1
|
Kim JN, Ryoo SU, Nam Y. Deciphering the role of SMU.1147 in peptide-mediated signaling and competence in Streptococcus mutans. Microbiol Spectr 2025; 13:e0291724. [PMID: 40042332 PMCID: PMC11960140 DOI: 10.1128/spectrum.02917-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 04/03/2025] Open
Abstract
Streptococcus mutans is a primary cariogenic pathogen involved in dental biofilm formation, a major virulence factor in the development of dental caries. In S. mutans, the competence-stimulating peptide (CSP), encoded by comC, plays a critical role in environmental stress response, growth regulation, and virulence expression. In this study, we performed transcriptome analysis to investigate the role of SMU.1147, a unique core gene in S. mutans, in biological pathways related to transport, defense responses, and environmental sensing. The deletion of SMU.1147 led to the upregulation of genes involved in carbohydrate uptake and metabolism, particularly phosphotransferase system (PTS) transporters, thereby enhancing the sugar transport capacity. However, despite increased sugar uptake, the mutant strain did not show significant changes in growth rate or ATP production and displayed slightly reduced organic acid production. Additionally, the mutant exhibited significantly reduced cell viability after an 8-h incubation compared to the parental strain. Notably, genes associated with CSP-dependent signal transduction and stress defense, such as comX, comR, htrA, scnRK, and ciaRH, were downregulated in the mutant strain. Furthermore, stress-related genes, including spxA2, clpP, and clpX, were significantly downregulated, suggesting compromised protein quality control and oxidative stress responses. Our findings suggest that SMU.1147 plays a critical role in regulating peptide-mediated signaling, metabolic coordination, and environmental adaptation in S. mutans, positioning it as a key integrator of the metabolic and stress response networks that are essential for pathogenicity and survival. IMPORTANCE Understanding the regulatory mechanisms that govern virulence and environmental adaptation in Streptococcus mutans is essential for developing strategies to mitigate dental caries. This study reveals the critical role of the SMU.1147 gene in S. mutans in metabolic regulation, stress response, and cell viability. Our results demonstrate how the deletion of this gene affects sugar uptake and organic acid production, leading to imbalances in carbon metabolism and reduced long-term survival. These findings provide valuable insights into the ability of S. mutans to adapt to stressed conditions and highlight the role of SMU.1147 in modulating biofilm formation and virulence, contributing to our understanding of regulatory pathways in dental pathogens.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Si-Uk Ryoo
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Yeuna Nam
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
2
|
Xiao J, Zhang Y, Zhang J, Liu B, Wang H, Yang R, Yin Y, Zhang X. Identification of cis-acting elements upstream of regR gene in streptococcus pneumoniae. Microb Pathog 2023; 182:106263. [PMID: 37481005 DOI: 10.1016/j.micpath.2023.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The identification and characterization of functional cis-acting elements is of fundamental importance for comprehending the regulatory mechanisms of gene transcription and bacterial pathogenesis. The transcription factor RegR has been demonstrated to control both competence and virulence in Streptococcus pneumoniae. Despite the clear contribution of RegR to these pathways, the mechanisms underlying its transcriptional regulation remain poorly understood. In this study, we conducted mutational analysis, gene dissection and luciferase activity assays to characterize the cis-elements situated upstream of the regR gene. Our findings revealed that a 311 bp 3'-terminal DNA sequence of the spd0300 gene represents a central region of the upstream cis-acting element of regR. Further investigations identified two structurally similar enhancer-like sequences within this region which feature prominently in the regulation of regR transcription. Furthermore, employing DNA pull-down assays allowed us to enrich the trans-acting factors with the potential to interact with these cis-acting elements. Notably, we found that the competence regulator ComE was implicated in the regulation of regR transcription, a finding which was corroborated by electrophoretic mobility shift assays (EMSA) and quantitative real-time PCR analyses (qRT-PCR). Taken together, our data thus provide fresh insight into the transcriptional regulation of regR.
Collapse
Affiliation(s)
- Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yapeng Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | | | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Zank A, Schulte L, Brandon X, Carstensen L, Wescott A, Schwan WR. Mutations of the brpR and brpS genes affect biofilm formation in Staphylococcus aureus. World J Clin Infect Dis 2022; 12:20-32. [DOI: 10.5495/wjcid.v12.i1.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the United States, Staphylococcus aureus (S. aureus) kills tens of thousands of individuals each year and the formation of a biofilm contributes to lethality. Biofilm-associated infections are hard to treat once the biofilm has formed. A new stilbene drug, labeled SK-03-92, was shown to kill S. aureus and affected transcription of two genes tied to a putative two-component system (TCS) we have named brpR (biofilm regulating protein regulator) and brpS (biofilm regulating protein sensor).
AIM To determine if BrpR and BrpS regulate biofilm formation, brpR and brpS mutants were assessed using biofilm assays compared to wild-type S. aureus.
METHODS A combination of biofilm and quantitative real-time-polymerase chain reaction assays were used. In addition, bioinformatic software tools were also utilized.
RESULTS Significantly more biofilm was created in the brpR and brpS mutants vs wild-type cells. Quantitative real-time polymerase chain reactions showed the brpS mutant had differences in transcription of biofilm associated genes that were eight-fold higher for srtA, two-fold lower for lrgA, and 1.6-fold higher for cidA compared to wild-type. Bioinformatic analysis demonstrated that the S. aureus brpR/brpS TCS had homology to streptococcal late-stage competence proteins involved in cell-death, increased biofilm production, and the development of persister cells.
CONCLUSION Our study suggests that brpR/brpS is a TCS that may repress S. aureus biofilm production and be linked to late-stage competence in S. aureus.
Collapse
Affiliation(s)
- Allison Zank
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Lillian Schulte
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Xavier Brandon
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Lauren Carstensen
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Amy Wescott
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| |
Collapse
|
4
|
Redox Sensing Modulates the Activity of the ComE Response Regulator of Streptococcus mutans. J Bacteriol 2021; 203:e0033021. [PMID: 34516285 DOI: 10.1128/jb.00330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, encodes the ComDE two-component system comprised of a histidine kinase (ComD) and a response regulator (ComE). This system is necessary for production of bacteriocins and development of genetic competence. ComE interacts with its cognate promoters to activate the transcription of bacteriocin and competence-related genes. Previous transcriptomic studies indicated that expressions of bacteriocin genes were upregulated in the presence of oxygen. To understand the relationship between the aerobic condition and bacteriocin expression, we analyzed the S. mutans ComE sequence and its close homologs. Surprisingly, we noticed the presence of cysteine (Cys) residues located at positions 200 and 229, which are highly conserved among the ComE homologs. Here, we investigated the role of Cys residues of S. mutans ComE in the activation of bacteriocin transcription using the PnlmA promoter that expresses bacteriocin NlmA. We constructed both single mutants and double mutants by replacing the Cys residues with serine and performed complementation assays. We observed that the presence of Cys residues is essential for PnlmA activation. With purified ComE mutant proteins, we found that ComE double mutants displayed a nearly 2-fold lower association rate than wild-type ComE. Furthermore, 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence studies indicated that the double mutants displayed wider conformation changes than wild-type ComE. Finally, we demonstrated that close streptococcal ComE homologs successfully activate the PnlmA expression in vivo. This is the first report suggesting that S. mutans ComE and its homologs can sense the oxidation status of the cell, a phenomenon similar to the AgrA system of Staphylococcus aureus but with different outcomes. IMPORTANCE Streptococci are an important species that prefer to grow under anaerobic or microaerophilic environments. Studies have shown that streptococci growth in an aerobic environment generates oxidative stress responses by activating various defense systems, including production of antimicrobial peptides called bacteriocins. This study highlights the importance of a two-component response regulator (ComE) that senses the aerobic environment and induces bacteriocin production in Streptococcus mutans, a dental pathogen. We believe increased bacteriocin secretion under aerobic conditions is necessary for survival and colonization of S. mutans in the oral cavity by inhibiting other competing organisms. Redox sensing by response regulator might be a widespread phenomenon since two other ComE homologs from pathogenic streptococci that inhabit diverse environmental niches also perform a similar function.
