1
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
2
|
Rocha OB, do Carmo Silva L, de Carvalho Júnior MAB, de Oliveira AA, de Almeida Soares CM, Pereira M. In vitro and in silico analysis reveals antifungal activity and potential targets of curcumin on Paracoccidioides spp. Braz J Microbiol 2021; 52:1897-1911. [PMID: 34324170 PMCID: PMC8578512 DOI: 10.1007/s42770-021-00548-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The search for new compounds with activity against Paracoccidioides, etiologic agents of Paracoccidioidomycosis (PCM), is extremely necessary due to the current scenario of the available therapeutic arsenal. Treatment is restricted to three classes of antifungals with side effects. Curcumin is a polyphenol with antifungal effects that is extracted from Curcuma longa. The present work aimed to evaluate the activity of curcumin in different species of Paracoccidioides and to evaluate the potential molecular targets of curcumin using computational strategies. In addition, interactions with classic antifungals used in the treatment of PCM were evaluated. Curcumin inhibits the growth of Paracoccidioides spp. exerting a fungicidal effect. The combination of curcumin with amphotericin B, co-trimoxazole, and itraconazole showed a synergistic or additive interaction. Molecular targets as superoxide dismutase, catalase, and isocitrate lyase were proposed based on in silico approaches. Curcumin affects the fungal plasma membrane and increases the production of reactive oxygen species. Therefore, curcumin is a good alternative for the treatment of PCM.
Collapse
Affiliation(s)
- Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Marcos Antonio Batista de Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
3
|
Oliveira FCS, Pessoa WFB, Mares JH, Freire HPS, Souza EAD, Pirovani CP, Romano CC. Differentially expressed proteins in the interaction of Paracoccidioides lutzii with human monocytes. Rev Iberoam Micol 2021; 38:159-167. [PMID: 34802898 DOI: 10.1016/j.riam.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Fungi of the genus Paracoccidioides are the etiological agents of paracoccidioidomycosis, a highly prevalent mycosis in Latin America. Infection in humans occurs by the inhalation of conidia, which later revert to the form of yeast. In this context, macrophages are positioned as an important line of defense, assisting in the recognition and presentation of antigens, as well as producing reactive oxygen species that inhibit fungal spreading. AIMS The objective of this study was to identify differentially expressed proteins during the interaction between Paracoccidioides lutzii Pb01 strain and human U937 monocytes. METHODS Two-dimensional electrophoresis, combined with mass spectrometry, was used to evaluate the differential proteomic profiles of the fungus P. lutzii (Pb01) interacting with U937 monocytes. RESULTS It was possible to identify 25 proteins differentially expressed by Pb01 alone and after interacting with U937 monocytes. Most of these proteins are directly associated with fungal metabolism for energy generation, such as glyceraldehyde-3-phosphate dehydrogenase, and intracellular adaptation to monocytes. Antioxidant proteins involved in the response to oxidative stress, such as peroxiredoxin, cytochrome, and peroxidase, were expressed in greater quantity in the interaction with monocytes, suggesting their association with survival mechanisms inside phagocytic cells. We also identified 12 proteins differentially expressed in monocytes before and after the interaction with the fungus; proteins involved in the reorganization of the cytoskeleton, such as vimentin, and proteins involved in the response to oxidative stress, such as glioxalase 1, were identified. CONCLUSIONS The results of this proteomic study of a P. lutzii isolate are novel, mimicking in vitro what occurs in human infections. In addition, the proteins identified may aid to understand fungal-monocyte interactions and the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Flamélia Carla Silva Oliveira
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Wallace Felipe Blohem Pessoa
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Joise Hander Mares
- Department of Physiology and Pathology - Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Herbert Pina Silva Freire
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Ednara Almeida de Souza
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carla Cristina Romano
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil.
| |
Collapse
|
4
|
Braz JD, Sardi JDCO, Pitangui NDS, Voltan AR, Almeida AMF, Mendes-Giannini MJS. Gene expression of Paracoccidioides virulence factors after interaction with macrophages and fibroblasts. Mem Inst Oswaldo Cruz 2021; 116:e200592. [PMID: 33787770 PMCID: PMC8011670 DOI: 10.1590/0074-02760200592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Jaqueline Derissi Braz
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - Nayla de Souza Pitangui
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Aline Raquel Voltan
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| |
Collapse
|
5
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
6
|
Comprehensive analysis of the dermatophyte Trichophyton rubrum transcriptional profile reveals dynamic metabolic modulation. Biochem J 2020; 477:873-885. [PMID: 32022226 DOI: 10.1042/bcj20190868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/21/2023]
Abstract
The environmental challenges imposed onto fungal pathogens require a dynamic metabolic modulation, which relies on activation or repression of critical factors and is essential for the establishment and perpetuation of host infection. Wherefore, to overcome the different host microenvironments, pathogens not only depend on virulence factors but also on metabolic flexibility, which ensures their dynamic response to stress conditions in the host. Here, we evaluate Trichophyton rubrum interaction with keratin from a metabolic perspective. We present information about gene modulation of the dermatophyte during early infection stage after shifting from glucose- to keratin-containing culture media, in relation to its use of glucose as the carbon source. Analyzing T. rubrum transcriptome using high-throughput RNA-sequencing technology, we identified the modulation of essential genes related to nitrogen, fatty acid, ergosterol, and carbohydrate metabolisms, among a myriad of other genes necessary for the growth of T. rubrum in keratinized tissues. Our results provide reliable and critical strategies for adaptation to keratin and confirm that the urea-degrading activity associated with the reduction in disulfide bonds and proteolytic activity facilitated keratin degradation. The global modulation orchestrates the responses that support virulence and the proper adaptation to keratin compared with glucose as the carbon source. The gene expression profiling of the host-pathogen interaction highlights candidate genes involved in fungal adaptation and survival and elucidates the machinery required for the establishment of the initial stages of infection.
Collapse
|
7
|
Santos LPA, Assunção LDP, Lima PDS, Tristão GB, Brock M, Borges CL, Silva-Bailão MG, Soares CMDA, Bailão AM. Propionate metabolism in a human pathogenic fungus: proteomic and biochemical analyses. IMA Fungus 2020; 11:9. [PMID: 32617258 PMCID: PMC7324963 DOI: 10.1186/s43008-020-00029-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Fungi of the complex Paracoccidioides spp. are thermodimorphic organisms that cause Paracoccidioidomycosis, one of the most prevalent mycoses in Latin America. These fungi present metabolic mechanisms that contribute to the fungal survival in host tissues. Paracoccidioides lutzii activates glycolysis and fermentation while inactivates aerobic metabolism in iron deprivation, a condition found during infection. In lungs Paracoccidioides brasiliensis face a glucose poor environment and relies on the beta-oxidation to support energy requirement. During mycelium to yeast transition P. lutzii cells up-regulate transcripts related to lipid metabolism and cell wall remodeling in order to cope with the host body temperature. Paracoccidioides spp. cells also induce transcripts/enzymes of the methylcitrate cycle (MCC), a pathway responsible for propionyl-CoA metabolism. Propionyl-CoA is a toxic compound formed during the degradation of odd-chain fatty acids, branched chain amino acids and cholesterol. Therefore, fungi require a functional MCC for full virulence and the ability to metabolize propionyl-CoA is related to the virulence traits in Paracoccidioides spp. On this way we sought to characterize the propionate metabolism in Paracoccidioides spp. The data collected showed that P. lutzii grows in propionate and activates the MCC by accumulating transcripts and proteins of methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). Biochemical characterization of MCS showed that the enzyme is regulated by phosphorylation, an event not yet described. Proteomic analyses further indicate that P. lutzii yeast cells degrades lipids and amino acids to support the carbon requirement for propionate metabolism. The induction of a putative propionate kinase suggests that fungal cells use propionyl-phosphate as an intermediate in the production of toxic propionyl-CoA. Concluding, the metabolism of propionate in P. lutzii is under regulation at transcriptional and phosphorylation levels and that survival on this carbon source requires additional mechanisms other than activation of MCC.
