulfur bacteria could provide an interesting alternative for bioplastic production. In this review, new merits of biological sulfide oxidation from a traditional environmental management perspective as well as a waste to resource perspective are presented along with their potential applications.
Collapse
Affiliation(s)
- Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Gang Guo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Daghio M, Espinoza Tofalos A, Leoni B, Cristiani P, Papacchini M, Jalilnejad E, Bestetti G, Franzetti A. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:120-127. [PMID: 28772251 DOI: 10.1016/j.jhazmat.2017.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/23/2017] [Accepted: 07/22/2017] [Indexed: 05/20/2023]
Abstract
BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m2 with a maximum peak at 480mA/m2) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days-1, 0.34±0.09days-1 and 0.16±0.02days-1, respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Anna Espinoza Tofalos
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy; Department of Chemistry, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Barbara Leoni
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Pierangela Cristiani
- Ricerca sul Sistema Energetico - RSE Spa, Department of Sustainable Development and Energy Sources, Via Rubattino, 54, 20134 Milan, Italy
| | - Maddalena Papacchini
- INAIL Settore Ricerca, Certificazione e Verifica, Dipartimento di Innovazione Tecnologica (DIT) Laboratorio di Biotecnologie, Rome, Italy
| | - Elham Jalilnejad
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy; Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy.
| |
Collapse
|
19
|
Daghio M, Aulenta F, Vaiopoulou E, Franzetti A, Arends JBA, Sherry A, Suárez-Suárez A, Head IM, Bestetti G, Rabaey K. Electrobioremediation of oil spills. WATER RESEARCH 2017; 114:351-370. [PMID: 28279880 DOI: 10.1016/j.watres.2017.02.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29,300, 00015 Monterotondo, RM, Italy
| | - Eleni Vaiopoulou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jan B A Arends
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Angela Sherry
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ana Suárez-Suárez
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian M Head
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| |
Collapse
|
20
|
Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun 2017; 8:13924. [PMID: 28067226 PMCID: PMC5227917 DOI: 10.1038/ncomms13924] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022] Open
Abstract
Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. Direct interspecies electron transfer has been shown in methane-producing communities, but it is unknown how widespread this mechanism is. Here, Ha et al. show that anoxygenic photosynthesis can be driven by direct electron transfer from a heterotrophic partner bacterium.
Collapse
Affiliation(s)
- Phuc T Ha
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Stephen R Lindemann
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, China
| | - Alice C Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - James K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
21
|
Zhang T, Tremblay PL. Hybrid photosynthesis-powering biocatalysts with solar energy captured by inorganic devices. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:249. [PMID: 29093753 PMCID: PMC5663055 DOI: 10.1186/s13068-017-0943-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 05/03/2023]
Abstract
The biological reduction of CO2 driven by sunlight via photosynthesis is a crucial process for life on earth. However, the conversion efficiency of solar energy to biomass by natural photosynthesis is low. This translates in bioproduction processes relying on natural photosynthesis that are inefficient energetically. Recently, hybrid photosynthetic technologies with the potential of significantly increasing the efficiency of solar energy conversion to products have been developed. In these systems, the reduction of CO2 into biofuels or other chemicals of interest by biocatalysts is driven by solar energy captured with inorganic devices such as photovoltaic cells or photoelectrodes. Here, we explore hybrid photosynthesis and examine the strategies being deployed to improve this biotechnology.
Collapse
Affiliation(s)
- Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
22
|
Halotolerant bioanodes: The applied potential modulates the electrochemical characteristics, the biofilm structure and the ratio of the two dominant genera. Bioelectrochemistry 2016; 112:24-32. [DOI: 10.1016/j.bioelechem.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
|
23
|
Yin Q, Zhu X, Zhan G, Bo T, Yang Y, Tao Y, He X, Li D, Yan Z. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. J Environ Sci (China) 2016; 42:210-214. [PMID: 27090713 DOI: 10.1016/j.jes.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production.
Collapse
Affiliation(s)
- Qi Yin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Xiaoyu Zhu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Guoqiang Zhan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Tao Bo
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yanfei Yang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Zhiying Yan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
24
|
A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: Performance and microbial community. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Cruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli SK, Zanaroli G, Petrangeli Papini M, Rossetti S, Aulenta F. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front Microbiol 2015; 6:881. [PMID: 26388841 PMCID: PMC4559663 DOI: 10.3389/fmicb.2015.00881] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
This study presents the proof-of-concept of the “Oil-Spill Snorkel”: a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The “Oil-Spill Snorkel” consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the “Oil-Spill Snorkel” potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable configurations for field applications.
Collapse
Affiliation(s)
| | - Enrica Presta
- Water Research Institute, National Research Council Rome, Italy
| | | | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, National Research Council Rome, Italy
| | - Santosh K Balijepalli
- Institute for the Study of Nanostructured Materials, National Research Council Rome, Italy
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna Bologna, Italy
| | | | - Simona Rossetti
- Water Research Institute, National Research Council Rome, Italy
| | | |
Collapse
|
26
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
27
|
Sulonen MLK, Kokko ME, Lakaniemi AM, Puhakka JA. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:182-189. [PMID: 25463232 DOI: 10.1016/j.jhazmat.2014.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/18/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5.
Collapse
Affiliation(s)
- Mira L K Sulonen
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland.
| | - Marika E Kokko
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Aino-Maija Lakaniemi
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Jaakko A Puhakka
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
28
|
Wardman C, Nevin KP, Lovley DR. Real-time monitoring of subsurface microbial metabolism with graphite electrodes. Front Microbiol 2014; 5:621. [PMID: 25484879 PMCID: PMC4240160 DOI: 10.3389/fmicb.2014.00621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/30/2014] [Indexed: 11/13/2022] Open
Abstract
Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM-μM range. In order to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2-(14)C]-acetate metabolism. There was a direct correlation between current production and the rate that [2-(14)C]-acetate was metabolized to (14)CO2 and (14)CH4 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. The results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.
Collapse
Affiliation(s)
- Colin Wardman
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| |
Collapse
|
29
|
Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Rousseau R, Santaella C, Achouak W, Godon JJ, Bonnafous A, Bergel A, Délia ML. Correlation of the Electrochemical Kinetics of High-Salinity-Tolerant Bioanodes with the Structure and Microbial Composition of the Biofilm. ChemElectroChem 2014. [DOI: 10.1002/celc.201402153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|