Collapse
|
5
|
The transcription regulator BrsR serves as a network hub of natural competence protein-protein interactions in Streptococcus mutans. Proc Natl Acad Sci U S A 2021; 118:2106048118. [PMID: 34544866 DOI: 10.1073/pnas.2106048118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Genome evolution is an essential and stringently regulated aspect of biological fitness. For bacteria, natural competence is one of the principal mechanisms of genome evolution and is frequently subject to multiple layers of regulation derived from a plethora of environmental and physiological stimuli. Here, we present a regulatory mechanism that illustrates how such disparate stimuli can be integrated into the Streptococcus mutans natural competence phenotype. S. mutans possesses an intriguing, but poorly understood ability to coordinately control its independently regulated natural competence and bacteriocin genetic pathways as a means to acquire DNA released from closely related, bacteriocin-susceptible streptococci. Our results reveal how the bacteriocin-specific transcription activator BrsR directly mediates this coordination by serving as an anti-adaptor protein responsible for antagonizing the proteolysis of the inherently unstable, natural competence-specific alternative sigma factor ComX. This BrsR ability functions entirely independent of its transcription regulator function and directly modulates the timing and severity of the natural competence phenotype. Additionally, many of the DNA uptake proteins produced by the competence system were surprisingly found to possess adaptor abilities, which are employed to terminate the BrsR regulatory circuit via negative feedback. BrsR-competence protein heteromeric complexes directly inhibit nascent brsR transcription as well as stimulate the Clp-dependent proteolysis of extant BrsR proteins. This study illustrates how critical genetic regulatory abilities can evolve in a potentially limitless variety of proteins without disrupting their conserved ancestral functions. These unrecognized regulatory abilities are likely fundamental for transducing information through complex genetic networks.
Collapse
|
6
|
Expression of an Extracellular Protein (SMU.63) Is Regulated by SprV in Streptococcus mutans. Appl Environ Microbiol 2020; 86:AEM.01647-20. [PMID: 32978138 DOI: 10.1128/aem.01647-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022] Open
Abstract
In Streptococcus mutans, SprV (SMU.2137) is a pleiotropic regulator that differentially regulates genes related to competence, mutacin production, biofilm formation, and the stress tolerance response, along with some other pathways. In this study, we established a link between SprV and an ∼67-kDa protein in the culture supernatant of strain UA159 that was later confirmed as SMU.63 by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. We discovered that SprV downregulates the transcription and translation of SMU.63. We found that the seven amino acids from the C-terminal region of SprV were also crucial for the expression of SMU.63. Deletion of smu.63 led to increased sucrose-independent biofilm formation and competence. The sprV deletion also increased biofilm formation although this could be partially attributed to the downregulation of smu.63 In an smu.63 sprV double mutant, a synergistic effect was observed in biofilm formation in contrast to effects on competence development. We found that low or excess magnesium ion repressed sprV transcription that, in turn, affected the expression of smu.63 As expected, a magnesium ion-dependent effect of competence and biofilm formation was observed in the UA159 strain. We also replicated the results of SMU.63 expression and competence in S. mutans GS5 that encodes both SprV and SMU.63 homologs and found that the GS5 strain behaves similarly to the UA159 strain, indicating that SprV's effect is strain independent.IMPORTANCE We previously identified a pleiotropic regulator, SprV, in Streptococcus mutans This regulator appears to be highly conserved among streptococci. Here, we showed that SprV regulates the expression of a secreted protein encoded by SMU.63 in S. mutans SMU.63 has been known to impact biofilm formation and genetic competence, two important characteristics that help in colonization of the organism. SMU.63 is also unique since it is known to form amyloid fiber. We found that SprV regulates the expression of SMU.63 at both the transcriptional and translational levels. We also found that the expression of SprV is regulated by magnesium ion concentration. Interestingly, both low and high magnesium ion concentrations affected biofilm formation and genetic competence. Since SMU.63 is also highly conserved among streptococci, we hypothesized that SprV will have a similar effect on its expression.
Collapse
|
7
|
Bikash CR, Tal-Gan Y. Structure Activity Relationship Study of the XIP Quorum Sensing Pheromone in Streptococcus mutans Reveal Inhibitors of the Competence Regulon. ACS Chem Biol 2020; 15:2833-2841. [PMID: 32946208 DOI: 10.1021/acschembio.0c00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dental cariogenic pathogen Streptococcus mutans coordinates competence for genetic transformation via two peptide pheromones, competence stimulating peptide (CSP) and comX-inducing peptide (XIP). CSP is sensed by the comCDE system and induces competence indirectly, whereas XIP is sensed by the comRS system and induces competence directly. In chemically defined media (CDM), after uptake by oligopeptide permease, XIP interacts with the cytosolic receptor ComR to form the XIP::ComR complex that activates the expression of comX, an alternative sigma factor that initiates the transcription of late-competence genes. In this study, we set out to determine the molecular mechanism of XIP::ComR interaction. To this end, we performed systematic replacement of the amino acid residues in the XIP pheromone and assessed the ability of the mutated analogs to modulate the competence regulon in CDM. We were able to identify structural features that are important to ComR binding and activation. Our structure-activity relationship insights led us to construct multiple XIP-based inhibitors of the comRS pathway. Furthermore, when comCDE and comRS were both stimulated with CSP and XIP, respectively, a lead XIP-based inhibitor was able to maintain the inhibitory activity. Last, phenotypic assays were used to highlight the potential of XIP-based inhibitors to attenuate pathogenicity in S. mutans and to validate the specificity of these compounds to the comRS pathway within the competence regulon. The XIP-based inhibitors developed in this study can be used as lead scaffolds for the design and development of potential therapeutics against S. mutans infections.
Collapse
Affiliation(s)
- Chowdhury Raihan Bikash
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
8
|
Shanmugam K, Sarveswari HB, Udayashankar A, Swamy SS, Pudipeddi A, Shanmugam T, Solomon AP, Neelakantan P. Guardian genes ensuring subsistence of oral Streptococcus mutans. Crit Rev Microbiol 2020; 46:475-491. [PMID: 32720594 DOI: 10.1080/1040841x.2020.1796579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the substantial research advancements on oral diseases, dental caries remains a major healthcare burden. A disease of microbial dysbiosis, dental caries is characterised by the formation of biofilms that assist demineralisation and destruction of the dental hard tissues. While it is well understood that this is a multi-kingdom biofilm-mediated disease, it has been elucidated that acid producing and acid tolerant bacteria play pioneering roles in the process. Specifically, Streptococcus mutans houses major virulence pathways that enable it to thrive in the oral cavity and cause caries. This pathogen adheres to the tooth substrate, forms biofilms, resists external stress, produces acids, kills closely related species, and survives the acid as well as the host clearance mechanisms. For an organism to be able to confer such virulence, it requires a large and complex gene network which synergise to establish disease. In this review, we have charted how these multi-faceted genes control several caries-related functions of Streptococcus mutans. In a futuristic thinking approach, we also briefly discuss the potential roles of omics and machine learning, to ease the study of non-functional genes that may play a major role and enable the integration of experimental data.