Collapse
Affiliation(s)
- Luiz Paulo Araújo Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Patrícia de Souza Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Universidade Estadual de Goiás, Itapuranga, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Matthias Brock
- Fungal Biology and Genetics Group, University of Nottingham, Nottingham, UK
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
8
|
Moreira ALE, Oliveira MAP, Silva LOS, Inácio MM, Bailão AM, Parente-Rocha JA, Cruz-Leite VRM, Paccez JD, de Almeida Soares CM, Weber SS, Borges CL. Immunoproteomic Approach of Extracellular Antigens From Paracoccidioides Species Reveals Exclusive B-Cell Epitopes. Front Microbiol 2020; 10:2968. [PMID: 32117076 PMCID: PMC7015227 DOI: 10.3389/fmicb.2019.02968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Fungi of the Paracoccidioides genus are the etiological agents of paracoccidioidomycosis (PCM), a systemic mycosis restricted to the countries of Latin America. Currently, the Paracoccidioides complex is represented by Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides brasiliensis, Paracoccidioides restrepiensis, and Paracoccidioides venezuelensis. Even with advances in techniques used for diagnosing fungal diseases, high rates of false-positive results for PCM are still presented. Additionally, there is no efficient antigen that can be used to follow up the efficiency of patient treatment. The immunoproteomic is considered a powerful tool for the identification of antigens. In addition, antigens are molecules recognized by the immune system, which make them excellent targets for diagnostic testing of diseases caused by microorganisms. In this vein, we investigated which antigens are secreted by species representing Paracoccidioides complex to increase the spectrum of molecules that could be used for future diagnostic tests, patient follow-up, or PCM therapy. To identify the profile of antigens secreted by Paracoccidioides spp., immunoproteomic approaches were used combining immunoprecipitation, followed by antigen identification by nanoUPLC-MSE-based proteomics. Consequently, it was possible to verify differences in the exoantigen profiles present among the studied species. Through a mass spectrometry approach, it was possible to identify 79 exoantigens in Paracoccidioides species. Using bioinformatics tools, two unique exoantigens in P. lutzii species were identified, as well as 44 epitopes exclusive to the Paracoccidioides complex and 12 unique antigenic sequences that can differentiate between Paracoccidioides species. Therefore, these results demonstrate that Paracoccidioides species have a range of B-cell epitopes exclusive to the complex as well as specific to each Paracoccidioides species. In addition, these analyses allowed us the identification of excellent biomarker candidates for epidemiology screening, diagnosis, patient follow-up, as well as new candidates for PCM therapy.
Collapse
Affiliation(s)
- André Luís Elias Moreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Milton Adriano Pelli Oliveira
- Laboratório de Citocinas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Moisés Morais Inácio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Simone Schneider Weber
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.,Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
9
|
da Silva LS, Barbosa UR, Silva LDC, Soares CMA, Pereira M, da Silva RA. Identification of a new antifungal compound against isocitrate lyase of Paracoccidioides brasiliensis. Future Microbiol 2019; 14:1589-1606. [DOI: 10.2217/fmb-2019-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To perform virtual screening of compounds based on natural products targeting isocitrate lyase of Paracoccidioides brasiliensis. Materials & methods: Homology modeling and molecular dynamics simulations were applied in order to obtain conformational models for virtual screening. The selected hits were tested in vitro against enzymatic activity of ICL of the dimorphic fungus P. brasiliensis and growth of the Paracoccidioides spp. The cytotoxicity and selectivity index of the compounds were defined. Results & conclusion: Carboxamide, lactone and β-carboline moieties were identified as interesting chemical groups for the design of new antifungal compounds. The compounds inhibited ICL of the dimorphic fungus P. brasiliensis activity. The compound 4559339 presented minimum inhibitory concentration of 7.3 μg/ml in P. brasiliensis with fungicidal effect at this concentration. Thus, a new potential antifungal against P. brasiliensis is proposed.
Collapse
Affiliation(s)
- Luciane S da Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| | - Uessiley R Barbosa
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
- UNIFIMES, Centro Universitário de Mineiros, Mineiros, Goiás, 75833-130, Brazil
| | - Lívia do C Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Célia MA Soares
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Roosevelt A da Silva
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| |
Collapse
|
10
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
11
|
Bishai WR, Timmins GS. Potential for breath test diagnosis of urease positive pathogens in lung infections. J Breath Res 2019; 13:032002. [DOI: 10.1088/1752-7163/ab2225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes Infect 2019; 21:401-411. [PMID: 30951888 DOI: 10.1016/j.micinf.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a systemic disorder that involves the lungs and other organs. The adherence of pathogenic microorganisms to host tissues is an essential event in the onset of colonization and spread. The host-pathogen interaction is a complex interplay between the defense mechanisms of the host and the efforts of pathogenic microorganisms to colonize it. Therefore, the identification of fungi proteins interacting with host proteins is an important step understanding the survival strategies of the fungus within the host. In this paper, we used affinity chromatography based on surface proteomics (ACSP) to investigate the interactions of pathogen proteins with host surface molecules. Paracoccidioides lutzii extracts enriched of surface proteins were captured by chromatographic resin, which was immobilized with macrophage cell surface proteins, and identified by mass spectrometry. A total of 215 proteins of P. lutzii were identified interacting with macrophage proteins. In silico analysis classified those proteins according to the presence of sites for N- and O-glycosylation and secretion by classical and non-classical pathways. Serine proteinase (SP) and fructose-1,6-bisphosphate aldolase (FBA) were identified in our proteomics analysis. Immunolocalization assay and flow cytometry both showed an increase in the expression of these two proteins during host-pathogen interaction.
