1
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
2
|
Minasyan M, Sharma L, Pivarnik T, Liu W, Adams T, Bermejo S, Peng X, Liu A, Ishikawa G, Perry C, Kaminski N, Gulati M, Herzog EL, Dela Cruz CS, Ryu C. Elevated IL-15 concentrations in the sarcoidosis lung are independent of granuloma burden and disease phenotypes. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1137-L1146. [PMID: 33851886 DOI: 10.1152/ajplung.00575.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. The mechanisms promoting disease pathogenesis and progression are unknown, although interleukin-15 (IL-15) has been associated with the immune-mediated inflammation of sarcoidosis. Because the identification of a mechanistically based, clinically relevant biomarker for sarcoidosis remains elusive, we hypothesized this role for IL-15. Pulmonary sarcoidosis granuloma formation was modeled using trehalose 6,6'-dimicolate (TDM), which was administered into wild-type and three lineages of mice: those overexpressing IL-15, deficient in IL-15, and deficient in IL-15 receptor α. The number of granulomas per lung was counted and normalized to the wild type. IL-15 concentrations were measured in the bronchoalveolar lavage (BAL) from healthy controls and subjects with sarcoidosis in our cohort, where associations between IL-15 levels and clinical manifestations were sought. Findings were validated in another independent sarcoidosis cohort. TDM administration resulted in similar granuloma numbers across all lineages of mice. IL-15 concentrations were elevated in the BAL of both human cohorts, irrespective of disease phenotypes. In exploratory analysis, an association with obesity was observed, and various other soluble mediators were identified in the BAL of both cohorts. Although IL-15 is enriched in the sarcoidosis lung, it was independent of disease pathogenesis or clinical manifestations in our mouse model and human cohorts of sarcoidosis. An association with obesity perhaps reflects the ongoing inflammatory processes of these comorbid conditions. Our findings showed that IL-15 is redundant for disease pathogenesis and clinical progression of sarcoidosis.
Collapse
Affiliation(s)
- Maksym Minasyan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Taylor Pivarnik
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Wei Liu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Taylor Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Santos Bermejo
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Xiaohua Peng
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Angela Liu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Genta Ishikawa
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Carrighan Perry
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Mridu Gulati
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Changwan Ryu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
3
|
Huppertz C, Jäger B, Wieczorek G, Engelhard P, Oliver SJ, Bauernfeind FG, Littlewood-Evans A, Welte T, Hornung V, Prasse A. The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. Eur Respir J 2020; 55:13993003.00119-2019. [DOI: 10.1183/13993003.00119-2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Sarcoidosis is a disease characterised by granuloma formation. There is an unmet need for new treatment strategies beyond corticosteroids. The NLRP3 inflammasome pathway is expressed in innate immune cells and senses danger signals to elicit inflammatory interleukin (IL)-1β; it has recently become a druggable target. This prompted us to test the role of the NLRP3 inflammasome and IL-1β pathway in granuloma formation and sarcoidosis.19 sarcoid patients and 19 healthy volunteers were recruited into this pilot study. NLRP3 inflammasome activity was measured in bronchoalveolar lavage (BAL) cells and lung and skin biopsies using immunohistochemistry, Western blot, reverse-transcriptase PCR and ELISA. For in vivo experiments we used the trehalose 6,6′-dimycolate-granuloma mouse model and evaluated lung granuloma burden in miR-223 knockout and NLRP3 knockout mice, as well as the treatment effects of MCC950 and anti-IL-1β antibody therapy.We found strong upregulation of the NLRP3 inflammasome pathway, evidenced by expression of activated NLRP3 inflammasome components, including cleaved caspase-1 and IL-1β in lung granuloma, and increased IL-1β release of BAL cells from sarcoid patients compared to healthy volunteers (p=0.006). mRNA levels of miR-223, a micro-RNA downregulating NLRP3, were decreased and NLRP3 mRNA correspondingly increased in alveolar macrophages from sarcoid patients (p<0.005). NLRP3 knockout mice showed decreased and miR-223 knockout mice increased granuloma formation compared to wild-type mice. Pharmacological interference using NLRP3 pathway inhibitor MCC950 or an anti-IL-1β antibody resulted in reduced granuloma formation (p<0.02).In conclusion, our data provide evidence of upregulated inflammasome and IL-1β pathway activation in sarcoidosis and suggest both as valid therapeutic targets.