Collapse
Affiliation(s)
- Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akshaya Udayashankar
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shogan Sugumar Swamy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Tamilarasi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
9
|
Turner ME, Huynh K, Carney OV, Gross D, Carroll RK, Ahn SJ, Rice KC. Genomic instability of TnSMU2 contributes to Streptococcus mutans biofilm development and competence in a cidB mutant. Microbiologyopen 2019; 8:e934. [PMID: 31599128 PMCID: PMC6925190 DOI: 10.1002/mbo3.934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Streptococcus mutans is a key pathogenic bacterium in the oral cavity and a primary contributor to dental caries. The S. mutans Cid/Lrg system likely contributes to tolerating stresses encountered in this environment as cid and/or lrg mutants exhibit altered oxidative stress sensitivity, genetic competence, and biofilm phenotypes. It was recently noted that the cidB mutant had two stable colony morphologies: a “rough” phenotype (similar to wild type) and a “smooth” phenotype. In our previously published work, the cidB rough mutant exhibited increased sensitivity to oxidative stress, and RNAseq identified widespread transcriptomic changes in central carbon metabolism and oxidative stress response genes. In this current report, we conducted Illumina‐based genome resequencing of wild type, cidB rough, and cidB smooth mutants and compared their resistance to oxidative and acid stress, biofilm formation, and competence phenotypes. Both cidB mutants exhibited comparable aerobic growth inhibition on agar plates, during planktonic growth, and in the presence of 1 mM hydrogen peroxide. The cidB smooth mutant displayed a significant competence defect in BHI, which was rescuable by synthetic CSP. Both cidB mutants also displayed reduced XIP‐mediated competence, although this reduction was more pronounced in the cidB smooth mutant. Anaerobic biofilms of the cidB smooth mutant displayed increased propidium iodide staining, but corresponding biofilm CFU data suggest this phenotype is due to cell damage and not increased cell death. The cidB rough anaerobic biofilms showed altered structure relative to wild type (reduced biomass and average thickness) which correlated with decreased CFU counts. Sequencing data revealed that the cidB smooth mutant has a unique “loss of read coverage” of ~78 kb of DNA, corresponding to the genomic island TnSMU2 and genes flanking its 3′ end. It is therefore likely that the unique biofilm and competence phenotypes of the cidB smooth mutant are related to its genomic changes in this region.
Collapse
Affiliation(s)
- Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Khanh Huynh
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - O'neshia V Carney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Dennis Gross
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Quantitative Proteomics Uncovers the Interaction between a Virulence Factor and Mutanobactin Synthetases in Streptococcus mutans. mSphere 2019; 4:4/5/e00429-19. [PMID: 31554721 PMCID: PMC6763767 DOI: 10.1128/msphere.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans. Streptococcus mutans, the primary etiological agent of tooth decay, has developed multiple adhesion and virulence factors which enable it to colonize and compete with other bacteria. The putative glycosyltransferase SMU_833 is important for the virulence of S. mutans by altering the biofilm matrix composition and cariogenicity. In this study, we further characterized the smu_833 mutant by evaluating its effects on bacterial fitness. Loss of SMU_833 led to extracellular DNA-dependent bacterial aggregation. In addition, the mutant was more susceptible to oxidative stress and less competitive against H2O2 producing oral streptococci. Quantitative proteomics analysis revealed that SMU_833 deficiency resulted in the significant downregulation of 10 proteins encoded by a biosynthetic gene cluster responsible for the production of mutanobactin, a compound produced by S. mutans which helps it survive oxidative stress. Tandem affinity purification demonstrated that SMU_833 interacts with the synthetic enzymes responsible for the production of mutanobactin. Similar to the smu_833 mutant, the deletion of the mutanobactin gene cluster rendered the mutant less competitive against H2O2-producing streptococci. Our studies revealed a new link between SMU_833 virulence and mutanobactin, suggesting that SMU_833 represents a new virulent target that can be used to develop potential anticaries therapeutics. IMPORTANCEStreptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans.
Collapse
|
11
|
Ricomini Filho AP, Khan R, Åmdal HA, Petersen FC. Conserved Pheromone Production, Response and Degradation by Streptococcus mutans. Front Microbiol 2019; 10:2140. [PMID: 31572344 PMCID: PMC6753979 DOI: 10.3389/fmicb.2019.02140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Streptococcus mutans, a bacterium with high cariogenic potential, coordinates competence for natural transformation and bacteriocin production via the XIP and CSP pheromones. CSP is effective in inducing bacteriocin responses but not competence in chemically defined media (CDM). This is in contrast to XIP, which is a strong inducer of competence in CDM but can also stimulate bacteriocin genes as a late response. Interconnections between the pathways activated by the two pheromones have been characterized in certain detail in S. mutans UA159, but it is mostly unknown whether such findings are representative for the species. In this study, we used bioassays based on luciferase reporters for the bacteriocin gene cipB and the alternative sigma factor sigX to investigate various S. mutans isolates for production and response to CSP and XIP pheromones in CDM. Similar to S. mutans UA159, endogenous CSP was undetectable in the culture supernatants of all tested strains. During optimization of the bioassay using the cipB reporter, we discovered that the activity of exogenous CSP used as a standard was reduced over time during S. mutans growth. Using a FRET-CSP reporter peptide, we found that S. mutans UA159 was able to degrade CSP, and that such activity was not significantly different in isogenic mutants with deletion of the protease gene htrA or the competence genes sigX, oppD, and comR. CSP cleavage was also detected in all the wild type strains, indicating that this is a conserved feature in S. mutans. For the XIP pheromone, endogenous production was observed in the supernatants of all 34 tested strains at peak concentrations in culture supernatants that varied between 200 and 26000 nM. Transformation in the presence of exogenous XIP was detected in all but one of the isolates. The efficiency of transformation varied, however, among the different strains, and for those with the highest transformation rates, endogenous XIP peak concentrations in the supernatants were above 2000 nM XIP. We conclude that XIP production and inducing effect on transformation, as well as the ability to degrade CSP, are conserved functions among different S. mutans isolates. Understanding the functionality and conservation of pheromone systems in S. mutans may lead to novel strategies to prevent or treat unbalances in oral microbiomes that may favor diseases.
Collapse
Affiliation(s)
| | - Rabia Khan
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Fernanda C. Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Kaspar JR, Walker AR. Expanding the Vocabulary of Peptide Signals in Streptococcus mutans. Front Cell Infect Microbiol 2019; 9:194. [PMID: 31245303 PMCID: PMC6563777 DOI: 10.3389/fcimb.2019.00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Streptococci, including the dental pathogen Streptococcus mutans, undergo cell-to-cell signaling that is mediated by small peptides to control critical physiological functions such as adaptation to the environment, control of subpopulation behaviors and regulation of virulence factors. One such model pathway is the regulation of genetic competence, controlled by the ComRS signaling system and the peptide XIP. However, recent research in the characterization of this pathway has uncovered novel operons and peptides that are intertwined into its regulation. These discoveries, such as cell lysis playing a critical role in XIP release and importance of bacterial self-sensing during the signaling process, have caused us to reevaluate previous paradigms and shift our views on the true purpose of these signaling systems. The finding of new peptides such as the ComRS inhibitor XrpA and the peptides of the RcrRPQ operon also suggests there may be more peptides hidden in the genomes of streptococci that could play critical roles in the physiology of these organisms. In this review, we summarize the recent findings in S. mutans regarding the integration of other circuits into the ComRS signaling pathway, the true mode of XIP export, and how the RcrRPQ operon controls competence activation. We also look at how new technologies can be used to re-annotate the genome to find new open reading frames that encode peptide signals. Together, this summary of research will allow us to reconsider how we perceive these systems to behave and lead us to expand our vocabulary of peptide signals within the genus Streptococcus.
Collapse
Affiliation(s)
- Justin R. Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
13
|
Junges R, Salvadori G, Chen T, Morrison DA, Petersen FC. Hidden Gems in the Transcriptome Maps of Competent Streptococci. Front Mol Biosci 2019; 5:116. [PMID: 30662898 PMCID: PMC6328492 DOI: 10.3389/fmolb.2018.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022] Open
Abstract
Natural transformation is regarded as an important mechanism in bacteria that allows for adaptation to different environmental stressors by ensuring genome plasticity. Since the discovery of this phenomenon in Streptococcus pneumoniae, remarkable progress has been made in the understanding of the molecular mechanisms and pathways coordinating this process. Recently, the advent of high-throughput sequencing allows the posing of questions that address the system at a larger scale but also allow for the creation of high-resolution maps of transcription. Thus, while much is already known about genetic competence in streptococci, recent studies continue to reveal intricate novel regulation pathways and components. In this perspective article, we highlight the use of transcriptional profiling and mapping as a valuable resource in the identification and characterization of “hidden gems” pertinent to the natural transformation system. Such strategies have recently been employed in a variety of different species. In S. mutans, for example, genome editing combined with the power of promoter mapping and RNA-Seq allowed for the identification of a link between the ComCDE and the ComRS systems, a ComR positive feedback loop mediated by SigX, and the XrpA peptide, encoded within sigX, which inhibits competence. In S. pneumoniae, a novel member of the competence regulon termed BriC was found to be directly under control of ComE and to promote biofilm formation and nasopharyngeal colonization but not competence. Together these new technologies enable us to discover new links and to revisit old pathways in the compelling study of natural genetic transformation.
