1
|
Yusuf B, Wang S, Alam MS, Zhang J, Liu Z, Lu Z, Ding J, Chiwala G, Gao Y, Fang C, Khan SA, Tian X, Islam MM, Hameed HMA, Maslov DA, Zhong N, Hu J, Zhang T. Investigating the role of MAB_1915 in intrinsic resistance to multiple drugs in Mycobacterium abscessus. Microbiol Spectr 2024; 12:e0397423. [PMID: 39162545 PMCID: PMC11448072 DOI: 10.1128/spectrum.03974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
The increasing clinical significance of Mycobacterium abscessus is owed to its innate high-level, broad-spectrum resistance to antibiotics and therefore rapidly evolves as an important human pathogen. This warrants the identification of novel targets for aiding the discovery of new drugs or drug combinations to treat M. abscessus infections. This study is inspired by the drug-hypersensitive profile of a mutant M. abscessus (U14) with transposon insertion in MAB_1915. We validated the role of MAB_1915 in intrinsic drug resistance in M. abscessus by constructing a selectable marker-free in-frame deletion in MAB_1915 and complementing the mutant with the same or extended version of the gene and then followed by drug susceptibility testing. Judging by the putative function of MAB_1915, cell envelope permeability was studied by ethidium bromide accumulation assay and susceptibility testing against dyes and detergents. In this study, we established genetic evidence of the role of MAB_1915 in intrinsic resistance to rifampicin, rifabutin, linezolid, clarithromycin, vancomycin, and bedaquiline. Disruption of MAB_1915 has also been observed to cause a significant increase in cell envelope permeability in M. abscessus. Restoration of resistance is observed to depend on at least 27 base pairs upstream of the coding DNA sequence of MAB_1915. MAB_1915 could therefore be associated with cell envelope permeability, and hence its role in intrinsic resistance to multiple drugs in M. abscessus, which presents it as a novel target for future development of effective antimicrobials to overcome intrinsic drug resistance in M. abscessus. IMPORTANCE This study reports the role of a putative fadD (MAB_1915) in innate resistance to multiple drugs by M. abscessus, hence identifying MAB_1915 as a valuable target and providing a baseline for further mechanistic studies and development of effective antimicrobials to check the high level of intrinsic resistance in this pathogen.
Collapse
Affiliation(s)
- Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Ziwen Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Gift Chiwala
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Pathology, Department of Pathobiology, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dmitry A Maslov
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxing Hu
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| |
Collapse
|
2
|
Yan M, Ma M, Chen R, Cao Y, Zhang W, Liu X. Structural basis for the development of potential inhibitors targeting FadD23 from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2023; 79:208-216. [PMID: 37522751 PMCID: PMC10416763 DOI: 10.1107/s2053230x23005836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Sulfolipid-1 (SL-1) is a lipid that is abundantly found in the cell wall of Mycobacterium tuberculosis (Mtb). MtbFadD23 is crucial in the SL-1 synthesis pathway. Previously, 5'-O-[N-(11-phenoxyundecanoyl)sulfamoyl]adenosine (PhU-AMS) has been shown to be a general inhibitor of fatty-acid-adenylating enzymes (FadDs) in Mtb. However, the fatty acyl-AMP ligase (FAAL) class of FadDs, which includes MtbFadD23, appears to be functionally nonredundant in the production of multiple fatty acids. In this study, the ability of PhU-AMS to bind to MtbFadD23 was examined under in vitro conditions. The crystal structure of the MtbFadD23-PhU-AMS complex was determined at a resolution of 2.64 Å. Novel features were identified by structural analysis and comparison. Although PhU-AMS could bind to MtbFadD23, it did not inhibit the FAAL adenylation activity of MtbFadD23. However, PhU-AMS improved the main Tm value in a differential scanning fluorimetry assay, and a structural comparison of MtbFadD23-PhU-AMS with FadD32 and PA1221 suggested that PhU-AMS blocks the loading of the acyl chain onto Pks2. This study sheds light on the structure-based design of specific inhibitors of MtbFadD23 and general inhibitors of FAALs.