Collapse
|
4
|
Gergert VJ, Averbakh MM, Ergeshov AE. [Immunological aspects of tuberculosis pathogenesis]. TERAPEVT ARKH 2019; 91:90-97. [PMID: 32598618 DOI: 10.26442/00403660.2019.11.000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The morphological aspects of TB pathogenesis are well described in the publications. Much is also known about the main stages of development and formation of specific adaptive immunity. However, from our point of view, not enough attention is being paid to the involvement of the immune system in the pathogenesis of clinically relevant TB abnormalities, as well as various forms of the disease. Nevertheless, there is no doubt that the variety of clinical manifestations of any disease associated with the penetration of a foreign agent into the body, and Mycobacterium tuberculosis (MTB) in particular, is due to the collective interaction of the infectious agent and the individual response of the macroorganism to this infectious agent. The mosaic of such interactions usually imposes its own adjustments on the development of different forms of the process, its speed and direction, as well as the outcomes. Certainly, the response of a macroorganism to MTB is an integral part of pathogenesis and consists of many general components including the responses associated with the mechanisms of natural and acquired immunity. Intensity of these reactions depends on the characteristics of an agent (MTB) and a macroorganism. For the development of TB disease, massiveness of TB infection, dose and duration of MTB exposure to the human body, as well as virulence of MTB and the level of body's protection during the exposure play a very important role. TB pathogenesis is somewhat different in primary MTB infection and re - infection. With primary infection, 88-90% of individuals do not have clinical manifestations, and only the tuberculin skin test conversion signals the onset of infection. In some cases, without any use of anti-TB drugs limited abnormalities may result in spontaneous cure with the minimal residual changes in the lungs, intrathoracic lymph nodes and tissues of other organs, often in the form of calcifications and limited areas of fibrosis in more advanced cases. Only 10-12% of newly infected individuals develop TB with severe clinical manifestations requiring TB therapy. The absence of clinical manifestations of primary TB infection can be explained by a high level of natural resistance of the human body to tuberculosis, and sometimes can be an effect of acquired protection due to BCG vaccination. This review attempts to discuss the role of immune mechanisms in the pathogenesis both at the beginning of disease development, and in the process of its various manifestations. Issues of genetically determined resistance or susceptibility to TB are not being covered in detail in this manuscript.
Collapse
Affiliation(s)
- V J Gergert
- Central TB Research Institute Department of Immunology
| | - M M Averbakh
- Central TB Research Institute Department of Immunology
| | - A E Ergeshov
- Central TB Research Institute Department of Immunology
| |
Collapse
|
5
|
Mycobacterial Trehalose 6,6'-Dimycolate-Induced M1-Type Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:286-294. [PMID: 31734231 DOI: 10.1016/j.ajpath.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 01/25/2023]
Abstract
Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1β, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.
Collapse
|
6
|
Liu X, Wang J, Wang H, Zhou C, Yu Q, Yin L, Wu W, Xia S, Shao Q. Cell penetrable-mouse forkhead box P3 suppresses type 1 T helper cell-mediated immunity in a murine model of delayed-type hypersensitivity. Exp Ther Med 2017; 13:421-428. [PMID: 28352310 PMCID: PMC5348706 DOI: 10.3892/etm.2017.4020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/06/2016] [Indexed: 11/08/2022] Open
Abstract
Forkhead box P3 (FOXP3), which is a transcription factor, has a primary role in the development and function of regulatory T cells, and thus contributes to homeostasis of the immune system. A previous study generated a cell-permeable fusion protein of mouse FOXP3 conjugated to a protein transduction domain (PTD-mFOXP3) that successfully blocked differentiation of type 17 T helper cells in vitro and alleviated experimental arthritis in mice. In the present study, the role of PTD-mFOXP3 in type 1 T helper (Th1) cell-mediated immunity was investigated and the possible mechanisms for its effects were explored. Under Th1 polarization conditions, cluster of differentiation 4+ T cells were treated with PTD-mFOXP3 and analyzed by flow cytometry in vitro, which revealed that PTD-mFOXP3 blocked Th1 differentiation in vitro. Mice models of delayed type hypersensitivity (DTH) reactions were generated by subcutaneous sensitization and challenge with ovalbumin (OVA) to the ears of mice. PTD-mFOXP3, which was administered via local subcutaneous injection, significantly reduced DTH-induced inflammation, including ear swelling (ear swelling, P<0.001; pinnae weight, P<0.05 or P<0.01 with 0.25 and 1.25 mg/kg PTD-mFOXP3, respectively), infiltration of T cells, and expression of interferon-γ at local inflammatory sites (mRNA level P<0.05) compared with the DTH group. The results of the present study demonstrated that PTD-mFOXP3 may attenuate DTH reactions by suppressing the infiltration and activity of Th1 cells.