Collapse
Affiliation(s)
- Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - I A Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| |
Collapse
|
15
|
Zou Z, Qin H, Brenner AE, Raghavan R, Millar JA, Gu Q, Xie Z, Kreth J, Merritt J. LytTR Regulatory Systems: A potential new class of prokaryotic sensory system. PLoS Genet 2018; 14:e1007709. [PMID: 30296267 PMCID: PMC6193735 DOI: 10.1371/journal.pgen.1007709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/18/2018] [Accepted: 09/23/2018] [Indexed: 01/28/2023] Open
Abstract
The most commonly studied prokaryotic sensory signal transduction systems include the one-component systems, phosphosignaling systems, extracytoplasmic function (ECF) sigma factor systems, and the various types of second messenger systems. Recently, we described the regulatory role of two separate sensory systems in Streptococcus mutans that jointly control bacteriocin gene expression, natural competence development, as well as a cell death pathway, yet they do not function via any of the currently recognized signal transduction paradigms. These systems, which we refer to as LytTR Regulatory Systems (LRS), minimally consist of two proteins, a transcription regulator from the LytTR Family and a transmembrane protein inhibitor of this transcription regulator. Here, we provide evidence suggesting that LRS are a unique uncharacterized class of prokaryotic sensory system. LRS exist in a basal inactive state. However, when LRS membrane inhibitor proteins are inactivated, an autoregulatory positive feedback loop is triggered due to LRS regulator protein interactions with direct repeat sequences located just upstream of the -35 sequences of LRS operon promoters. Uncharacterized LRS operons are widely encoded by a vast array of Gram positive and Gram negative bacteria as well as some archaea. These operons also contain unique direct repeat sequences immediately upstream of their operon promoters indicating that positive feedback autoregulation is a globally conserved feature of LRS. Despite the surprisingly widespread occurrence of LRS operons, the only characterized examples are those of S. mutans. Therefore, the current study provides a useful roadmap to investigate LRS function in the numerous other LRS-encoding organisms.
Collapse
Affiliation(s)
- Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hua Qin
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Amanda E. Brenner
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Jess A. Millar
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Qiang Gu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
16
|
Kaspar J, Shields RC, Burne RA. Competence inhibition by the XrpA peptide encoded within the comX gene of Streptococcus mutans. Mol Microbiol 2018; 109:345-364. [PMID: 29802741 DOI: 10.1111/mmi.13989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 01/06/2023]
Abstract
Streptococcus mutans displays complex regulation of natural genetic competence. Competence development in S. mutans is controlled by a peptide derived from ComS (XIP); which along with the cytosolic regulator ComR controls the expression of the alternative sigma factor comX, the master regulator of competence development. Recently, a gene embedded within the coding region of comX was discovered and designated xrpA (comX regulatory peptide A). XrpA was found to be an antagonist of ComX, but the mechanism was not established. In this study, we reveal through both genomic and proteomic techniques that XrpA is the first described negative regulator of ComRS systems in streptococci. Transcriptomic and promoter activity assays in the ΔxrpA strain revealed an up-regulation of genes controlled by both the ComR- and ComX-regulons. An in vivo protein crosslinking and in vitro fluorescent polarization assays confirmed that the N-terminal region of XrpA were found to be sufficient in inhibiting ComR-XIP complex binding to ECom-box located within the comX promoter. This inhibitory activity was sufficient for decreases in PcomX activity, transformability and ComX accumulation. XrpA serving as a modulator of ComRS activity ultimately results in changes to subpopulation behaviors and cell fate during competence activation.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Shields
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
17
|
Valdebenito B, Tullume-Vergara PO, González W, Kreth J, Giacaman RA. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm. Mol Oral Microbiol 2018; 33:168-180. [PMID: 29237244 DOI: 10.1111/omi.12209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 01/03/2023]
Abstract
During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries-free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H2 O2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H2 O2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H2 O2 . S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra-species communication.
Collapse
Affiliation(s)
- B Valdebenito
- Centro de Bioinformática y Simulación Molecular (CBSM), University of Talca, Talca, Chile
| | - P O Tullume-Vergara
- Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
| | - W González
- Centro de Bioinformática y Simulación Molecular (CBSM), University of Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Talca, Chile
| | - J Kreth
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - R A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| |
Collapse
|
18
|
Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci. Appl Environ Microbiol 2018; 84:AEM.01697-17. [PMID: 29079629 DOI: 10.1128/aem.01697-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 02/05/2023] Open
Abstract
Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H2O2, which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H2O2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H2O2 production by S. sanguinis and S. gordoniiS. sanguinis H2O2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H2O2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H2O2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H2O2IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H2O2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival, while others maintain their H2O2 production at a constant level. The differential control of H2O2 production provides important insights into the role of environmental conditions for growth competition of the oral flora.
Collapse
|
19
|
Effects of Arginine on Streptococcus mutans Growth, Virulence Gene Expression, and Stress Tolerance. Appl Environ Microbiol 2017; 83:AEM.00496-17. [PMID: 28526785 DOI: 10.1128/aem.00496-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a common constituent of oral biofilms and a primary etiologic agent of human dental caries. The bacteria associated with dental caries have potent abilities to produce organic acids from dietary carbohydrates and to grow and metabolize in acidic conditions. By contrast, many commensal bacteria produce ammonia through the arginine deiminase system (ADS), which moderates the pH of oral biofilms. Arginine metabolism by the ADS is a significant deterrent to the initiation and progression of dental caries. In this study, we observed how exogenously provided l-arginine affects the growth, the virulence properties, and the tolerance of environmental stresses of S. mutans Supplementation with 1.5% arginine (final concentration) had an inhibitory effect on the growth of S. mutans in complex and chemically defined media, particularly when cells were exposed to acid or oxidative stress. The genes encoding virulence factors required for attachment/accumulation (gtfB and spaP), bacteriocins (nlmA, nlmB, nlmD, and cipB), and the sigma factor required for competence development (comX) were downregulated during growth with 1.5% arginine. Deep sequencing of RNA (RNA-Seq) comparing the transcriptomes of S. mutans growing in chemically defined media with and without 1.5% arginine revealed differential expression of genes encoding ATP-binding cassette transporters, metal transporters, and constituents required for survival, metabolism, and biofilm formation. Therefore, the mechanisms of action by which arginine inhibits dental caries include direct adverse effects on multiple virulence-related properties of the most common human dental caries pathogen.IMPORTANCE Metabolism of the amino acid arginine by the arginine deiminase system (ADS) of certain oral bacteria raises the pH of dental plaque and provides a selective advantage to health-associated bacteria, thereby protecting the host from dental caries (cavities). Here, we examine the effects of arginine on the cavity-causing bacterium Streptococcus mutans We find that arginine negatively impacts the growth, the pathogenic potential, and the tolerance of environmental stresses in a way that is likely to compromise the ability of S. mutans to cause disease. Using genetic and genomic techniques, multiple mechanisms by which arginine exerts its influence on virulence-related properties of S. mutans are discovered. This report demonstrates that a primary mechanism of action by which arginine inhibits the initiation and progression of dental caries may be by reducing the pathogenic potential of S. mutans.
Collapse
|
20
|
Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 2017; 8:genes8010015. [PMID: 28067778 PMCID: PMC5295010 DOI: 10.3390/genes8010015] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci.