Collapse
|
13
|
Araújo DS, Pereira M, Portis IG, dos Santos Junior ADCM, Fontes W, de Sousa MV, Assunção LDP, Baeza LC, Bailão AM, Ricart CAO, Brock M, Soares CMDA. Metabolic Peculiarities of Paracoccidioides brasiliensis Dimorphism as Demonstrated by iTRAQ Labeling Proteomics. Front Microbiol 2019; 10:555. [PMID: 30949151 PMCID: PMC6436475 DOI: 10.3389/fmicb.2019.00555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/04/2019] [Indexed: 01/29/2023] Open
Abstract
Paracoccidioidomycosis (PCM), a systemic mycosis with a high incidence in Latin America, is caused by thermodimorphic fungi of the Paracoccidioides genus. The contact with host occurs by the inhalation of conidia or mycelial propagules which once reaching the pulmonary alveoli differentiate into yeast cells. This transition process is vital in the pathogenesis of PCM allowing the fungus survival in the host. Thus, the present work performed a comparative proteome analysis of mycelia, mycelia-to-yeast transition, and yeast cells of Paracoccidioides brasiliensis. For that, tryptic peptides were labeled with iTRAQ and identified by LC-MS/MS and computational data analysis, which allowed the identification of 312 proteins differentially expressed in different morphological stages. Data showed that P. brasiliensis yeast cells preferentially employ aerobic beta-oxidation and the tricarboxylic acid cycle accompanied by oxidative phosphorylation for ATP production, in comparison to mycelia and the transition from mycelia-to-yeast cells. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism and in the induction of virulence determinants and heat shock proteins allowing adaptation to environmental conditions during the increase of the temperature. In opposite of that, the alcoholic fermentation found to P. lutzii, at least under laboratory conditions, is strongly favored in mycelium compared to yeast cells. Thereby, the data strongly support substantial metabolic differences among members of the Paracoccidioides complex, when comparing the saprobiotic mycelia and the yeast parasitic phases.
Collapse
Affiliation(s)
- Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Faculdade Unida de Campinas, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Mello Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carlos André Ornelas Ricart
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Matthias Brock
- Fungal Biology and Genetics Group, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
14
|
Baeza LC, da Mata FR, Pigosso LL, Pereira M, de Souza GHMF, Coelho ASG, de Almeida Soares CM. Differential Metabolism of a Two-Carbon Substrate by Members of the Paracoccidioides Genus. Front Microbiol 2017; 8:2308. [PMID: 29230201 PMCID: PMC5711815 DOI: 10.3389/fmicb.2017.02308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
The genus Paracoccidioides comprises known fungal pathogens of humans and can be isolated from different infection sites. Metabolic peculiarities in different members of the Paracoccidioides led us to perform proteomic studies in the presence of the two-carbon molecule acetate, which predominates in the nutrient-poor environment of the phagosome. To investigate the expression rates of proteins of different members of Paracoccidioides, including one isolate of P. lutzii (Pb01) and three isolates of P. brasiliensis (Pb03, Pb339, and PbEPM83), using sodium acetate as a carbon source, proteins were quantified using label-free and data-independent liquid chromatography-mass spectrometry. Protein profiles of the isolates were statistically analyzed, revealing proteins that were differentially expressed when the fungus was cultivated in a non-preferential carbon source rather than glucose. A total of 1,160, 1,211, 1,280, and 1,462 proteins were reproducibly identified and relatively quantified in P. lutzii and the P. brasiliensis isolates Pb03, Pb339, and PbEPM83, respectively. Notably, 526, 435, 744, and 747 proteins were differentially expressed among P. lutzii and the P. brasiliensis isolates Pb03, Pb339, and PbEPM83, respectively, with a fold-change equal to or higher than 1.5. This analysis revealed that reorganization of metabolism occurred through the induction of proteins related to gluconeogenesis, glyoxylic/glyoxylate cycle, response to stress, and degradation of amino acids in the four isolates. The following differences were observed among the isolates: higher increases in the expression levels of proteins belonging to the TCA and respiratory chain in PbEPM83 and Pb01; increase in ethanol production in Pb01; utilization of cell wall components for gluconeogenesis in Pb03 and PbEPM83; and increased β-oxidation and methylcitrate cycle proteins in Pb01and PbEPM83. Proteomic profiles indicated that the four isolates reorganized their metabolism in different manners to use acetate as a carbon source.
Collapse
Affiliation(s)
- Lilian C. Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Fabiana R. da Mata
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Laurine L. Pigosso
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo H. M. F. de Souza
- Mass Spectrometry Applications Research & Development Laboratory, Waters Corporation, São Paulo, Brazil
| | - Alexandre S. G. Coelho
- Laboratório de Genética e Genômica de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia M. de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
15
|
Parente-Rocha JA, Tomazett MV, Pigosso LL, Bailão AM, Ferreira de Souza A, Paccez JD, Baeza LC, Pereira M, Silva Bailão MG, Borges CL, Maria de Almeida Soares C. In vitro, ex vivo and in vivo models: A comparative analysis of Paracoccidioides spp. proteomic studies. Fungal Biol 2017; 122:505-513. [PMID: 29801795 DOI: 10.1016/j.funbio.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 01/12/2023]
Abstract
Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection.
Collapse
Affiliation(s)
- Juliana Alves Parente-Rocha
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Mariana Vieira Tomazett
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Laurine Lacerda Pigosso
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Alexandre Melo Bailão
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Aparecido Ferreira de Souza
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Juliano Domiraci Paccez
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Lilian Cristiane Baeza
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Maristela Pereira
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Mirelle Garcia Silva Bailão
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil; Unidade Acadêmica Especial Ciências da Saúde, Universidade Federal de Goiás, Jataí, Goiás, Brazil.
| | - Clayton Luiz Borges
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Campus Samambaia s/n ICB2, Sala 206, Goiânia, Goiás, Brazil.
| |
Collapse
|
16
|
Lacerda Pigosso L, Baeza LC, Vieira Tomazett M, Batista Rodrigues Faleiro M, Brianezi Dignani de Moura VM, Melo Bailão A, Borges CL, Alves Parente Rocha J, Rocha Fernandes G, Gauthier GM, Soares CMDA. Paracoccidioides brasiliensis presents metabolic reprogramming and secretes a serine proteinase during murine infection. Virulence 2017; 8:1417-1434. [PMID: 28704618 PMCID: PMC5711425 DOI: 10.1080/21505594.2017.1355660] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Paracoccidoides brasiliensis and Paracoccidioides lutzii, the etiologic agents of paracoccidioidomycosis, cause disease in healthy and immunocompromised persons in Latin America. We developed a method for harvesting P. brasiliensis yeast cells from infected murine lung to facilitate in vivo transcriptional and proteomic profiling. P. brasiliensis harvested at 6 h post-infection were analyzed using RNAseq and LC-MSE. In vivo yeast cells had 594 differentially expressed transcripts and 350 differentially expressed proteins. Integration of transcriptional and proteomic data indicated that early in infection (6 h), P. brasiliensis yeast cells underwent a shift in metabolism from glycolysis to β-oxidation, upregulated detoxifying enzymes to defend against oxidative stress, and repressed cell wall biosynthesis. Bioinformatics and functional analyses also demonstrated that a serine proteinase was upregulated and secreted in vivo. To our knowledge this is the first study depicting transcriptional and proteomic data of P. brasiliensis yeast cells upon 6 h post-infection of mouse lung.