Collapse
Affiliation(s)
- Xia Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children Hospital, Wuhan, Hubei 430016, P.R. China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chen Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qihong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Lei Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Clinical Laboratory, Central Hospital of Handan, Handan, Hebei 056000, P.R. China
| | - Weijiang Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
7
|
Association of pellicle growth morphological characteristics and clinical presentation of Mycobacterium tuberculosis isolates. Tuberculosis (Edinb) 2016; 101S:S63-S68. [PMID: 27742461 DOI: 10.1016/j.tube.2016.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose 6,6'dimycolate (TDM) is a glycolipid found in nearly pure form on the surface of virulent Mycobacterium tuberculosis (MTB). This manuscript investigated the production of TDM, growth rate and colony morphology of multiple strains of MTB, each of which had been isolated from both pulmonary (sputum) and extrapulmonary sites of multiple patients. Since sputum contains MTB primarily from cavities and extrapulmonary biopsies are typically granulomas, this provided an opportunity to compare the behavior of single strains of MTB that had been isolated from cavities and granulomas. The results demonstrated that MTB isolated from pulmonary sites produced more TDM (3.23 ± 1.75 μg TDM/mg MTB), grew more rapidly as thin spreading pellicles, demonstrated early cording, and climbed culture well walls. In contrast, extrapulmonary isolates produced less TDM (1.42 ± 0.58 μg TDM/mg MTB) (p < 0.001) and grew as discrete patches with little tendency to spread or climb. Both Beijing pulmonary isolates and the non-Beijing pulmonary isolates produced significantly more TDM (1.64 ± 0.46 μg TDM/mg MTB) and grew faster than the Beijing and non-Beijing extrapulmonary isolates (1.14 ± 0.63 μg TDM/mg MTB) (p < 0.001 and p < 0.005 respectively). These results indicate that MTB from pulmonary sites (cavities) grows faster and produces more TDM than strains isolated from extrapulmonary sites (granulomas). This report suggests a critical role for TDM in cavitary TB.
Collapse
|
8
|
Hwang SA, Kruzel ML, Actor JK. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology. Biochem Cell Biol 2016; 95:148-154. [PMID: 28165282 DOI: 10.1139/bcb-2016-0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse-1. At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)-1·mouse-1) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Collapse
Affiliation(s)
- Shen-An Hwang
- a Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Marian L Kruzel
- b Department of Integrative Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Jeffrey K Actor
- a Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
9
|
Donnachie E, Fedotova EP, Hwang SA. Trehalose 6,6-Dimycolate from Mycobacterium tuberculosis Induces Hypercoagulation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1221-33. [PMID: 26968340 DOI: 10.1016/j.ajpath.2015.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/09/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
Tuberculosis (TB) remains a global health concern. Trehalose 6'6-dimycolate (TDM) activates innate inflammation and likely also stimulates chronic inflammation observed during disease progression. Noninfectious models using purified TDM oil/water emulsions elicit pathologic findings observed in patients with TB. We introduce a new TDM model that promotes inflammatory lung pathologic findings and vascular occlusion and hemorrhage. C57BL/6 and BALB/c mice were injected with 10 μg of i.p. TDM in light mineral oil (TDM-IP). At day 7, another injection of 10 μg of i.v. TDM in oil/water emulsion was given (TDM-IV). The i.p./i.v. TDM (TDM-IVIP) group was compared with mice injected once with i.v. or i.p. TDM. The responses to TDM-IP, TDM-IV, or TDM-IPIV were consistent between mouse strains. Mice that received TDM-IV and TDM-IPIV had inflammatory pathologic findings with increases in inflammatory and T-cell cytokines, and the TDM-IPIV group had further enhancement of IL-10 and granulocyte-macrophage colony-stimulating factor. The TDM-IPIV group had increased CD4(+) T cells in lung tissue, significantly increased coagulation, decreased clot formation time, and increased maximum clot firmness. Masson's trichrome staining revealed increased deposition of collagen in the occluded vasculature. TDM-IPIV promotes a hypercoagulopathy state, independent of inflammation. This new model argues that TDM is sufficient to generate the hypercoagulopathy observed in patients with TB.