Collapse
|
21
|
Bachtiar EW, Bachtiar BM, Soejoedono RD, Wibawan IW, Afdhal A. Biological and Immunogenicity Property of IgY Anti S. mutans ComD. Open Dent J 2016; 10:308-14. [PMID: 27386013 PMCID: PMC4911422 DOI: 10.2174/1874210601610010308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Objective: This study aims to elucidate the effect of IgY anti ComD on the biological properties of Streptococcus mutans. (S. mutans) ComD is an interspecies quorum-sensing signaling receptor that plays an important role in biofilm formation by S. mutans. Materials and Methodology: Egg yolk IgY was produced by the immunization of chickens with a DNA vaccine containing the ComD DNA coding region. We evaluated the effect of the antibody on biofilm formation by S. mutans isolated from subjects with or without dental caries. We also assessed the immunoreactivity of the antibody against all isolates, and analyzed the protein profile of S. mutans by SDS-PAGE. Results: The ComD antibody was successfully induced in the hens’ eggs. It inhibited biofilm formation by all S. mutans isolates. In addition, the expression of some protein bands was affected after exposure to the antibody. Conclusion: IgY anti-S. mutans ComD reduces biofilm formation by this bacterium and alters the protein profile of S. mutans.
Collapse
Affiliation(s)
- E W Bachtiar
- Department of of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - B M Bachtiar
- Department of of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - R D Soejoedono
- Faculty of Veterinary Bogor, Institute of Agriculture, Bogor, Indonesia
| | - I W Wibawan
- Faculty of Veterinary Bogor, Institute of Agriculture, Bogor, Indonesia
| | - A Afdhal
- Department of of Oral Biology, Faculty of Dentistry, Oral Sciences Research Center, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
22
|
Liu T, Xue S, Wang L. ABC Transporter CslAB, a Stabilizer of ComCDE Signal in Streptococcus mutans. Jundishapur J Microbiol 2015; 8:e22965. [PMID: 26468366 PMCID: PMC4601000 DOI: 10.5812/jjm.22965v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022] Open
Abstract
Background: In Streptococcus mutans, ComCDE, a peptide-induced two-component signal transduction system, forms a closed signal transduction, and even if difunctional ComE closes this signal at its headstream to avoid its infinite amplification, it is not enough for ComE to work in a concentration-dependent manner. CslAB has a chance to regulate ComCDE by controlling extracellular competence-stimulating peptide (CSP) concentration through its processing and secretion. Objectives: To first confirm the binding properties of cslAB promoter (PcslAB) with ComE, then to uncover in vivo need of cslAB expression, and finally to unveil the role of CslAB. Materials and Methods: Electrophoretic mobility shift assay was used to confirm the binding properties of PcslAB with ComE. In vivo cslAB transcription was detected by β-galactosidase activity because its gene has been fused to cslAB operon, and finally the role of CslAB was reviewed. Results: PcslAB is a weak promoter responding to ComE and its binding appears to be negative cooperative. Although PcslAB is partially controlled by ComCDE, it can respond to ComCDE regulation. Supported by the obtained molecular evidence, CslAB acts as a stabilizer of ComCDE signal on the patterns of its expression. Conclusions: PcslAB is partially controlled by ComCDE. CslAB is a stabilizer of ComCDE signal to ensure that ComE works in a concentration-dependent manner.
Collapse
Affiliation(s)
- Tianlei Liu
- Department of Biotechnology, School of Food and Bioengineering, Jiangsu University, Zhenjiang, China
- Corresponding author: Tianlei Liu, Department of Biotechnology, School of Food and Bioengineering, Jiangsu University, Zhenjiang, China. Tel: +86-51188797059, Fax: +86-51188780201, E-mail:
| | - Shoubin Xue
- The First People’s Hospital of Lanzhou City, Lanzhou, China
| | - Liang Wang
- Department of Biotechnology, School of Food and Bioengineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Crowley PJ, Brady LJ. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production. Mol Oral Microbiol 2015; 31:59-77. [PMID: 26386361 DOI: 10.1111/omi.12130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.
Collapse
Affiliation(s)
- P J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L J Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Reck M, Tomasch J, Wagner-Döbler I. The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in Streptococcus mutans. PLoS Genet 2015; 11:e1005353. [PMID: 26158727 PMCID: PMC4497675 DOI: 10.1371/journal.pgen.1005353] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/10/2015] [Indexed: 01/13/2023] Open
Abstract
Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its natural habitat. Streptococcus mutans is a bacterium of the human dental plaque that contributes to caries development. It controls two important survival mechanisms via a cell-density dependent communication system (quorum sensing): The synthesis of peptide antibiotics, and of a membrane apparatus for genetic competence, i.e. the ability to take up external DNA and integrate it into its own genome. S. mutans synthesizes two different signalling peptides to this end. It has remained elusive, how exactly these signals are propagated within the cell and why only a fraction of the population becomes competent. To actually observe under the microscope which bacterium in the population is activated, and which genes are required for the activation, we constructed strains of S. mutans that reported on the transcription of a gene by starting to fluoresce green. We even constructed strains that reported on two genes simultaneously, by fluorescing either green or blue or both. With these tools, and by additionally knocking out or modifying key genes as needed, we investigated the complete signaling cascade under various conditions. Thus we discovered a central regulatory switch. S. mutans makes sure that external DNA is available when it becomes genetically competent–by killing cells in the environment.
Collapse
Affiliation(s)
- Michael Reck
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
- * E-mail:
| | - Jürgen Tomasch
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
| |
Collapse
|
25
|
Kaur G, Rajesh S, Princy SA. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks. Indian J Microbiol 2015; 55:349-56. [PMID: 26543259 DOI: 10.1007/s12088-015-0534-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| | - Shrinidhi Rajesh
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| |
Collapse
|
26
|
Kaspar J, Ahn SJ, Palmer SR, Choi SC, Stanhope MJ, Burne RA. A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance. Mol Microbiol 2015; 96:463-82. [PMID: 25620525 DOI: 10.1111/mmi.12948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Streptococcus mutans displays complex regulation of genetic competence, with ComX controlling late competence gene transcription. The rcrRPQ operon has been shown to link oxidative stress tolerance, (p)ppGpp metabolism and competence in S. mutans. Importantly, an rcrR polar (ΔrcrR-P) mutant is hyper-transformable, but an rcrR non-polar (ΔrcrR-NP) mutant cannot be transformed. Transcriptome comparisons of the rcrR mutants using RNA-Seq and quantitative real-time polymerase chain reaction revealed little expression in the 5' region of comX in ΔrcrR-NP, but high level expression in the 3' region. Northern blotting with comX probes revealed two distinct transcripts in the ΔrcrR-P and ΔrcrR-NP strains, and 5' Rapid Amplification of cDNA Ends mapped the 5' terminus of the shorter transcript to nt +140 of the comX structural gene, where a unique 69-aa open reading frame, termed XrpA, was encoded in a different reading frame than ComX. Two single-nucleotide substitution mutants (comX::T162C; comX::T210A) were introduced to disrupt XrpA without affecting the sequence of ComX. When the mutations were in the ΔrcrR-NP genetic background, ComX production and transformation were restored. Overexpression of xrpA led to impaired growth in aerobic conditions and decreased transformability. These results reveal an unprecedented mechanism for competence regulation and stress tolerance by a gene product encoded within the comX gene that appears unique to S. mutans.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | | | | | | | | | | |
Collapse
|
27
|
Seaton K, Ahn SJ, Burne RA. Regulation of competence and gene expression in Streptococcus mutans by the RcrR transcriptional regulator. Mol Oral Microbiol 2014; 30:147-159. [PMID: 25146832 DOI: 10.1111/omi.12079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 01/19/2023]
Abstract
An intimate linkage between the regulation of biofilm formation, stress tolerance and genetic competence exists in the dental caries pathogen Streptococcus mutans. The rcrRPQ genes encode ABC exporters (RcrPQ) and a MarR-family transcriptional repressor of the rcr operon (RcrR) that play a dominant role in the regulation of the development of genetic competence and connect competence with stress tolerance and (p)ppGpp production in S. mutans. Here we identify the target for efficient RcrR binding in the rcr promoter region using purified recombinant RcrR (rRcrR) protein in electrophoretic mobility shift assays and show that DNA fragments carrying mutations in the binding region were not bound as efficiently by rRcrR in vitro. Mutations in the RcrR binding site impacted expression from the rcrR promoter in vivo and elicited changes in transformation efficiency, competence gene expression, and growth inhibition by competence-stimulating peptide; even when the changes in rcrRPQ transcription were minor. An additional mechanistic linkage of RcrR with competence and (p)ppGpp metabolism was identified by showing that the rRcrR protein could bind to the promoter regions of comX, comYA and relP, although the binding was not as efficient as to the rcrRPQ promoter under the conditions tested. Hence, tightly controlled autogenous regulation of the rcrRPQ operon by RcrR binding to specific target sites is essential for cellular homeostasis, and RcrR contributes to the integration of genetic competence, (p)ppGpp metabolism, and acid and oxidative stress tolerance in S. mutans through both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Kinda Seaton
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
28
|
Cheng X, Xu X, Chen J, Zhou X, Cheng L, Li M, Li J, Wang R, Jia W, Li YQ. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure. FEMS Microbiol Lett 2014; 359:94-101. [PMID: 25109245 DOI: 10.1111/1574-6968.12573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Dobler IW, Zeng AP. Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton. BMC Genomics 2014; 15:362. [PMID: 24884510 PMCID: PMC4048456 DOI: 10.1186/1471-2164-15-362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/17/2014] [Indexed: 11/26/2022] Open
Abstract
Background Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out. Results The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network. Conclusion The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-362) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene W Dobler
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073 Hamburg, Germany.