Collapse
Affiliation(s)
- Laurine Lacerda Pigosso
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | - Lilian Cristiane Baeza
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | - Mariana Vieira Tomazett
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | - Mariana Batista Rodrigues Faleiro
- b Laboratório de Patologia , Escola de Veterinária e Zootecnia, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | | | - Alexandre Melo Bailão
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | - Clayton Luiz Borges
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | - Juliana Alves Parente Rocha
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| | | | | | - Celia Maria de Almeida Soares
- a Laboratório de Biologia Molecular , Instituto de Ciências Biológicas, Universidade Federal de Goiás , Campus Samambaia s/n, Goiânia , Goiás , Brazil
| |
Collapse
|
17
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
18
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
19
|
Zhu Y, Ma N, Jin W, Wu S, Sun C. Genomic and Transcriptomic Insights into Calcium Carbonate Biomineralization by Marine Actinobacterium Brevibacterium linens BS258. Front Microbiol 2017; 8:602. [PMID: 28428780 PMCID: PMC5382220 DOI: 10.3389/fmicb.2017.00602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 01/31/2023] Open
Abstract
Calcium carbonate (CaCO3) biomineralization has been investigated due to its wide range of scientific and technological implications, however, the molecular mechanisms of this important geomicrobiological process are largely unknown. Here, a urease-positive marine actinobacterium Brevibacterium linens BS258 was demonstrated to effectively form CaCO3 precipitates. Surprisingly, this bacterium could also dissolve the formed CaCO3 with the increase of the Ca2+ concentration. To disclose the mechanisms of biomineralization, the genome of B. linens BS258 was further completely sequenced. Interestingly, the expression of three carbonic anhydrases was significantly up-regulated along with the increase of Ca2+ concentration and the extent of calcite dissolution. Moreover, transcriptome analyses revealed that increasing concentration of Ca2+ induced KEGG pathways including quorum sensing (QS) in B. linens BS258. Notably, most up-regulated genes related to QS were found to encode peptide/nickel ABC transporters, which suggested that nickel uptake and its associated urease stimulation were essential to boost CaCO3 biomineralization. Within the genome of B. linens BS258, there are both cadmium and lead resistance gene clusters. Therefore, the sequestration abilities of Cd2+ and Pb2+ by B. linens BS258 were checked. Consistently, Pb2+ and Cd2+ could be effectively sequestered with the precipitation of calcite by B. linens BS258. To our knowledge, this is the first study investigating the microbial CaCO3 biomineralization from both genomic and transcriptomic insights, which paves the way to disclose the relationships among bacterial metabolisms and the biomineralization.
Collapse
Affiliation(s)
- Yuying Zhu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- College of Earth Science, University of Chinese Academy of SciencesBeijing, China
| | - Ning Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- College of Earth Science, University of Chinese Academy of SciencesBeijing, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Shimei Wu
- College of Life Sciences, Qingdao UniversityQingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
20
|
Tomazett MV, Zanoelo FF, Bailão EFC, Bailão AM, Borges CL, Soares CMDA. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides. Genet Mol Biol 2016; 39:416-25. [PMID: 27560991 PMCID: PMC5004831 DOI: 10.1590/1678-4685-gmb-2015-0213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze
the reversible hydration of carbon dioxide to bicarbonate. In the present work, we
characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3,
and CA4). In the presence of CO2, there was not a significant increase in
fungal ca1, ca2 and ca4 gene
expression. The ca1 transcript was induced during the
mycelium-to-yeast transition, while ca2 and ca4
gene expression was much higher in yeast cells, when compared to mycelium and
mycelium-to-yeast transition. The ca1 transcript was induced in
yeast cells recovered directly from liver and spleen of infected mice, while
transcripts for ca2 and ca4 were down-regulated.
Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were
obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were
characterized regarding pH, temperature, ions and amino acids addition influence.
Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes
were dramatically inhibited by Hg+2 and activated by Zn+2,
while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all
in L configuration), arginine, lysine, tryptophan and histidine enhanced residual
activity of rCA1 and rCA4.
Collapse
Affiliation(s)
- Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Fabiana Fonseca Zanoelo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.,Laboratório de Bioquímica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Elisa Flávia Cardoso Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
21
|
Amich J, Bignell E. Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more? Curr Opin Microbiol 2016; 32:151-158. [DOI: 10.1016/j.mib.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
|
22
|
Lima PDS, Chung D, Bailão AM, Cramer RA, Soares CMDA. Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Negl Trop Dis 2015; 9:e0004282. [PMID: 26659387 PMCID: PMC4686304 DOI: 10.1371/journal.pntd.0004282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypoxic microenvironments are generated during fungal infection. It has been described that to survive in the human host, fungi must also tolerate and overcome in vivo microenvironmental stress conditions including low oxygen tension; however nothing is known how Paracoccidioides species respond to hypoxia. The genus Paracoccidioides comprises human thermal dimorphic fungi and are causative agents of paracoccidioidomycosis (PCM), an important mycosis in Latin America. METHODOLOGY/PRINCIPAL FINDINGS In this work, a detailed hypoxia characterization was performed in Paracoccidioides. Using NanoUPLC-MSE proteomic approach, we obtained a total of 288 proteins differentially regulated in 12 and 24 h of hypoxia, providing a global view of metabolic changes during this stress. In addition, a functional characterization of the homologue to the most important molecule involved in hypoxia responses in other fungi, the SREBP (sterol regulatory element binding protein) was performed. We observed that Paracoccidioides species have a functional homologue of SREBP, named here as SrbA, detected by using a heterologous genetic approach in the srbA null mutant in Aspergillus fumigatus. Paracoccidioides srbA (PbsrbA), in addition to involvement in hypoxia, is probable involved in iron adaptation and azole drug resistance responses. CONCLUSIONS/SIGNIFICANCE In this study, the hypoxia was characterized in Paracoccidioides. The first results can be important for a better understanding of the fungal adaptation to the host and improve the arsenal of molecules for the development of alternative treatment options in future, since molecules related to fungal adaptation to low oxygen levels are important to virulence and pathogenesis in human pathogenic fungi.
Collapse
Affiliation(s)
- Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
23
|
Bailão EFLC, Lima PDS, Silva-Bailão MG, Bailão AM, Fernandes GDR, Kosman DJ, Soares CMDA. Paracoccidioides spp. ferrous and ferric iron assimilation pathways. Front Microbiol 2015; 6:821. [PMID: 26441843 PMCID: PMC4585334 DOI: 10.3389/fmicb.2015.00821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation.
Collapse
Affiliation(s)
- Elisa Flávia L C Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle G Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | | | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo Buffalo, NY, USA
| | | |
Collapse
|
24
|
Tavares AH, Fernandes L, Bocca AL, Silva-Pereira I, Felipe MS. Transcriptomic reprogramming of genus Paracoccidioides in dimorphism and host niches. Fungal Genet Biol 2015; 81:98-109. [DOI: 10.1016/j.fgb.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 01/04/2023]
|
25
|
Xiao L, Lian B, Hao J, Liu C, Wang S. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO₂ concentrations compared to primordial values. Sci Rep 2015; 5:7733. [PMID: 25583135 PMCID: PMC4291579 DOI: 10.1038/srep07733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
Abstract
It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago.
Collapse
Affiliation(s)
- Leilei Xiao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Lian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jianchao Hao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Congqiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Shijie Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
26
|
Tristão GB, Assunção LDP, Dos Santos LPA, Borges CL, Silva-Bailão MG, Soares CMDA, Cavallaro G, Bailão AM. Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus. Front Microbiol 2015; 5:761. [PMID: 25620964 PMCID: PMC4288321 DOI: 10.3389/fmicb.2014.00761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/13/2014] [Indexed: 12/18/2022] Open
Abstract
Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.