Collapse
Affiliation(s)
- Mengrong Yan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Mengyuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Rong Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Yangzi Cao
- College of Pharmacy, Nankai University, Tianjin, People’s Republic of China
| | - Wei Zhang
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, People’s Republic of China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
3
|
Yan M, Cao L, Zhao L, Zhou W, Liu X, Zhang W, Rao Z. The Key Roles of Mycobacterium tuberculosis FadD23 C-terminal Domain in Catalytic Mechanisms. Front Microbiol 2023; 14:1090534. [PMID: 36896429 PMCID: PMC9989471 DOI: 10.3389/fmicb.2023.1090534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Sulfolipid-1 (SL-1) is located in the Mycobacterium tuberculosis (M. tb) cell wall, and is essential for pathogen virulence and intracellular growth. Multiple proteins (e.g., Pks2, FadD23, PapA1, and MmpL8) in the SL-1 synthesis pathway can be treated as drug targets, but, to date, their structures have not been solved. The crystal structures of FadD23 bound to ATP or hexadecanoyl adenylate was determined in this study. We have also investigated long-chain saturated fatty acids as biological substrates of FadD23 through structural, biological, and chemical analyses. The mutation at the active site of FadD23 greatly influences enzymatic activity. Meanwhile, the FadD23 N-terminal domain alone cannot bind palmitic acid without C-terminal domain facilitation since it is almost inactive after removing the C-terminal domain. FadD23 is the first protein in the SL-1 synthesis pathway whose structure has been solved. These results reveal the importance of the C-terminal domain in the catalytic mechanism.
Collapse
Affiliation(s)
- Mengrong Yan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Li Zhao
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Weihong Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Zhang
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China.,Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Baran M, Grimes KD, Sibbald PA, Fu P, Boshoff HIM, Wilson DJ, Aldrich CC. Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis. Eur J Med Chem 2020; 201:112408. [PMID: 32574901 PMCID: PMC7415619 DOI: 10.1016/j.ejmech.2020.112408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Lipid metabolism in Mycobacterium tuberculosis (Mtb) relies on 34 fatty acid adenylating enzymes (FadDs) that can be grouped into two classes: fatty acyl-CoA ligases (FACLs) involved in lipid and cholesterol catabolism and long chain fatty acyl-AMP ligases (FAALs) involved in biosynthesis of the numerous essential and virulence-conferring lipids found in Mtb. The precise biochemical roles of many FACLs remain poorly characterized while the functionally non-redundant FAALs are much better understood. Here we describe the systematic investigation of 5'-O-[N-(alkanoyl)sulfamoyl]adenosine (alkanoyl adenosine monosulfamate, alkanoyl-AMS) analogs as potential multitarget FadD inhibitors for their antitubercular activity and biochemical selectivity towards representative FAAL and FACL enzymes. We identified several potent compounds including 12-azidododecanoyl-AMS 28, 11-phenoxyundecanoyl-AMS 32, and nonyloxyacetyl-AMS 36 with minimum inhibitory concentrations (MICs) against M. tuberculosis ranging from 0.098 to 3.13 μM. Compound 32 was notable for its impressive biochemical selectivity against FAAL28 (apparent Ki = 0.7 μM) versus FACL19 (Ki > 100 μM), and uniform activity against a panel of multidrug and extensively drug-resistant TB strains with MICs ranging from 3.13 to 12.5 μM in minimal (GAST) and rich (7H9) media. The SAR analysis provided valuable insights for further optimization of 32 and also identified limitations to overcome.
Collapse
Affiliation(s)
- Marzena Baran
- Department of Medicinal Chemistry, University of Minnesota, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN, 55455, United States
| | - Kimberly D Grimes
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Paul A Sibbald
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Peng Fu
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Helena I M Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN, 55455, United States; Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States.
| |
Collapse
|
5
|
Transcriptional portrait of M. bovis BCG during biofilm production shows genes differentially expressed during intercellular aggregation and substrate attachment. Sci Rep 2020; 10:12578. [PMID: 32724037 PMCID: PMC7387457 DOI: 10.1038/s41598-020-69152-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis and M. smegmatis form drug-tolerant biofilms through dedicated genetic programs. In support of a stepwise process regulating biofilm production in mycobacteria, it was shown elsewhere that lsr2 participates in intercellular aggregation, while groEL1 was required for biofilm maturation in M. smegmatis. Here, by means of RNA-Seq, we monitored the early steps of biofilm production in M. bovis BCG, to distinguish intercellular aggregation from attachment to a surface. Genes encoding for the transcriptional regulators dosR and BCG0114 (Rv0081) were significantly regulated and responded differently to intercellular aggregation and surface attachment. Moreover, a M. tuberculosis H37Rv deletion mutant in the Rv3134c-dosS-dosR regulon, formed less biofilm than wild type M. tuberculosis, a phenotype reverted upon reintroduction of this operon into the mutant. Combining RT-qPCR with microbiological assays (colony and surface pellicle morphologies, biofilm quantification, Ziehl–Neelsen staining, growth curve and replication of planktonic cells), we found that BCG0642c affected biofilm production and replication of planktonic BCG, whereas ethR affected only phenotypes linked to planktonic cells despite its downregulation at the intercellular aggregation step. Our results provide evidence for a stage-dependent expression of genes that contribute to biofilm production in slow-growing mycobacteria.