| | | |
Collapse
|
30
|
A biochemical analysis of the interaction of Porphyromonas gingivalis HU PG0121 protein with DNA. PLoS One 2014; 9:e93266. [PMID: 24681691 PMCID: PMC3969353 DOI: 10.1371/journal.pone.0093266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022] Open
Abstract
K-antigen capsule, a key virulence determinant of the oral pathogen Porphyromonas gingivalis, is synthesized by proteins encoded in a series of genes transcribed as a large polycistronic message. Previously, we identified a 77-base pair inverted repeat region with the potential to form a large stem-loop structure at the 5' end of this locus. PG0121, one of two genes flanking the capsule operon, was found to be co-transcribed with the operon and to share high similarity to the DNA binding protein HU from Escherichia coli. A null mutation in PG0121 results in down-regulation of transcription of the capsule synthesis genes and production of capsule. Furthermore, we have also shown that PG0121 gene can complement multiple deficiencies in a strain of E. coli that is deficient for both the alpha and beta subunits of HU. Here, we examined the biochemical properties of the interaction of PG0121 to DNA with the emphasis on the kinds of nucleic acid architectures that may be encountered at the 77-bp inverted repeat. We have concluded that although some DNA binding characteristics are shared with E. coli HU, HU PG0121 also shows some distinct characteristics that set it apart from other HU-like proteins tested to date. We discuss our results in the context of how PG0121 may affect the regulation of the K-antigen capsule expression.
Collapse
|
31
|
Song L, Wang W, Conrads G, Rheinberg A, Sztajer H, Reck M, Wagner-Döbler I, Zeng AP. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing. BMC Genomics 2013; 14:430. [PMID: 23805886 PMCID: PMC3751929 DOI: 10.1186/1471-2164-14-430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems, Technical University Hamburg Harburg, Hamburg Harburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gray B, Hall P, Gresham H. Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. SENSORS 2013; 13:5130-66. [PMID: 23598501 PMCID: PMC3673130 DOI: 10.3390/s130405130] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery.
Collapse
Affiliation(s)
- Brian Gray
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-505-265-1711 (ext. 2841)
| | - Pamela Hall
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
| | - Hattie Gresham
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail:
| |
Collapse
|
33
|
|
34
|
Hossain MS, Biswas I. An extracelluar protease, SepM, generates functional competence-stimulating peptide in Streptococcus mutans UA159. J Bacteriol 2012; 194:5886-96. [PMID: 22923597 PMCID: PMC3486099 DOI: 10.1128/jb.01381-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 02/04/2023] Open
Abstract
Cell-cell communication in Gram-positive bacteria often depends on the production of extracellular peptides. The cariogenic bacterium Streptococcus mutans employs so-called competence-stimulating peptide (CSP) to stimulate mutacin (bacteriocin) production and competence development through the activation of the ComDE two-component pathway. In S. mutans, CSP is secreted as a 21-residue peptide; however, mass spectrometric analysis of culture supernatant indicates the presence of an 18-residue proteolytically cleaved species. In this study, using a transposon mutagenesis screening, we identified a cell surface protease that is involved in the processing of 21-residue CSP to generate the 18-residue CSP. We named this protease SepM for streptococcal extracellular protease required for mutacin production. We showed that the truncated 18-residue peptide is the biologically active form and that the specific postexport cleavage is a prerequisite to activate the ComDE two-component signal transduction pathway. We also showed that the CSP and the mutacins are exported outside the cell by the same ABC transporter, NlmTE. Our study further confirmed that the ComDE two-component system is absolutely necessary for mutacin production in S. mutans.
Collapse
|
35
|
Wenderska IB, Lukenda N, Cordova M, Magarvey N, Cvitkovitch DG, Senadheera DB. A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol Lett 2012; 336:104-12. [PMID: 22900705 DOI: 10.1111/j.1574-6968.2012.02660.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022] Open
Abstract
In Streptococcus mutans, ComX, an alternative sigma factor, drives the transcription of the 'late-competence genes' required for genetic transformation. ComX activity is modulated by inputs from two signaling pathways, ComDE and ComRS, that respond to the competence-stimulating peptide (CSP) and the SigX-inducing peptide (XIP), respectively. In particular, the comRS, encoding the ComR regulatory protein and the ComS precursor to XIP, functions as the proximal regulatory system for ComX activation. Here, we investigated the individual and combinatorial effects of CSP and XIP on genetic transformation and cell killing of S. mutans. Our transformation results confirm the recent reports by Mashburn-Warren et al. and Desai et al. that XIP functions optimally in a chemically defined medium, whereas its activity is inhibited when cells are grown in complex medium. Using tandem mass spectrometry (MS/MS) fragmentation, a drastic reduction in XIP levels in ComX-deficient cultures were observed, suggesting a ComX-mediated positive feedback mechanism for XIP synthesis. Our evaluation of cell viability in the presence of 10 μM XIP resulted in killing nearly 82% of the population. The killing activity was shown to be dependent on the presence of comR/S and comX. These results suggest a novel role for XIP as a compelling effector of cell death. This is the first report that demonstrates a role for XIP in cell killing.
Collapse
Affiliation(s)
- Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Federle MJ, Morrison DA. One if by land, two if by sea: signalling to the ranks with CSP and XIP. Mol Microbiol 2012; 86:241-5. [PMID: 22958130 DOI: 10.1111/mmi.12029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2012] [Indexed: 11/28/2022]
Abstract
In many streptococci, quorum sensing utilizes secreted, linear peptides that engage cognate receptors to coordinate gene expression among members of a local population. Streptococcus mutans employs the secreted peptides CSP and XIP to stimulate production of antimicrobial bacteriocins and to induce development of competence for genetic transformation. Recent progress in the field reveals that these pathways not only monitor the presence of signal emitters but also sense environmental factors. Both kinds of information are integrated by regulatory networks that then generate multiple outcomes, even among parallel cells growing in identical conditions. In this issue of Molecular Microbiology, Son and co-workers investigate how two medium types shape cellular responses to CSP and XIP pheromones in individuals across a population. Their findings characterize restrictive properties of media differing in peptidic fragment content and reveal unusual signalling properties that contribute to bimodal responses of gene expression.