Collapse
Affiliation(s)
- Gabriel B Tristão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Leandro do Prado Assunção
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Luiz Paulo A Dos Santos
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Clayton L Borges
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle Garcia Silva-Bailão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Célia M de Almeida Soares
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Gabriele Cavallaro
- Magnetic Resonance Center, University of Florence Sesto Fiorentino, Italy
| | - Alexandre M Bailão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| |
Collapse
|
27
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex. Front Microbiol 2014; 5:719. [PMID: 25566229 PMCID: PMC4271699 DOI: 10.3389/fmicb.2014.00719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de F da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
28
|
Castilho DG, Chaves AFA, Xander P, Zelanis A, Kitano ES, Serrano SMT, Tashima AK, Batista WL. Exploring Potential Virulence Regulators in Paracoccidioides brasiliensis Isolates of Varying Virulence through Quantitative Proteomics. J Proteome Res 2014; 13:4259-71. [DOI: 10.1021/pr5002274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniele G. Castilho
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
| | - Alison F. A. Chaves
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
| | - Patricia Xander
- Departamento
de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema, 09913-030 SP, Brazil
| | - André Zelanis
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, Campus São José dos Campos, Rua Talim, 330, São José dos Campos, 12231-280 SP, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada − CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900 SP, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada − CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900 SP, Brazil
| | - Alexandre K. Tashima
- Departamento
de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua 3 de maio, 100 - Vila Clementino, São
Paulo, 04023-062 SP, Brazil
| | - Wagner L. Batista
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
- Departamento
de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema, 09913-030 SP, Brazil
| |
Collapse
|
29
|
Lima PDS, Casaletti L, Bailão AM, de Vasconcelos ATR, Fernandes GDR, Soares CMDA. Transcriptional and proteomic responses to carbon starvation in Paracoccidioides. PLoS Negl Trop Dis 2014; 8:e2855. [PMID: 24811072 PMCID: PMC4014450 DOI: 10.1371/journal.pntd.0002855] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding to carbon sources play a major role in adaptation and persistence in the host niche. The species of the Paracoccidioides genus, a neglected human pathogen, represent the causative agents of paracoccidioidomycosis (PCM), one of the most frequent systemic mycoses in Latin America. Despite being phagocytosed, the fungus conidia differentiate into the parasitic yeast form that subverts the normally harsh intraphagosomal environment and survives and replicates into murine and human macrophages. It has been suggested that alternative carbon metabolism plays a role in the survival and virulence of Paracoccidioides spp. within host cells. We used large-scale transcriptome and proteome approaches to better characterize the responses of Paracoccidioides, Pb01, yeast parasitic cells, to carbon starvation. We aimed to identify important molecules used by the fungus to adapt to these hostile conditions. The shift to a starvation mode, including gluconeogenesis and ethanol increases, activation of fatty acids, and amino acid degradation are the strategies used by the pathogen to persist under this stress. Our study provides a detailed map of Paracoccidioides spp. responses under carbon starvation conditions and contributes to further investigations of the importance of alternative carbon adaptation during fungus pathogenesis.
Collapse
Affiliation(s)
- Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Luciana Casaletti
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
30
|
do Prado RS, Alves RJ, de Oliveira CMA, Kato L, da Silva RA, Quintino GO, do Desterro Cunha S, de Almeida Soares CM, Pereira M. Inhibition of Paracoccidioides lutzii Pb01 isocitrate lyase by the natural compound argentilactone and its semi-synthetic derivatives. PLoS One 2014; 9:e94832. [PMID: 24752170 PMCID: PMC3994062 DOI: 10.1371/journal.pone.0094832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/20/2014] [Indexed: 11/08/2022] Open
Abstract
The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments.
Collapse
Affiliation(s)
- Renata Silva do Prado
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ricardo Justino Alves
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lucília Kato
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de BioSistemas, Campus Jataí, Universidade Federal de Goiás, Jataí, Goiás, Brazil
| | | | - Silvio do Desterro Cunha
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
31
|
Menino JF, Saraiva M, Gomes-Rezende J, Sturme M, Pedrosa J, Castro AG, Ludovico P, Goldman GH, Rodrigues F. P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation. PLoS One 2013; 8:e74725. [PMID: 24066151 PMCID: PMC3774720 DOI: 10.1371/journal.pone.0074725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/05/2013] [Indexed: 11/21/2022] Open
Abstract
Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.
Collapse
Affiliation(s)
- João Filipe Menino
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Jéssica Gomes-Rezende
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Mark Sturme
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Gustavo H. Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Campinas, São Paulo, Brasil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
32
|
Martinez-Vazquez A, Gonzalez-Hernandez A, Domínguez Á, Rachubinski R, Riquelme M, Cuellar-Mata P, Guzman JCT. Identification of the transcription factor Znc1p, which regulates the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. PLoS One 2013; 8:e66790. [PMID: 23826133 PMCID: PMC3691278 DOI: 10.1371/journal.pone.0066790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/12/2013] [Indexed: 11/18/2022] Open
Abstract
The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica.
Collapse
Affiliation(s)
- Azul Martinez-Vazquez
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
| | - Angelica Gonzalez-Hernandez
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
| | - Ángel Domínguez
- Departamento de Microbiologia y Genetica, CIETUS/IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Richard Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Meritxell Riquelme
- Departamento de Microbiologia, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Patricia Cuellar-Mata
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
| | - Juan Carlos Torres Guzman
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
- * E-mail:
| |
Collapse
|
33
|
High expression of human monocyte iNOS mRNA induced by Paracoccidioides brasiliensis is not associated with increase in NO production. Microbes Infect 2012; 14:1049-53. [DOI: 10.1016/j.micinf.2012.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/16/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
|
34
|
Comparative transcriptome analysis of Paracoccidioides brasiliensis during in vitro adhesion to type I collagen and fibronectin: identification of potential adhesins. Res Microbiol 2012; 163:182-91. [PMID: 22306611 DOI: 10.1016/j.resmic.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/12/2012] [Indexed: 11/23/2022]
Abstract
Paracoccidioidomycosis is caused by the dimorphic fungus Paracoccidioides brasiliensis. The extracellular matrix (ECM) plays an important role in regulation of cell adhesion, differentiation, migration and proliferation of cells. An in vitro binding assay of P. brasiliensis yeast cells adhering to type I collagen and fibronectin was performed in order to identify novel adhesins. Representational difference analysis (RDA) was employed to identify genes upregulated under adhesion-inducing conditions. Expressed sequence tags (ESTs) from cDNA libraries generated by the RDA technique were analyzed. Genes related to functional categories, such as metabolism, transcription, energy, protein synthesis and fate, cellular transport and biogenesis of cellular components were upregulated. Transcripts encoding the P. brasiliensis protein enolase (PbEno) and the high-affinity cooper transporter (PbCtr3) were identified and further characterized. The recombinant enolase (rPbEno) and a synthetic peptide designed for PbCtr3 were obtained and demonstrated to be able to bind ECM components. Immunofluorescence assays demonstrated that rPbEno specifically binds to the macrophage surface, reinforcing the role of this molecule in the P. brasiliensis interaction with host cells. In addition, upregulation of selected genes was demonstrated by qRT-PCR. In synthesis, the strategy can be useful in characterization of potential P. brasiliensis adhesins.