Collapse
|
6
|
Sapriel G, Brosch R. Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis. Genome Biol Evol 2020; 11:2420-2438. [PMID: 31368488 PMCID: PMC6736058 DOI: 10.1093/gbe/evz162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis remains one of the deadliest infectious diseases of humanity. To better understand the evolutionary history of host-adaptation of tubercle bacilli (MTB), we sought for mycobacterial species that were more closely related to MTB than the previously used comparator species Mycobacterium marinum and Mycobacterium kansasii. Our phylogenomic approach revealed some recently sequenced opportunistic mycobacterial pathogens, Mycobacterium decipiens, Mycobacterium lacus, Mycobacterium riyadhense, and Mycobacterium shinjukuense, to constitute a common clade with MTB, hereafter called MTB-associated phylotype (MTBAP), from which MTB have emerged. Multivariate and clustering analyses of genomic functional content revealed that the MTBAP lineage forms a clearly distinct cluster of species that share common genomic characteristics, such as loss of core genes, shift in dN/dS ratios, and massive expansion of toxin–antitoxin systems. Consistently, analysis of predicted horizontal gene transfer regions suggests that putative functions acquired by MTBAP members were markedly associated with changes in microbial ecology, for example adaption to intracellular stress resistance. Our study thus considerably deepens our view on MTB evolutionary history, unveiling a decisive shift that promoted conversion to host-adaptation among ancestral founders of the MTBAP lineage long before Mycobacterium tuberculosis has adapted to the human host.
Collapse
Affiliation(s)
- Guillaume Sapriel
- UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France.,Atelier de Bioinformatique, ISYEB, UMR 7205, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|
7
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
8
|
Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria. Cell Chem Biol 2016; 23:278-289. [PMID: 27028886 DOI: 10.1016/j.chembiol.2015.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022]
Abstract
Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP.
Collapse
|
9
|
Abstract
BCG is the collective name for a family of live attenuated strains of Mycobacterium bovis that are currently used as the only vaccine against tuberculosis (TB). There are two major reasons for studying the genome of these organisms: (i) Because they are attenuated, BCG vaccines provide a window into Mycobacterium tuberculosis virulence, and (ii) because they have provided protection in several clinical trials and case-control studies, BCG vaccines may shed light on properties required of a TB vaccine. Since the determination of the M. tuberculosis genome in 1998, the study of BCG vaccines has accelerated dramatically, offering data on the genomic differences between virulent M. tuberculosis, M. bovis, and the vaccine strains. While these findings have been rewarding for the study of virulence, there is unfortunately less accrued knowledge about protection. In this chapter, we review briefly the history of BCG vaccines and then touch upon studies over the past two decades that help explain how BCG underwent attenuation, concluding with some more speculative comments as to how these vaccines might offer protection against TB.
Collapse
|
10
|
O’Neill MB, Mortimer TD, Pepperell CS. Diversity of Mycobacterium tuberculosis across Evolutionary Scales. PLoS Pathog 2015; 11:e1005257. [PMID: 26562841 PMCID: PMC4642946 DOI: 10.1371/journal.ppat.1005257] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability of this pathogen. Most studies of M.tb evolution have relied on ‘between-host’ samples, in which each person with TB is represented by a single M.tb isolate. However, individuals with TB commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb genomic data from within and between hosts to gain insight into influences shaping genetic diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic data from M.tb samples within and between hosts with TB, we find that genes involved in the regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear repeatedly in the extremes of various statistical measures of diversity. Many of these genes have been identified as possible targets of selection in other studies employing different methods and data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles mediating interactions with the host. Tuberculosis (TB) is a grave threat to global public health and is the second leading cause of death due to infectious disease. The causative agent, Mycobacterium tuberculosis (M.tb), has emerged in increasingly drug resistant forms that hamper our efforts to control TB. We need a better understanding of M.tb adaptation to guide development of more effective TB treatment and control strategies. The goal of this study was to gain insight into M.tb evolution within individual patients with TB. We found that TB patients harbor a diverse population of M.tb. We further found evidence to suggest that the bacterial population evolves measurably in response to selection pressures imposed by the environment within hosts. Changes were particularly notable in M.tb genes involved in the regulation, synthesis, and transportation of lipids and glycolipids of the bacterial cell envelope. These findings have important implications for drug and vaccine development, and provide insight into TB host pathogen interactions.