Collapse
Affiliation(s)
- Michael J Federle
- Center for Pharmaceutical Biotechnology, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL 60607, USA.
| | | |
Collapse
|
37
|
Burkholderia xenovorans RcoM(Bx)-1, a transcriptional regulator system for sensing low and persistent levels of carbon monoxide. J Bacteriol 2012; 194:5803-16. [PMID: 22923594 DOI: 10.1128/jb.01024-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-component RcoM transcription factor couples an N-terminally bound heme cofactor with a C-terminal "LytTR" DNA-binding domain. Here the RcoM(Bx)-1 protein from Burkholderia xenovorans LB400 was heterologously expressed and then purified in a form with minimal bound CO (~10%) and was found to stably bind this effector with a nanomolar affinity. DNase I protection assays demonstrated that the CO-associated form binds with a micromolar affinity to two ~60-bp DNA regions, each comprised of a novel set of three direct-repeat binding sites spaced 21 bp apart on center. Binding to each region was independent, while binding to the triplet binding sites within a region was cooperative, depended upon spacing and sequence, and was marked by phased DNase I hyperactivity and protection patterns consistent with considerable changes in the DNA conformation of the nucleoprotein complex. Each protected binding site spanned a conserved motif (5'-TTnnnG-3') that was present, in triplicate, in putative RcoM-binding regions of more than a dozen organisms. In vivo screens confirmed the functional importance of the conserved "TTnnnG" motif residues and their triplet arrangement and were also used to determine an improved binding motif [5'-CnnC(C/A)(G/A)TTCAnG-3'] that more closely corresponds to canonical LytTR domain/DNA-binding sites. A low-affinity but CO-dependent binding of RcoM(Bx)-1 to a variety of DNA probes was demonstrated in vitro. We posit that for the RcoM(Bx)-1 protein, the high CO affinity combined with multiple low-affinity DNA-binding events constitutes a transcriptional "accumulating switch" that senses low but persistent CO levels.
Collapse
|
38
|
Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J Bacteriol 2012; 194:3774-80. [PMID: 22609913 DOI: 10.1128/jb.00337-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans develops competence for genetic transformation in response to regulatory circuits that sense at least two peptide pheromones. One peptide, known as CSP, is sensed by a two-component signal transduction system through a membrane receptor, ComD. The other, derived from the primary translation product ComS, is thought to be sensed by an intracellular receptor, ComR, after uptake by oligopeptide permease. To allow study of this process in a medium that does not itself contain peptides, development of competence was examined in the chemically defined medium (CDM) described by van de Rijn and Kessler (Infect. Immun. 27:444, 1980). We confirmed a previous report that in this medium comS mutants of strain UA159 respond to a synthetic peptide comprising the seven C-terminal residues of ComS (ComS(11-17)) by increasing expression of the alternative sigma factor SigX, which in turn allows expression of competence effector genes. This response provided the basis for a bioassay for the ComS pheromone in the 100 to 1,000 nM range. It was further observed that comS(+) (but not comS mutant) cultures developed a high level of competence in the late log and transition phases of growth in this CDM without the introduction of any synthetic stimulatory peptide. This endogenous competence development was accompanied by extracellular release of one or more signals that complemented a comS mutation at levels equivalent to 1 μM synthetic ComS(11-17).
Collapse
|
39
|
Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J Bacteriol 2012; 194:3781-8. [PMID: 22609914 DOI: 10.1128/jb.00624-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The competence-stimulating peptide (CSP) and the sigX-inducing peptide (XIP) are known to induce Streptococcus mutans competence for genetic transformation. For both pheromones, direct identification of the native peptides has not been accomplished. The fact that extracellular XIP activity was recently observed in a chemically defined medium devoid of peptides, as mentioned in an accompanying paper (K. Desai, L. Mashburn-Warren, M. J. Federle, and D. A. Morrison, J. Bacteriol. 194:3774-3780, 2012), provided ideal conditions for native XIP identification. To search for the XIP identity, culture supernatants were filtered to select for peptides of less than 3 kDa, followed by C(18) extraction. One peptide, not detected in the supernatant of a comS deletion mutant, was identified by tandem mass spectrometry (MS/MS) fragmentation as identical to the ComS C-terminal sequence GLDWWSL. ComS processing did not require Eep, a peptidase involved in processing or import of bacterial small hydrophobic peptides, since eep deletion had no inhibitory effect on XIP production or on synthetic XIP response. We investigated whether extracellular CSP was also produced. A reporter assay for CSP activity detection, as well as MS analysis of supernatants, revealed that CSP was not present at detectable levels. In addition, a mutant with deletion of the CSP-encoding gene comC produced endogenous XIP levels similar to those of a nondeletion mutant. The results indicate that XIP pheromone production is a natural phenomenon that may occur in the absence of natural CSP pheromone activity and that the heptapeptide GLDWWSL is an extracellular processed form of ComS, possibly the active XIP pheromone. This is the first report of direct identification of a ComR/ComS pheromone.
Collapse
|
40
|
Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics 2012; 13:128. [PMID: 22475007 PMCID: PMC3353171 DOI: 10.1186/1471-2164-13-128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens. RESULTS HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments. CONCLUSIONS Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans. J Bacteriol 2012; 194:1307-16. [PMID: 22228735 DOI: 10.1128/jb.06071-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The VicRK two-component signaling system modulates biofilm formation, genetic competence, and stress tolerance in Streptococcus mutans. We show here that the VicRK modulates bacteriocin production and cell viability, in part by direct modulation of competence-stimulating peptide (CSP) production in S. mutans. Global transcriptome and real-time transcriptional analysis of the VicK-deficient mutant (SmuvicK) revealed significant modulation of several bacteriocin-related loci, including nlmAB, nlmC, and nlmD (P < 0.001), suggesting a role for the VicRK in producing mutacins IV, V, and VI. Bacteriocin overlay assays revealed an altered ability of the vic mutants to kill related species. Since a well-conserved VicR binding site (TGTWAH-N(5)-TGTWAH) was identified within the comC coding region, we confirmed VicR binding to this sequence using DNA footprinting. Overexpression of the vic operon caused growth-phase-dependent repression of comC, comDE, and comX. In the vic mutants, transcription of nlmC/cipB encoding mutacin V, previously linked to CSP-dependent cell lysis, as well as expression of its putative immunity factor encoded by immB, were significantly affected relative to the wild type (P < 0.05). In contrast to previous reports that proposed a hyper-resistant phenotype for the VicK mutant in cell viability, the release of extracellular genomic DNA was significantly enhanced in SmuvicK (P < 0.05), likely as a result of increased autolysis compared with the parent. The drastic influence of VicRK on cell viability was also demonstrated using vic mutant biofilms. Taken together, we have identified a novel regulatory link between the VicRK and ComDE systems to modulate bacteriocin production and cell viability of S. mutans.
Collapse
|
42
|
Oligomerization of the response regulator ComE from Streptococcus mutans is affected by phosphorylation. J Bacteriol 2011; 194:1127-35. [PMID: 22210762 DOI: 10.1128/jb.06565-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
Collapse
|
43
|
Abstract
Streptococcus mutans is generally recognized as a causative agent of human dental caries. The production of mutacins (bacteriocins) by S. mutans is considered to be an important factor in the colonization and establishment of S. mutans in the dental biofilm. Two types of mutacins have been characterized: the lantibiotics and the non-lantibiotics. The lantibiotics generally have a wider spectrum of activity than the non-lantibiotics, which make them attractive targets for development into new antimicrobial modalities. The non-lantibiotics are much more prevalent among strains of S. mutans and play a significant role in both community-level and population-level interactions in the dental biofilm. These interactions are directly mediated through the ComCDE two-component system and the newly characterized LytTR Regulation Systems HdrRM and BrsRM. These systems coordinate natural competence development and mutacin production as a means to acquire transforming DNA either by killing closely related streptococcal species in the vicinity of S. mutans, or through an altruistic suicide mechanism among a subpopulation of competent cells within the S. mutans community. As more S. mutans strains are sequenced, it is anticipated that additional mutacins with novel functions will be discovered, which may yield further insights into the ecological role of mutacins within the oral biofilm.