Collapse
|
35
|
Bailão AM, Pereira M, Salem-Izacc SM, Borges CL, Soares CMDA. Transcript profiling using ESTs from Paracoccidioides brasiliensis in models of infection. Methods Mol Biol 2012; 845:381-396. [PMID: 22328389 DOI: 10.1007/978-1-61779-539-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcript profiling is an invaluable strategy to study differential gene expression. Here we describe a detailed protocol for applying a subtractive hybridization technique, representational difference analysis (RDA), as a molecular strategy for the identification of differentially expressed genes in studies of host-fungus interaction. Bioinformatics tools that can be used in the analysis of expressed sequence tags (ESTs) are also detailed.
Collapse
Affiliation(s)
- Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Universidade Federal de Goiás, Campus II, Goiás, Brazil
| | | | | | | | | |
Collapse
|
36
|
Shankar J, Wu TD, Clemons KV, Monteiro JP, Mirels LF, Stevens DA. Influence of 17β-estradiol on gene expression of Paracoccidioides during mycelia-to-yeast transition. PLoS One 2011; 6:e28402. [PMID: 22194832 PMCID: PMC3237447 DOI: 10.1371/journal.pone.0028402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Paracoccidioides is the causative agent of paracoccidioidomycosis, a systemic mycosis endemic to Latin America. Infection is initiated by inhalation of conidia (C) or mycelial (M) fragments, which subsequently differentiate into yeast (Y). Epidemiological studies show a striking predominance of paracoccidioidomycosis in adult men compared to premenopausal women. In vitro and in vivo studies suggest that the female hormone (17β-estradiol, E(2)) regulates or inhibits M-or-C-to-Y transition. In this study we have profiled transcript expression to understand the molecular mechanism of how E(2) inhibits M-to-Y transition. METHODOLOGY We assessed temporal gene expression in strain Pb01 in the presence or absence of E(2) at various time points through 9 days of the M-to-Y transition using an 11,000 element random-shear genomic DNA microarray and verified the results using quantitative real time-PCR. E(2)-regulated clones were sequenced to identify genes and biological function. PRINCIPAL FINDINGS E(2)-treatment affected gene expression of 550 array elements, with 331 showing up-regulation and 219 showing down-regulation at one or more time points (p≤0.001). Genes with low expression after 4 or 12 h exposure to E(2) belonged to pathways involved in heat shock response (hsp90 and hsp70), energy metabolism, and several retrotransposable elements. Y-related genes, α-1,3-glucan synthase, mannosyltransferase and Y20, demonstrated low or delayed expression in E(2)-treated cultures. Genes potentially involved in signaling, such as palmitoyltransferase (erf2), small GTPase RhoA, phosphatidylinositol-4-kinase, and protein kinase (serine/threonine) showed low expression in the presence of E(2), whereas a gene encoding for an arrestin domain-containing protein showed high expression. Genes related to ubiquitin-mediated protein degradation, and oxidative stress response genes were up-regulated by E(2). CONCLUSION This study characterizes the effect of E(2) at the molecular level on the inhibition of the M-to-Y transition and is indicative that the inhibitory actions of E(2) may be working through signaling genes that regulate dimorphism.
Collapse
Affiliation(s)
- Jata Shankar
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Thomas D. Wu
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Karl V. Clemons
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Jomar P. Monteiro
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Laurence F. Mirels
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - David A. Stevens
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
37
|
Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, Brigido MM, Ferreira MEDS, Garcia AM, Grynberg M, Gujja S, Heiman DI, Henn MR, Kodira CD, León-Narváez H, Longo LVG, Ma LJ, Malavazi I, Matsuo AL, Morais FV, Pereira M, Rodríguez-Brito S, Sakthikumar S, Salem-Izacc SM, Sykes SM, Teixeira MM, Vallejo MC, Walter MEMT, Yandava C, Young S, Zeng Q, Zucker J, Felipe MS, Goldman GH, Haas BJ, McEwen JG, Nino-Vega G, Puccia R, San-Blas G, Soares CMDA, Birren BW, Cuomo CA. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet 2011; 7:e1002345. [PMID: 22046142 PMCID: PMC3203195 DOI: 10.1371/journal.pgen.1002345] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.
Collapse
Affiliation(s)
| | - Mia D. Champion
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason W. Holder
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jonathan Goldberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Alexandre M. Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Ana Maria Garcia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - David I. Heiman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Matthew R. Henn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chinnappa D. Kodira
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Henry León-Narváez
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Larissa V. G. Longo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Li-Jun Ma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Iran Malavazi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alisson L. Matsuo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Flavia V. Morais
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Pesquisa y Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Rodríguez-Brito
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Sharadha Sakthikumar
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Silvia M. Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sean M. Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Milene C. Vallejo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Chandri Yandava
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeremy Zucker
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Maria Sueli Felipe
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, São Paulo, Brazil
| | - Brian J. Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Juan G. McEwen
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gustavo Nino-Vega
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gioconda San-Blas
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
38
|
|
39
|
Cruz AHDS, Brock M, Zambuzzi-Carvalho PF, Santos-Silva LK, Troian RF, Góes AM, Soares CMDA, Pereira M. Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioides brasiliensis yeast cells. FEBS J 2011; 278:2318-32. [PMID: 21535474 DOI: 10.1111/j.1742-4658.2011.08150.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glyoxylate cycle plays an essential role for anaplerosis of oxaloacetate during growth of microorganisms on carbon sources such as acetate or fatty acids and has been shown to contribute to virulence of several pathogens. Here, we investigated the transcriptional and post-translational regulation of the glyoxylate cycle key enzyme isocitrate lyase (PbICL) in the human pathogenic fungus Paracoccidioides brasiliensis. Although sequence analyses on fungal isocitrate lyases revealed a high phylogenetic conservation, their regulation seems to differ significantly. Closely related Aspergillus species regulate the glyoxylate cycle at the transcriptional level, whereas Pbicl was constitutively expressed in yeast cells. However, only low PbICL activity was detected when cells were grown in the presence of glucose. Two-dimensional gel analyses with subsequent antibody hybridization revealed constitutive production of PbICL, but low PbICL activity on glucose coincided with extensive protein phosphorylation. Since an in vitro dephosphorylation of PbICL from glucose grown cells strongly increased ICL activity and resembled the phosphorylation pattern of highly active acetate grown cells, post-translational modification seems the main mechanism regulating PbICL activity in yeast cells. In agreement, a transfer of yeast cells from glucose to acetate medium increased PbICL activity without requirement of de novo protein synthesis. Thus, inactivation of PbICL by phosphorylation is reversible, denoting a new strategy for the rapid adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Aline H da Silva Cruz
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Silva MG, Schrank A, Bailão EFLC, Bailão AM, Borges CL, Staats CC, Parente JA, Pereira M, Salem-Izacc SM, Mendes-Giannini MJS, Oliveira RMZ, Silva LKRE, Nosanchuk JD, Vainstein MH, de Almeida Soares CM. The homeostasis of iron, copper, and zinc in paracoccidioides brasiliensis, cryptococcus neoformans var. Grubii, and cryptococcus gattii: a comparative analysis. Front Microbiol 2011; 2:49. [PMID: 21833306 PMCID: PMC3153025 DOI: 10.3389/fmicb.2011.00049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 03/03/2011] [Indexed: 01/01/2023] Open
Abstract
Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensisPb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.