Collapse
Affiliation(s)
- Mary B. O’Neill
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tatum D. Mortimer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Mendum TA, Wu H, Kierzek AM, Stewart GR. Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells. BMC Genomics 2015; 16:372. [PMID: 25956932 PMCID: PMC4425887 DOI: 10.1186/s12864-015-1569-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Background Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive. Results Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs. Conclusion We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tom A Mendum
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Huihai Wu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Andrzej M Kierzek
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Graham R Stewart
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
12
|
Belardinelli JM, Larrouy-Maumus G, Jones V, Sorio de Carvalho LP, McNeil MR, Jackson M. Biosynthesis and translocation of unsulfated acyltrehaloses in Mycobacterium tuberculosis. J Biol Chem 2014; 289:27952-65. [PMID: 25124040 PMCID: PMC4183827 DOI: 10.1074/jbc.m114.581199] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
A number of species-specific polymethyl-branched fatty acid-containing trehalose esters populate the outer membrane of Mycobacterium tuberculosis. Among them, 2,3-diacyltrehaloses (DAT) and penta-acyltrehaloses (PAT) not only play a structural role in the cell envelope but also contribute to the ability of M. tuberculosis to multiply and persist in the infected host, promoting the intracellular survival of the bacterium and modulating host immune responses. The nature of the machinery, topology, and sequential order of the reactions leading to the biosynthesis, assembly, and export of these complex glycolipids to the cell surface are the object of the present study. Our genetic and biochemical evidence corroborates a model wherein the biosynthesis and translocation of DAT and PAT to the periplasmic space are coupled and topologically split across the plasma membrane. The formation of DAT occurs on the cytosolic face of the plasma membrane through the action of PapA3, FadD21, and Pks3/4; that of PAT occurs on the periplasmic face via transesterification reactions between DAT substrates catalyzed by the acyltransferase Chp2 (Rv1184c). The integral membrane transporter MmpL10 is essential for DAT to reach the cell surface, and its presence in the membrane is required for Chp2 to be active. Disruption of mmpL10 or chp2 leads to an important build-up of DAT inside the cells and to the formation of a novel form of unsulfated acyltrehalose esterified with polymethyl-branched fatty acids normally found in sulfolipids that is translocated to the cell surface.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682 and
| | - Gérald Larrouy-Maumus
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Victoria Jones
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682 and
| | - Luiz Pedro Sorio de Carvalho
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Michael R McNeil
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682 and
| | - Mary Jackson
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682 and
| |
Collapse
|
13
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
14
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics 2013; 14:459. [PMID: 23834488 PMCID: PMC3710219 DOI: 10.1186/1471-2164-14-459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023] Open
Abstract
Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress.
Collapse
|
16
|
Lamrabet O, Drancourt M. Genetic engineering of Mycobacterium tuberculosis: a review. Tuberculosis (Edinb) 2012; 92:365-76. [PMID: 22789498 DOI: 10.1016/j.tube.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
Genetic engineering has been used for decades to mutate and delete genes in the Mycobacterium tuberculosis genome with the translational goal of producing attenuated mutants with conserved susceptibility to antituberculous antibiotics. The development of plasmids and mycobacteriophages that can transfer DNA into the M. tuberculosis chromosome has effectively overcome M. tuberculosis slow growth rate and the capsule and mycolic acid wall, which limit DNA uptake. The use of genetic engineering techniques has shed light on many aspects of pathogenesis mechanisms, including cellular growth, mycolic acid biosynthesis, metabolism, drug resistance and virulence. Moreover, such research gave clues to the development of new vaccines or new drugs for routine clinical practice. The use of genetic engineering tools is mainly based on the underlying concept that altering or reducing the M. tuberculosis genome could decrease its virulence. A contrario, recent post-genomic analyses indicated that reduced bacterial genomes are often associated with increased bacterial virulence and that M. tuberculosis acquired genes by lateral genetic exchange during its evolution. Therefore, ancestors utilizing genetic engineering to add genes to the M. tuberculosis genome may lead to new vaccines and the availability of M. tuberculosis isolates with increased susceptibility to antituberculous antibiotics.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Méditerranée Infection, FRIDMM, Aix-Marseille Université, Marseille, France.