Collapse
Affiliation(s)
- J Merritt
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
44
|
Kajfasz JK, Abranches J, Lemos JA. Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans. MICROBIOLOGY-SGM 2011; 157:2880-2890. [PMID: 21816882 DOI: 10.1099/mic.0.052407-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in Streptococcus mutans are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in S. mutans. In a ΔclpP strain, 288 genes showed significant changes in relative transcript amounts (P≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a ΔclpX strain, 113 (47 %) of which also appeared in the ΔclpP microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δclp strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides (glg genes) and malolactic fermentation (mle genes). Enhanced expression of glg and mle genes in ΔclpP and ΔclpX strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δclp strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δclp strains. Collectively, our results reveal the broad scope of ClpXP regulation in S. mutans homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.
Collapse
Affiliation(s)
- Jessica K Kajfasz
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacqueline Abranches
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - José A Lemos
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
45
|
Smith EG, Spatafora GA. Gene regulation in S. mutans: complex control in a complex environment. J Dent Res 2011; 91:133-41. [PMID: 21743034 DOI: 10.1177/0022034511415415] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dental caries is a chronic infectious disease of multifactorial etiology that derives from the interplay among cariogenic bacteria on the dentition, the host diet, and other environmental exposures. Streptococcus mutans proliferates as a biofilm on the tooth surface, where it obtains nutrients and metabolizes fermentable dietary carbohydrates. The accumulation of lactic acid as a by-product of fermentation results in acidification of the plaque biofilm and demineralization of tooth enamel, marking the onset of decay. The ability of S. mutans to respond to environmental stresses presented by salivary flow, acid pH, oxidative stress, and changes in carbohydrate source and availability is essential for its survival and predominance in caries lesions. Importantly, S. mutans has evolved a network of regulators to integrate its cellular response to environmental change. Herein we describe the latest insights into global gene regulation in S. mutans, including mechanisms of signal transduction, carbon catabolite repression, and quorum-sensing. An improved understanding of these regulatory networks can provide a basis for novel therapeutic applications aimed at treating and/or preventing caries.
Collapse
Affiliation(s)
- E G Smith
- Middlebury College, Department of Biology, 276 Bicentennial Way, MBH354, Middlebury, VT 05753, USA
| | | |
Collapse
|
46
|
Nicolas GG, Lavoie MC. [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol 2011; 57:1-20. [PMID: 21217792 DOI: 10.1139/w10-095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human oral microbial biota represents a highly diverse biofilm. Twenty-five species of oral streptococci inhabit the human oral cavity and represent about 20 % of the total oral bacteria. Taxonomy of these bacteria is complex and remains provisional. Oral streptococci encompass friends and foes bacteria. Each species has developed specific properties for colonizing the different oral sites subjected to constantly changing conditions, for competing against competitors, and for resisting external agressions (host immune system, physico-chemical shocks, and mechanical frictions). Imbalance in the indigenous microbial biota generates oral diseases, and under proper conditions, commensal streptococci can switch to opportunistic pathogens that initiate disease in and damage to the host. The group of "mutans streptococci" was described as the most important bacteria related to the formation of dental caries. Streptococcus mutans, although naturally present among the human oral microbiota, is the microbial species most strongly associated with carious lesions. This minireview describes the oral streptococci ecology and their biofilm life style by focusing on the mutans group, mainly S. mutans. Virulence traits, interactions in the biofilm, and influence of S. mutans in dental caries etiology are discussed.
Collapse
Affiliation(s)
- Guillaume G Nicolas
- Département de biochimie microbiologie et bioinformatique, Université Laval, Québec, Canada.
| | | |
Collapse
|
47
|
Characterization of DNA binding sites of the ComE response regulator from Streptococcus mutans. J Bacteriol 2011; 193:3642-52. [PMID: 21602345 DOI: 10.1128/jb.00155-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.
Collapse
|
48
|
Kitagawa N, Shiota S, Shibata Y, Takeshita T, Yamashita Y. Characterization of MbrC involved in bacitracin resistance in Streptococcus mutans. FEMS Microbiol Lett 2011; 318:61-7. [PMID: 21306428 DOI: 10.1111/j.1574-6968.2011.02238.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Streptococcus mutans, a major etiological agent of dental caries, is resistant to bacitracin. Microarray analysis revealed that mbrA and mbrB, encoding a putative ATP-binding cassette transporter, are prominently induced in the presence of bacitracin. On the basis of the latest report that MbrC, a putative response regulator in a two-component signaling system, binds the promoter region of mbrA and thus regulates its transcription, we cut into the mechanism by generating a mutant MbrC (D(54) N-MbrC) that substituted asparagine for aspartate at position 54, the predicted phosphorylation site. MbrC, but not the mutant D(54) N-MbrC, showed affinity for a DNA probe that contained the hypothetical mbrA promoter sequence. Furthermore, we introduced a point mutation (D(54) N-MbrC) into UA159; this mutant strain exhibited neither mbrA induction nor resistance in the presence of bacitracin. These data suggest that the aspartate residue at position 54 of MbrC is a promising candidate for phosphorylation in a bacitracin-sensing system and indispensable for S. mutans bacitracin resistance.
Collapse
Affiliation(s)
- Norio Kitagawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
49
|
Subpopulation-specific transcriptome analysis of competence-stimulating-peptide-induced Streptococcus mutans. J Bacteriol 2011; 193:1863-77. [PMID: 21317319 DOI: 10.1128/jb.01363-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Competence-stimulating-peptide (CSP)-mediated competence development in Streptococcus mutans is a transient and biphasic process, since only a subpopulation induces the expression of ComX in the presence of CSP, and the activation of the DNA uptake machinery in this fraction shuts down ~3 to 4 h postinduction. Here, we combine for the first time, to our knowledge, the bacterial flow-cytometric sorting of cells and subpopulation-specific transcriptome analysis of both the competent and noncompetent fraction of CSP-treated S. mutans cells. Sorting was guided by a ComX-green fluorescent protein (ComX-GFP) reporter, and the transcriptome analysis demonstrated the successful combination of both methods, because a strong enrichment of transcripts for comX and its downstream genes was achieved. Three two-component systems were expressed in the competent fraction, and among them was ComDE. Moreover, the recently identified regulator system ComR/S was expressed exclusively in the competent fraction. In contrast, the expression of bacteriocin-related genes was at the same level in all cells. GFP reporter strains for ComE and CipB (mutacin V) confirmed this expression pattern on the single-cell level. Fluorescence microscopy revealed that some ComX-expressing cells committed autolysis in an early stage of competence initiation. In viable ComX-expressing cells, the uptake of DNA could be shown on the single-cell level. This study demonstrates that all cells in the population respond to CSP through the activation of bacteriocin-related genes. Some of these cells start to activate ComX expression but then segregate into two subpopulations, one becoming competent and another one that lyses, resulting in intrapopulation diversity.
Collapse
|
50
|
Xie Z, Okinaga T, Niu G, Qi F, Merritt J. Identification of a novel bacteriocin regulatory system in Streptococcus mutans. Mol Microbiol 2010; 78:1431-47. [PMID: 21143316 DOI: 10.1111/j.1365-2958.2010.07417.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, we described the function of an uncharacterized two-gene regulatory system consisting of a LytTR family transcription regulator and a putative membrane protein, which we referred to as the hdrRM operon. In this study, we determined that the HdrRM system controls the expression of an analogous uncharacterized regulatory system annotated as SMU.2080 and SMU.2081. Like hdrRM, the SMU.2080-2081 operon encodes a LytTR family transcription regulator and putative membrane protein, which we now refer to as BrsR and BrsM respectively. Examination of the regulatory mechanism of the BrsRM system suggests that BrsM serves to antagonize the function of the transcription regulator BrsR. Further analyses of the regulatory role of BrsR determined that it functions as a transcription activator for a variety of bacteriocins and bacteriocin-related genes. In vitro electromobility shift assays confirmed that BrsR binds to the promoter regions of several bacteriocin genes and requires the presence of a LytTR family consensus direct repeat in order to stably bind DNA. In addition, we identified a novel regulatory scheme in which both the HdrRM and BrsRM systems coregulate each other and ultimately determine whether bacteriocin production will inhibit competitor organisms or result in lethality to the producer.
Collapse
Affiliation(s)
- Zhoujie Xie
- Department of Oral Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|