Collapse
Affiliation(s)
- Elizabeth Donnachie
- Gulf States Hemophilia and Thrombophilia Center, Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Elena P Fedotova
- Department of Anatomic Pathology, St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas.
| |
Collapse
|
10
|
Kim WS, Kim JS, Cha SB, Han SJ, Kim H, Kwon KW, Kim SJ, Eum SY, Cho SN, Shin SJ. Virulence-Dependent Alterations in the Kinetics of Immune Cells during Pulmonary Infection by Mycobacterium tuberculosis. PLoS One 2015; 10:e0145234. [PMID: 26675186 PMCID: PMC4682951 DOI: 10.1371/journal.pone.0145234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
A better understanding of the kinetics of accumulated immune cells that are involved in pathophysiology during Mycobacterium tuberculosis (Mtb) infection may help to facilitate the development of vaccines and immunological interventions. However, the kinetics of innate and adaptive cells that are associated with pathogenesis during Mtb infection and their relationship to Mtb virulence are not clearly understood. In this study, we used a mouse model to compare the bacterial burden, inflammation and kinetics of immune cells during aerogenic infection in the lung between laboratory-adapted strains (Mtb H37Rv and H37Ra) and Mtb K strain, a hyper-virulent W-Beijing lineage strain. The Mtb K strain multiplied more than 10- and 3.54-fold more rapidly than H37Ra and H37Rv, respectively, during the early stage of infection (at 28 days post-infection) and resulted in exacerbated lung pathology at 56 to 112 days post-infection. Similar numbers of innate immune cells had infiltrated, regardless of the strain, by 14 days post-infection. High, time-dependent frequencies of F4/80-CD11c+CD11b-Siglec-H+PDCA-1+ plasmacytoid DCs and CD11c-CD11b+Gr-1int cells were observed in the lungs of mice that were infected with the Mtb K strain. Regarding adaptive immunity, Th1 and Th17 T cells that express T-bet and RORγt, respectively, significantly increased in the lungs that were infected with the laboratory-adapted strains, and the population of CD4+CD25+Foxp3+ regulatory T cells was remarkably increased at 112 days post-infection in the lungs of mice that were infected with the K strain. Collectively, our findings indicate that the highly virulent Mtb K strain may trigger the accumulation of pDCs and Gr1intCD11b+ cells with the concomitant down-regulation of the Th1 response and the maintenance of an up-regulated Th2 response without inducing a Th17 response during chronic infection. These results will help to determine which immune system components must be considered for the development of tuberculosis (TB) vaccines and immunological interventions.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - HongMin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
11
|
Lactoferrin: A Modulator for Immunity against Tuberculosis Related Granulomatous Pathology. Mediators Inflamm 2015; 2015:409596. [PMID: 26788020 PMCID: PMC4691619 DOI: 10.1155/2015/409596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023] Open
Abstract
There is great need for a therapeutic that would limit tuberculosis related pathology and thus curtail spread of disease between individuals by establishing a "firebreak" to slow transmission. A promising avenue to increase current therapeutic efficacy may be through incorporation of adjunct components that slow or stop development of aggressive destructive pulmonary pathology. Lactoferrin, an iron-binding glycoprotein found in mucosal secretions and granules of neutrophils, is just such a potential adjunct therapeutic agent. The focus of this review is to explore the utility of lactoferrin to serve as a therapeutic tool to investigate "disruption" of the mycobacterial granuloma. Proposed concepts for mechanisms underlying lactoferrin efficacy to control immunopathology are supported by data generated based on in vivo models using nonpathogenic trehalose 6,6'-dimycolate (TDM, cord factor).