| | | |
Collapse
|
17
|
Ichimura N, Kasama T. Identification of Valine- or Leucine-Containing Glycopeptidolipids from Mycobacterium avium–intracellulare Complex. Curr Microbiol 2012; 64:561-8. [DOI: 10.1007/s00284-012-0107-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
18
|
Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. J Mol Biol 2011; 416:221-38. [PMID: 22206988 DOI: 10.1016/j.jmb.2011.12.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Activation of fatty acids as acyl-adenylates by fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis is a variant of a classical theme that involves formation of acyl-CoA (coenzyme A) by fatty acyl-CoA ligases (FACLs). Here, we show that FAALs and FACLs possess similar structural fold and substrate specificity determinants, and the key difference is the absence of a unique insertion sequence in FACL13 structure. A systematic analysis shows a conserved hydrophobic anchorage of the insertion motif across several FAALs. Strikingly, mutagenesis of two phenylalanine residues, which are part of the anchorage, to alanine converts FAAL32 to FACL32. This insertion-based in silico analysis suggests the presence of FAAL homologues in several other non-mycobacterial genomes including eukaryotes. The work presented here establishes an elegant mechanism wherein an insertion sequence drives the functional divergence of FAALs from canonical FACLs.
Collapse
Affiliation(s)
- Aneesh Goyal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
19
|
Orduña P, Cevallos MA, de León SP, Arvizu A, Hernández-González IL, Mendoza-Hernández G, López-Vidal Y. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genomics 2011; 12:493. [PMID: 21981907 PMCID: PMC3199284 DOI: 10.1186/1471-2164-12-493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/08/2011] [Indexed: 12/03/2022] Open
Abstract
Background Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico. Results BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests. Conclusions BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time.
Collapse
Affiliation(s)
- Patricia Orduña
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, DF, México
| | | | | | | | | | | | | |
Collapse
|
20
|
Grimes KD, Aldrich CC. A high-throughput screening fluorescence polarization assay for fatty acid adenylating enzymes in Mycobacterium tuberculosis. Anal Biochem 2011; 417:264-73. [PMID: 21771578 DOI: 10.1016/j.ab.2011.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), encodes for an astonishing 34 fatty acid adenylating enzymes (FadDs), which play key roles in lipid metabolism. FadDs involved in lipid biosynthesis are functionally nonredundant and serve to link fatty acid and polyketide synthesis to produce some of the most architecturally complex natural lipids including the essential mycolic acids as well as the virulence-conferring phthiocerol dimycocerosates, phenolic glycolipids, and mycobactins. Here we describe the systematic development and optimization of a fluorescence polarization assay to identify small molecule inhibitors as potential antitubercular agents. We fluorescently labeled a bisubstrate inhibitor to generate a fluorescent probe/tracer, which bound with a K(D) of 245 nM to FadD28. Next, we evaluated assay performance by competitive binding experiments with a series of known ligands and assessed the impact of control parameters including incubation time, stability of the signal, temperature, and DMSO concentration. As a final level of validation the LOPAC1280 library was screened in a 384-well plate format and the assay performed with a Z-factor of 0.75, demonstrating its readiness for high-throughput screening.