Collapse
Affiliation(s)
- Mirelle Garcia Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Goiás, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brito WDA, Rezende TCV, Parente AF, Ricart CAO, Sousa MVD, Báo SN, Soares CMDA. Identification, characterization and regulation studies of the aconitase of Paracoccidioides brasiliensis. Fungal Biol 2011; 115:697-707. [PMID: 21802049 DOI: 10.1016/j.funbio.2011.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/02/2011] [Accepted: 02/11/2011] [Indexed: 11/26/2022]
Abstract
A protein species preferentially expressed in yeast cells with a molecular mass of 80 kDa and isoeletric point (pI) of 7.79 was isolated from the proteome of Paracoccidioides brasiliensis and characterized as an aconitase (ACO) (E.C. 4.2.1.3). ACO is an enzyme that catalyzes the isomerization of citrate to isocitrate in both the Krebs cycle and the glyoxylate cycle. We report the cloning and characterization of the cDNA encoding the ACO of P. brasiliensis (PbACO). The cDNA showed a 2361 bp open reading frame (ORF) and encoded a predicted protein with 787 amino acids. Polyclonal antibodies against the purified recombinant PbACO was obtained in order to analyze the subcellular localization of the molecule in P. brasiliensis. The protein is present in the extracellular fluid, cell wall enriched fraction, mitochondria, cytosol and peroxisomes of yeast cells as demonstrated by western blot and immunocytochemistry analysis. The expression analysis of the Pbaco gene was performed by quantitative real-time RT-PCR and results demonstrated an increased expression in yeast cells compared to mycelia. Real-time RT-PCR assays was also used to evaluate the Pbaco expression when the fungus grows on media with acetate and ethanol as sole carbon sources and in different iron levels. The results demonstrated that Pbaco transcript is over expressed in acetate and ethanol as sole carbon sources and in high-iron conditions.
Collapse
Affiliation(s)
- Wesley de A Brito
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
San-Blas G, Burger E. Experimental medical mycological research in Latin America - a 2000-2009 overview. Rev Iberoam Micol 2010; 28:1-25. [PMID: 21167301 DOI: 10.1016/j.riam.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
An overview of current trends in Latin American Experimental Medical Mycological research since the beginning of the 21(st) century is done (search from January 2000 to December 2009). Using the PubMed and LILACS databases, the authors have chosen publications on medically important fungi which, according to our opinion, are the most relevant because of their novelty, interest, and international impact, based on research made entirely in the Latin American region or as part of collaborative efforts with laboratories elsewhere. In this way, the following areas are discussed: 1) molecular identification of fungal pathogens; 2) molecular and clinical epidemiology on fungal pathogens of prevalence in the region; 3) cell biology; 4) transcriptome, genome, molecular taxonomy and phylogeny; 5) immunology; 6) vaccines; 7) new and experimental antifungals.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | |
Collapse
|
43
|
Parente JA, Salem-Izacc SM, Santana JM, Pereira M, Borges CL, Bailão AM, Soares CMA. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins. BMC Microbiol 2010; 10:292. [PMID: 21080956 PMCID: PMC3000847 DOI: 10.1186/1471-2180-10-292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM). Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi. RESULTS A cDNA (Pbsp) encoding a secreted serine protease (PbSP), was isolated from a cDNA library constructed with RNAs of fungal yeast cells recovered from liver of infected mice. Recombinant PbSP was produced in Escherichia coli, and used to develop polyclonal antibodies that were able to detect a 66 kDa protein in the P. brasiliensis proteome. In vitro deglycosylation assays with endoglycosidase H demonstrated that PbSP is a N-glycosylated molecule. The Pbsp transcript and the protein were induced during nitrogen starvation. The Pbsp transcript was also induced in yeast cells infecting murine macrophages. Interactions of PbSP with P. brasiliensis proteins were evaluated by two-hybrid assay in the yeast Saccharomyces cerevisiae. PbSP interacts with a peptidyl prolyl cis-trans isomerase, calnexin, HSP70 and a cell wall protein PWP2. CONCLUSIONS A secreted subtilisin induced during nitrogen starvation was characterized indicating the possible role of this protein in the nitrogen acquisition. PbSP interactions with other P. brasiliensis proteins were reported. Proteins interacting with PbSP are related to folding process, protein trafficking and cytoskeleton reorganization.
Collapse
Affiliation(s)
- Juliana A Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sílvia M Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Jaime M Santana
- Laboratório de Interação Parasito-Hospedeiro, Faculdade de Medicina, Universidade de Brasília, Brasília, DF
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton L Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia MA Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
44
|
García AM, Hernández O, Aristizabal BH, De Souza Bernardes LA, Puccia R, Naranjo TW, Goldman GH, Goldman MH, Cano LE, Restrepo A, McEwen JG. Gene expression analysis of Paracoccidioides brasiliensis transition from conidium to yeast cell. Med Mycol 2010; 48:147-54. [PMID: 19568977 DOI: 10.3109/13693780903055673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence factors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40/79 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P. brasiliensis conidia induced infection.
Collapse
Affiliation(s)
- Ana M García
- Unidad de Biología Celular y Molecular Corporación para Investigaciones Biológicas, Medellín, Colombia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, Winters MS, Alderete JF, Soares CMDA. Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. Infect Immun 2010; 78:4040-50. [PMID: 20605975 PMCID: PMC2937444 DOI: 10.1128/iai.00221-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/31/2010] [Accepted: 06/28/2010] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by the dimorphic fungus Paracoccidioides brasiliensis, is a disseminated, systemic disorder that involves the lungs and other organs. The ability of the pathogen to interact with host components, including extracellular matrix (ECM) proteins, is essential to further colonization, invasion, and growth. Previously, enolase (EC 4.2.1.11) was characterized as a fibronectin binding protein in P. brasiliensis. Interaction of surface-bound enolase with plasminogen has been incriminated in tissue invasion for pathogenesis in several pathogens. In this paper, enolase was expressed in Escherichia coli as a recombinant glutathione S-transferase (GST) fusion protein (recombinant P. brasiliensis enolase [rPbEno]). The P. brasiliensis native enolase (PbEno) was detected at the fungus surface and cytoplasm by immunofluorescence with an anti-rPbEno antibody. Immobilized purified rPbEno bound plasminogen in a specific, concentration-dependent fashion. Both native enolase and rPbEno activated conversion of plasminogen to plasmin through tissue plasminogen activator. The association between PbEno and plasminogen was lysine dependent. In competition experiments, purified rPbEno, in its soluble form, inhibited plasminogen binding to fixed P. brasiliensis, suggesting that this interaction required surface-localized PbEno. Plasminogen-coated P. brasiliensis yeast cells were capable of degrading purified fibronectin, providing in vitro evidence for the generation of active plasmin on the fungus surface. Exposure of epithelial cells and phagocytes to enolase was associated with an increased expression of surface sites of adhesion. In fact, the association of P. brasiliensis with epithelial cells and phagocytes was increased in the presence of rPbEno. The expression of PbEno was upregulated in yeast cells derived from mouse-infected tissues. These data indicate that surface-associated PbEno may contribute to the pathogenesis of P. brasiliensis.