Collapse
|
12
|
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 2015; 38:153-66. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Collapse
|
13
|
Evaluation of Anti-TBGL Antibody in the Diagnosis of Tuberculosis Patients in China. J Immunol Res 2015; 2015:834749. [PMID: 26339661 PMCID: PMC4539117 DOI: 10.1155/2015/834749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/28/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
Tuberculous glycolipid (TBGL) is a component of the Mycobacterium tuberculosis cell wall, and anti-TBGL antibodies are used for serodiagnosis of tuberculosis. Anti-TBGL IgG and IgA levels were measured in 45 pulmonary TB patients (PTB), 26 extra-pulmonary TB patients (ETB), 16 AIDS-TB patients, and 58 healthy controls (HC) including 39 health care workers (HW) and 19 newly enrolled students (ST). Anti-TBGL IgG measurements yielded 68.9% and 46.2% sensitivity in PTB and ETB, respectively, and 81.0% specificity. However, anti-TBGL IgA measurements were significantly less sensitive in detecting ETB than PTB (15.4% versus 46.7% sensitivity) but showed up to 89.7% specificity. Samples from AIDS-TB patients exhibited low reaction of anti-TBGL IgG and IgA with 6.3% and 12.5% sensitivity, respectively. Unlike anti-lipoarabinomannan (LAM) IgG that was found to elevate in sputum smearpositive subjects, anti-TBGL IgG and IgA elevated in those with cavitation and bronchiectasis, respectively. Anti-TBGL IgG in cavitary TB yielded 78.2% sensitivity compared to 57.1% in those otherwise. Meanwhile, higher anti-TBGL IgA titers were observed in HW than in ST, and increasing anti-TBGL IgG titers were observed in HW on follow-up. Therefore, higher anti-TBGL antibody titers are present in patients presenting cavities and bronchiectasis and subjects under TB exposure risk.
Collapse
|
14
|
Hwang SA, Kruzel ML, Actor JK. Effects of CHO-expressed recombinant lactoferrins on mouse dendritic cell presentation and function. Innate Immun 2014; 21:553-61. [PMID: 25537452 DOI: 10.1177/1753425914564609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lactoferrin (LF), a natural iron-binding protein, has previously demonstrated effectiveness in enhancing the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine. This report investigates immune modulatory effects of Chinese hamster ovary (CHO) cell-expressed recombinant mouse and human LFs on mouse bone marrow-derived dendritic cells (BMDCs), comparing homologous and heterologous functions. BCG-infected BMDCs were cultured with LF, and examined for class II presentation molecule expression. Culturing of BCG-infected BMDCs with either LF decreased the class II molecule-expressing population. Mouse LF significantly increased the production of IL-12p40, IL-1β and IL-10, while human LF-treated BMDCs increased only IL-1β and IL-10. Overlaying naïve CD4 T-cells onto BCG-infected BMDCs cultured with mouse LF increased IFN-γ, whereas the human LF-exposed group increased IFN-γ and IL-17 from CD4 T cells. Overlay of naïve CD8 T cells onto BCG-infected BMDCs treated with mouse LF increased the production of IFN-γ and IL-17, while similar experiments using human LF only increased IL-17. This report is the first to examine mouse and human recombinant LFs in parallel experiments to assess murine DC function. These results detail the efficacy of the human LF counterpart used in a heterologous system to understand LF-mediated events that confer BCG efficacy against Mycobacterium tuberculosis challenge.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX, USA
| | - Marian L Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, TX, USA
| | - Jeffrey K Actor
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX, USA Program in Immunology, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
15
|
Welsh KJ, Hunter RL, Actor JK. Trehalose 6,6'-dimycolate--a coat to regulate tuberculosis immunopathogenesis. Tuberculosis (Edinb) 2014; 93 Suppl:S3-9. [PMID: 24388646 DOI: 10.1016/s1472-9792(13)70003-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) remains a significant public health burden worldwide. Treatment of this disease requires a minimum of six months and there is no vaccine available for the most common form of the disease. Increasing evidence suggests that the mycobacterial glycolipid trehalose 6,6' dimycolate (TDM; cord factor) plays a key role in the pathogenesis of TB disease. TDM protects the TB bacilli from macrophage-mediated killing, inhibits effective antigen presentation, and reduces the formation of protective T-cell responses. TDM promotes initiation of granuloma formation and likely plays a role in caseation. Furthermore, TDM may contribute to the development of post primary disease. Receptors for TDM were recently described and are expected to contribute to our knowledge of the molecular pathogenesis of TB disease. In this manner, understanding TDM may prove promising towards development of targeted TB therapeutics to limit clinical pathologies.