Collapse
Affiliation(s)
- Kimberly D Grimes
- Center for Drug Design, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
21
|
Layre E, Cala-De Paepe D, Larrouy-Maumus G, Vaubourgeix J, Mundayoor S, Lindner B, Puzo G, Gilleron M. Deciphering sulfoglycolipids of Mycobacterium tuberculosis. J Lipid Res 2011; 52:1098-1110. [PMID: 21482713 DOI: 10.1194/jlr.m013482] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For 4 decades, in vivo and in vitro studies have suggested that sulfoglycolipids (SGLs) play a role in the virulence or pathogenesis of the tubercle bacilli. However, the SGL structure and biosynthesis pathway remain only partially elucidated. Using the modern tools of structural analysis, including MALDI-time-of-flight MS, MS/MS, and two-dimensional NMR, we reevaluated the structure of the different SGL acyl (di-, tri-, and tetra-acylated) forms of the reference strain Mycobacterium tuberculosis H37Rv, as well as those produced by the mmpL8 knockout strains previously described to intracellularly accumulate di-acylated SGL. We report here the identification of new acyl forms: di-acylated SGL esterified by simple fatty acids only, as well as mono-acylated SGL bearing a hydroxyphthioceranoic acid, which were characterized in the wild-type strain. In a clinical strain, a complete family of mono-acylated SGLs was characterized in high abundance for the first time. For the mmpL8 mutant, SGLs were found to be esterified i) by an oxophthioceranoic acid, never observed so far, and ii) at nonconventional positions in the case of the unexpected tri-acylated forms. Our results further confirm the requirement of MmpL8 for the complete assembly of the tetra-acylated forms of SGL and also provide, by the discovery of new intermediates, insights in terms of the possible SGL biosynthetic pathways.
Collapse
Affiliation(s)
- Emilie Layre
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077, Toulouse, France; UPS, Université de Toulouse, UPS; IPBS; F-31077 Toulouse, France
| | - Diane Cala-De Paepe
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077, Toulouse, France; UPS, Université de Toulouse, UPS; IPBS; F-31077 Toulouse, France
| | - Gérald Larrouy-Maumus
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077, Toulouse, France; UPS, Université de Toulouse, UPS; IPBS; F-31077 Toulouse, France
| | - Julien Vaubourgeix
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077, Toulouse, France; UPS, Université de Toulouse, UPS; IPBS; F-31077 Toulouse, France
| | | | - Buko Lindner
- Division of Biophysics, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Germain Puzo
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077, Toulouse, France; UPS, Université de Toulouse, UPS; IPBS; F-31077 Toulouse, France
| | - Martine Gilleron
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077, Toulouse, France; UPS, Université de Toulouse, UPS; IPBS; F-31077 Toulouse, France.
| |
Collapse
|
22
|
Dunphy KY, Senaratne RH, Masuzawa M, Kendall LV, Riley LW. Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5. J Infect Dis 2010; 201:1232-9. [PMID: 20214478 PMCID: PMC3225055 DOI: 10.1086/651452] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
One key adaptation that Mycobacterium tuberculosis established to survive long term in vivo is a reliance on lipids as an energy source. M. tuberculosis H37Rv has 36 fadD genes annotated as putative fatty acyl-coenzyme A (CoA) synthetase genes, which encode enzymes that activate fatty acids for metabolism. One such gene, fadD5 (Rv0166), is located within the mce1 operon, a cluster of genes associated with M. tuberculosis persistence. We disrupted the putative fatty acid-binding site of fadD5 in H37Rv M. tuberculosis. No significant differences were found in the growth of the mutant and wild-type strains in vitro in nutrient-rich broth or in activated RAW264.7 cells. However, the fadD5 mutant was diminished in growth in minimal medium containing mycolic acid but not other long-chain fatty acids. C57BL/6 mice infected with the fadD5 mutant survived significantly longer than those infected with the wild type, and the mutant never attained the plateau phase of infection in mouse lungs. Infection in the steady-state phase was maintained for up to 168 days at a level that was 1-2 logs less than that noted in the wild type. These observations raise the rather intriguing possibility that FadD5 may serve to recycle mycolic acids for the long-term survival of the tubercle bacilli.