Collapse
Affiliation(s)
- Sarah Veloso Nogueira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Fernanda L. Fonseca
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcio L. Rodrigues
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Vasanth Mundodi
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Erika A. Abi-Chacra
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Michael S. Winters
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - John F. Alderete
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
46
|
Borges CL, Bailão AM, Báo SN, Pereira M, Parente JA, de Almeida Soares CM. Genes potentially relevant in the parasitic phase of the fungal pathogen Paracoccidioides brasiliensis. Mycopathologia 2010; 171:1-9. [PMID: 20669049 DOI: 10.1007/s11046-010-9349-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
Paracoccidioides brasiliensis, a fungal pathogen of humans, switches from a filamentous spore-forming mold in the soil to a pathogenic budding-yeast in the human host. Dimorphism is regulated mainly by the temperature of incubation. Representational difference analysis (RDA) was performed between yeast cells of isolate Pb01 and from isolate Pb4940, the last growing as mycelia at the host temperature. Transcripts exhibiting increased expression during development of the yeast parasitic phase comprised those involved mainly in response to stress, transcriptional regulation and nitrogen metabolism. In this way, the isolate Pb01 increased the expression of a variety of transcripts encoding cell rescue proteins such as the heat shock protein HSP30, alpha-trehalose-phosphate synthase and DDR48 stress protein, suggesting the relevance of the defense mechanism against oxidative/heat shock stress in the fungal yeast phase. Other differentially expressed genes between the two isolates included those coding for cell wall/membrane-related proteins, suggesting the relevance of the fungal surface and it's remodeling to the dimorphism. We provide a set of novel yeast preferentially expressed genes and demonstrate the effectiveness of RDA for studying P. brasiliensis dimorphism.
Collapse
Affiliation(s)
- Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Zambuzzi-Carvalho PF, Cruz AHDS, Santos-Silva LK, Goes AM, Soares CMDA, Pereira M. The malate synthase of Paracoccidioides brasiliensis Pb01 is required in the glyoxylate cycle and in the allantoin degradation pathway. Med Mycol 2010; 47:734-44. [PMID: 19888806 DOI: 10.3109/13693780802609620] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, we examined the characteristics of cDNA, the regulation of the gene expression of Paracoccidioides brasiliensis MLS (Pbmls), and the enzymatic activity of the protein P. brasiliensis MLS (PbMLS) from the P. brasiliensis Pb01 isolate. Pbmls cDNA contains 1617 bp, encoding a protein of 539 amino acids with a predicted molecular mass of 60 kDa. The protein presents the MLSs family signature, the catalytic residues essential for enzymatic activity and the peroxisomal/glyoxysomal targeting signal PTS1. The high level of Pbmls transcript observed in the presence of two-carbon (2C) sources suggests that in P. brasiliensis, the primary regulation of carbon flux into the glyoxylate cycle (GC) was at the level of the Pbmls transcript. The gene expression, protein level, and enzymatic activity of Pbmls were highly induced by oxalurate in the presence of glucose and by proline in the presence of acetate. In the presence of glucose, the gene expression, protein level, and enzymatic activity of Pbmls were mildly stimulated by proline. Our results suggested that PbMLS condenses acetyl-CoA from both 2C sources (GC) and nitrogen sources (from proline and purine metabolism) to produce malate. The regulation of Pbmls by carbon and nitrogen sources was reinforced by the presence of regulatory motifs CREA and UIS found in the promoter region of the gene.
Collapse
Affiliation(s)
- Patrícia Fernanda Zambuzzi-Carvalho
- Laboratório de Biologia Molecular, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Peres NTA, Sanches PR, Falcão JP, Silveira HCS, Paião FG, Maranhão FCA, Gras DE, Segato F, Cazzaniga RA, Mazucato M, Cursino-Santos JR, Aquino-Ferreira R, Rossi A, Martinez-Rossi NM. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol 2010; 10:39. [PMID: 20144196 PMCID: PMC2831883 DOI: 10.1186/1471-2180-10-39] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 02/08/2010] [Indexed: 01/13/2023] Open
Abstract
Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Collapse
Affiliation(s)
- Nalu T A Peres
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molnár I, Gibson DM, Krasnoff SB. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 2010; 27:1241-75. [DOI: 10.1039/c001459c] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 2009; 5:e1000612. [PMID: 19816560 PMCID: PMC2749448 DOI: 10.1371/journal.ppat.1000612] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/10/2009] [Indexed: 11/22/2022] Open
Abstract
Glycolysis is a metabolic pathway that is central to the assimilation of carbon for either respiration or fermentation and therefore is critical for the growth of all organisms. Consequently, glycolytic transcriptional regulation is important for the metabolic flexibility of pathogens in their attempts to colonize diverse niches. We investigated the transcriptional control of carbohydrate metabolism in the human fungal pathogen Candida albicans and identified two factors, Tye7p and Gal4p, as key regulators of glycolysis. When respiration was inhibited or oxygen was limited, a gal4tye7 C. albicans strain showed a severe growth defect when cultured on glucose, fructose or mannose as carbon sources. The gal4tye7 strain displayed attenuated virulence in both Galleria and mouse models as well, supporting the connection between pathogenicity and metabolism. Chromatin immunoprecipitation coupled with microarray analysis (ChIP-CHIP) and transcription profiling revealed that Tye7p bound the promoter sequences of the glycolytic genes and activated their expression during growth on either fermentable or non-fermentable carbon sources. Gal4p also bound the glycolytic promoter sequences and activated the genes although to a lesser extent than Tye7p. Intriguingly, binding and activation by Gal4p was carbon source-dependent and much stronger during growth on media containing fermentable sugars than on glycerol. Furthermore, Tye7p and Gal4p were responsible for the complete induction of the glycolytic genes under hypoxic growth conditions. Tye7p and Gal4p also regulated unique sets of carbohydrate metabolic genes; Tye7p bound and activated genes involved in trehalose, glycogen, and glycerol metabolism, while Gal4p regulated the pyruvate dehydrogenase complex. This suggests that Tye7p represents the key transcriptional regulator of carbohydrate metabolism in C. albicans and Gal4p provides a carbon source-dependent fine-tuning of gene expression while regulating the metabolic flux between respiration and fermentation pathways. Pathogens must be able to assimilate the carbon sources in their environment to generate sufficient energy and metabolites to survive. Since glycolysis is a central metabolic pathway, it is important for this metabolic flexibility. The most commonly isolated agent in human fungal infections, Candida albicans, depends upon glycolysis for the progression of systemic disease. We investigated glycolytic transcriptional regulation in C. albicans and defined two key regulators of the pathway, Tye7p and Gal4p. We demonstrated that these factors are important for the fermentative growth of C. albicans both in vitro and in vivo and also regulate the input and output fluxes of glycolysis. The gal4tye7 strain showed attenuated virulence in a Galleria and two mouse models, potentially due to the severe growth defect in oxygen-limiting environments. Gal4p and Tye7p represent fungal specific regulators involved in the pathogenicity of the organism that may be exploited in the development of antifungal treatments. Our study describes a fungal glycolytic transcriptional circuit that is fundamentally different from that of the model yeast Saccharomyces cerevisiae, providing further evidence that the transcriptional networks in S. cerevisiae need not be generally representative of the fungal kingdom.
Collapse
Affiliation(s)
- Christopher Askew
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|