Collapse
Affiliation(s)
- Kerry J Welsh
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA
| | - Robert L Hunter
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA
| | - Jeffrey K Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA.
| |
Collapse
|
16
|
Evidence for a unique species-specific hypersensitive epitope in Mycobacterium tuberculosis derived cord factor. Tuberculosis (Edinb) 2013; 93 Suppl:S88-93. [DOI: 10.1016/s1472-9792(13)70017-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Khan AA, Kamena F, Timmer MSM, Stocker BL. Development of a benzophenone and alkyne functionalised trehalose probe to study trehalose dimycolate binding proteins. Org Biomol Chem 2013; 11:881-5. [DOI: 10.1039/c2ob27257a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Khan AA, Stocker BL, Timmer MSM. Trehalose glycolipids--synthesis and biological activities. Carbohydr Res 2012; 356:25-36. [PMID: 22486827 DOI: 10.1016/j.carres.2012.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/10/2012] [Accepted: 03/10/2012] [Indexed: 02/04/2023]
Abstract
A variety of trehalose glycolipids have been isolated from natural sources, and several of these glycolipids exhibit important biological properties. These molecules also represent challenging synthetic targets due to their highly amphiphilic character, their large number of functional groups and additional chiral centres. This review highlights some of the recent advances made in the synthesis of trehalose glycolipids, and their associated biological activities.
Collapse
Affiliation(s)
- Ashna A Khan
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | | | | |
Collapse
|
19
|
Welsh KJ, Hwang SA, Boyd S, Kruzel ML, Hunter RL, Actor JK. Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis (Edinb) 2011; 91 Suppl 1:S105-13. [PMID: 22138562 DOI: 10.1016/j.tube.2011.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ability of lactoferrin to provide protection and decrease immunopathology in infectious diseases was evaluated using an aggressive aerosol model of Mycobacterium tuberculosis (MTB) infection. C57BL/6 mice were challenged with MTB strain Erdman and treated with 0.5% bovine lactoferrin added to the drinking water starting at day 0 or day 7 post-infection. Mice were sacrificed at three weeks post-challenge and evaluated for organ bacterial burden, lung histopathology, and ELISpot analysis of the lung and spleen for immune cell phenotypes. Mice given tap water alone had lung log10 colony forming units (CFUs) of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7), as well as in mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Quantitative immunohistochemistry using multispectral imaging demonstrated that lung inflammation was significantly reduced in both groups of lactoferrin treated mice, with decreased foamy macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. ELISpot analysis showed that lactoferrin treated mice had increased numbers of CD4 + IFN-γ+ and IL-17 producing cells in the lung, cells that have protective functions during MTB infection. Lactoferrin alone did not alter the proliferation of MTB in either broth or macrophage culture, but enhanced IFN-γ mediated MTB killing by macrophages in a nitric oxide dependent manner. These studies indicate that lactoferrin may be a novel therapeutic for the treatment of tuberculosis, and may be useful in infectious diseases to reduced immune-mediated tissue damage.
Collapse
Affiliation(s)
- Kerry J Welsh
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, MSB 2.214, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lactoferrin enhances efficacy of the BCG vaccine: comparison between two inbred mice strains (C57BL/6 and BALB/c). Tuberculosis (Edinb) 2011; 89 Suppl 1:S49-54. [PMID: 20006305 DOI: 10.1016/s1472-9792(09)70012-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The current vaccine for tuberculosis (TB), an attenuated strain of Mycobacterium bovis Bacillus Calmette Guerin (BCG), is effective to prevent childhood onset of the disease, but its efficacy is reduced in adults. One strategy to improve the existing vaccine is to develop more effective adjuvants. Lactoferrin, an iron-binding glycoprotein possessing immune modulatory activities, is a promising adjuvant candidate. The studies presented here examine the effect of lactoferrin to enhance efficacy of the BCG vaccine using a vaccination/challenge protocol (8 weeks boost and challenge at 12 weeks post-boost) that focuses on reduction in development of pathological changes to lung tissue. C57BL/6 and BALB/c mice vaccinated with BCG/lactoferrin exhibited protection upon Mycobacterium tuberculosis (MTB) challenge, showing reduced pulmonary disease pathology and decreased organ bacterial load. In addition, BCG/lactoferrin-treated macrophages isolated from BALB/c mice, which express a relative reduced T(H)1 phenotypic response to MTB antigens compared to the C57BL/6 mouse, were able to activate a higher percentage of IFN-gamma-producing CD4+ splenocytes. Overall, lactoferrin stands as an adjuvant capable of enhancing efficacy of the BCG vaccine through induction of T(H)1 immune responses, even in hosts typically demonstrative of reduced T(H)1 responsiveness to BCG antigens.