Collapse
Affiliation(s)
- Kathleen Y. Dunphy
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Ryan H. Senaratne
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Mamiko Masuzawa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lon V. Kendall
- Laboratory Animal Resources, Colorado State University, Fort Collins, CO 80523, USA
| | - Lee W. Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Identification of promoter-binding proteins of the fbp A and C genes in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2009; 90:25-30. [PMID: 19959397 DOI: 10.1016/j.tube.2009.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/27/2009] [Accepted: 10/05/2009] [Indexed: 10/24/2022]
Abstract
The antigen 85 (Ag85) complex of Mycobacterium tuberculosis represents a promising candidate as a novel drug target and pathogenesis factor. Ag85 comprises three proteins Ag85A, B and C, (encoded by the genes fbpA, B, and C), which participate in cell wall biosynthesis, and interact with the host macrophage as fibronectin-binding proteins (fbps). Ag85 is also involved in the response to isoniazid (INH) treatment. The objective of this study was to identify potential fbp gene activators involved in the over-expression of fbp genes in response to INH. The biotinylated upstream promoter regions of fbpA and fbpC were used together with streptavidin-coated magnetic beads in DNA-binding assays, to isolate proteins with high-binding affinities from cytosolic extracts of INH-treated M. tuberculosis. Resolution of the DNA-binding proteins by 1D SDS-PAGE revealed 6 proteins with high-affinity for the fbpA promoter, and 7 with specificity the fbpC promoter. Mass spectrometric analyses [LC-ES(MS/MS)] identified proteins associated with drug resistance and stress/treatment responses, intermediary metabolism and cellular division, hypothetical proteins including a member of the MarR family of bacterial transcriptional regulators. The DNA-binding MarR protein shows potential as an authentic activator of fbp genes and functional validation of this factor is warranted.
Collapse
|
24
|
Scandurra GM, Young M, de Lisle GW, Collins DM. A bovine macrophage screening system for identifying attenuated transposon mutants of Mycobacterium avium subsp. paratuberculosis with vaccine potential. J Microbiol Methods 2009; 77:58-62. [PMID: 19386227 DOI: 10.1016/j.mimet.2009.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/17/2008] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
Johne's disease is a chronic granulomatous enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease is responsible for considerable economic losses in the livestock industry and in particular within the dairy sector. A more effective vaccine against Johne's disease would be of major benefit. In this study, we developed an efficient procedure for identifying mutants of MAP with reduced virulence that are potential live vaccine candidates against Johne's disease. A mariner transposon was used to create random insertional libraries in two different MAP strains (989 and k10), an effective cattle macrophage survival system was developed, and a total of 1890 insertion mutants were screened by using a 96-prong multi-blot replicator (frogger) system. Two of the transposon mutants with poor survival ability in macrophages were tested in mice. These strains were found to be attenuated in vivo, thereby validating the further use of this macrophage screening system to identify MAP mutants with potential as candidate vaccines against Johne's disease.
Collapse
Affiliation(s)
- G M Scandurra
- AgResearch, National Centre for Biosecurity and Infectious Disease, Wallaceville, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|
25
|
Chopra T, Gokhale RS. Chapter 12 Polyketide Versatility in the Biosynthesis of Complex Mycobacterial Cell Wall Lipids. Methods Enzymol 2009; 459:259-94. [DOI: 10.1016/s0076-6879(09)04612-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2008; 52:2503-11. [PMID: 18458127 DOI: 10.1128/aac.00298-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The impermeability of the outer membrane in combination with drug efflux are major determinants of the natural drug resistance of mycobacteria. beta-Lactams are the most widely used antibiotics for treatment of bacterial infections. However, it is unknown how beta-lactams enter Mycobacterium tuberculosis and whether efflux pumps exist that can export these drugs out of the cell. To identify the molecular mechanisms of M. tuberculosis resistance to beta-lactams, a library of 7,500 transposon mutants was generated in the model organism Mycobacterium bovis BCG. Thirty-three unique insertion sites were determined that conferred medium or high-level (> or =2,000 microg/ml) resistance to ampicillin. Three mutants in sulfolipid synthesis or transport were highly resistant to ampicillin, indicating an indirect effect of the lipid composition on the outer membrane permeability of M. bovis BCG to ampicillin. Mutants with insertions in genes encoding surface molecules such as PPE proteins or lipoarabinomannan were also completely resistant to ampicillin, thus suggesting a lack of transport across the outer membrane. Insertion of the transposon in front of bcg0231 increased transcription of the gene and concomitantly the resistance of M. bovis BCG to ampicillin, streptomycin, and chloramphenicol by 32- to 64-fold. Resistance to vancomycin and tetracycline was increased four- to eightfold. Bcg0231 and Rv0194 are almost identical ATP-binding cassette transporters. Expression of rv0194 significantly reduced accumulation of ethidium bromide and conferred multidrug resistance to Mycobacterium smegmatis. Both effects were abrogated in the presence of the efflux pump inhibitor reserpine. These results demonstrate that Rv0194 is a novel multidrug efflux pump of M. tuberculosis.
Collapse
|