Collapse
|
21
|
Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 2011; 91:497-509. [PMID: 21733755 PMCID: PMC3215852 DOI: 10.1016/j.tube.2011.03.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 02/07/2023]
Abstract
Post primary tuberculosis occurs in immunocompetent adults, is restricted to the lungs and accounts for 80% of all clinical cases and nearly 100% of transmission of infection. The supply of human tissues with post primary tuberculosis plummeted with the introduction of antibiotics decades before the flowering of research using molecular methods in animal models. Unfortunately, the paucity of human tissues prevented validation of the models. As a result, it is a paradigm of contemporary research that caseating granulomas are the characteristic lesion of all tuberculosis and that cavities form when they erode into bronchi. This differs from descriptions of the preantibiotic era when many investigators had access to thousands of cases. They reported that post primary tuberculosis begins as an exudative reaction: a tuberculous lipid pneumonia of foamy alveolar macrophages that undergoes caseation necrosis and fragmentation to produce cavities. Granulomas in post primary disease arise only in response to old caseous pneumonia and produce fibrosis, not cavities. We confirmed and extended these observations with study of 104 cases of untreated tuberculosis. In addition, studies of the lungs of infants and immunosuppressed adults revealed a second type of tuberculous pneumonia that seldom produces cavities. Since the concept that cavities arise from caseating granulomas was supported by studies of animals infected with Mycobacterium bovis, we investigated its pathology. We found that M. bovis does not produce post primary tuberculosis in any species. It only produces an aggressive primary tuberculosis that can develop small cavities by erosion of caseating granulomas. Consequently, a key unresolved question in the pathogenesis of tuberculosis is identification of the mechanisms by which Mycobacterium tuberculosis establish a localized safe haven in alveolar macrophages in an otherwise solidly immune host where it can develop conditions for formation of cavities and transmission to new hosts.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School, MSB 2.136, 6431 Fannin, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Pinheiro M, Lúcio M, Lima JLFC, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond) 2011; 6:1413-1428. [PMID: 22026379 DOI: 10.2217/nnm.11.122] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TB is an infectious disease that is far from being eradicated and controlled. The treatment for TB is associated with noncompliance to therapy because it consists of a long-term treatment with a multidrug combination and is associated with the appearance of several side effects. Liposomal formulations are being developed with first- and second-line antibiotics, and might be an extremely useful alternative to current therapies. This article will thus focus on the role of liposomes as nanodelivery systems for the treatment of TB. Among several advantages, these nanocarriers allow an increase in the bioavailability of antibiotics, which may lead to a reduction in the time of treatment. Results obtained with such nanosystems, although preliminary, are promising and are perspective of the use of inhalation for TB treatment.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
| | | | | | | |
Collapse
|
23
|
Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, Camara C, Nosanchuk JD, Besra GS, Chen B, Jimenez J, Glatman-Freedman A, Jacobs WR, Porcelli SA, Casadevall A. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 2011; 121:1471-83. [PMID: 21364279 PMCID: PMC3069770 DOI: 10.1172/jci44261] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
Bacteria naturally release membrane vesicles (MVs) under a variety of growth environments. Their production is associated with virulence due to their capacity to concentrate toxins and immunomodulatory molecules. In this report, we show that the 2 medically important species of mycobacteria, Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin, release MVs when growing in both liquid culture and within murine phagocytic cells in vitro and in vivo. We documented MV production in a variety of virulent and nonvirulent mycobacterial species, indicating that release of MVs is a property conserved among mycobacterial species. Extensive proteomic analysis revealed that only MVs from the virulent strains contained TLR2 lipoprotein agonists. The interaction of MVs with macrophages isolated from mice stimulated the release of cytokines and chemokines in a TLR2-dependent fashion, and infusion of MVs into mouse lungs elicited a florid inflammatory response in WT but not TLR2-deficient mice. When MVs were administered to mice before M. tuberculosis pulmonary infection, an accelerated local inflammatory response with increased bacterial replication was seen in the lungs and spleens. Our results provide strong evidence that actively released mycobacterial vesicles are a delivery mechanism for immunologically active molecules that contribute to mycobacterial virulence. These findings may open up new horizons for understanding the pathogenesis of tuberculosis and developing vaccines.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Andres Baena
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Luis R. Martinez
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Jose Luque-Garcia
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Rainer Kalscheuer
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Usha Veeraraghavan
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Carmen Camara
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Gurdyal S. Besra
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Bing Chen
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Juan Jimenez
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Aharona Glatman-Freedman
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology, and
Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.
Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Genetics,
Analytical Imaging Facility, Department of Anatomy and Structural Biology,
Department of Pediatrics, and
Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
24
|
|
25
|
Beaulieu AM, Rath P, Imhof M, Siddall ME, Roberts J, Schnappinger D, Nathan CF. Genome-wide screen for Mycobacterium tuberculosis genes that regulate host immunity. PLoS One 2010; 5:e15120. [PMID: 21170273 PMCID: PMC3000826 DOI: 10.1371/journal.pone.0015120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/22/2010] [Indexed: 12/17/2022] Open
Abstract
In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb) establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect) or that divert the immune response to a non-sterilizing mode (qualitative effect). Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain.
Collapse
Affiliation(s)
- Aimee M. Beaulieu
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Poonam Rath
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Marianne Imhof
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Mark E. Siddall
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Welsh KJ, Hwang SA, Hunter RL, Kruzel ML, Actor JK. Lactoferrin modulation of mycobacterial cord factor trehalose 6-6'-dimycolate induced granulomatous response. Transl Res 2010; 156:207-15. [PMID: 20875896 PMCID: PMC2948024 DOI: 10.1016/j.trsl.2010.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 11/17/2022]
Abstract
The immune system responds to tuberculosis (TB) infection by forming granulomas. However, subsequent immune-mediated destruction of lung tissue is a cause of significant morbidity and contributes to disease transmission. Lactoferrin, an iron-binding glycoprotein, has demonstrated immunomodulatory properties that decrease tissue destruction and promote T(H)1 immune responses, both of which are essential for controlling TB infection. The cord factor trehalose 6,6'-dimycolate (TDM) model of granuloma formation mimics many aspects of TB infection with a similar histopathology accompanied by proinflammatory cytokine production. C57BL/6 mice were injected intravenously with TDM. A subset of mice was given 1 mg of bovine lactoferrin 24 h post-TDM challenge. Lung tissue was analyzed for histological response and for the production of proinflammatory mediators. C57BL/6 mice demonstrated a granuloma formation that correlated with an increased production of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α,) IL-12p40, interferon-gamma (IFN-γ), and IL-10 protein. Mice treated with lactoferrin postchallenge had significantly fewer and smaller granulomas compared with those given TDM alone. Proinflammatory and T(H)1 cytokines essential to the control of mycobacterial infections, such as TNF-α and IFN-γ, were not significantly different in mice treated with lactoferrin. Furthermore, the anti-inflammatory cytokines IL-10 and transforming growth factor-β were increased. A potential mechanism for decreased tissue damage observed in the lactoferrin-treated mice is proposed. Because of its influence to modulate immune responses, lactoferrin may be a useful adjunct in the treatment of granulomatous inflammation occurring during mycobacterial infection.
Collapse
Affiliation(s)
- Kerry J Welsh
- Medical School, Department of Pathology and Laboratory Medicine, University of Texas-Houston, Houston, Tex 77030, USA
| | | | | | | | | |
Collapse
|
27
|
Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S, Andersen P, Ruland J, Brown GD, Wells C, Lang R. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2756-60. [PMID: 20164423 PMCID: PMC3442336 DOI: 10.4049/jimmunol.0904013] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mycobacterial cord factor trehalose-6,6-dimycolate (TDM) and its synthetic analog trehalose-6,6-dibehenate (TDB) are potent adjuvants for Th1/Th17 vaccination that activate Syk-Card9 signaling in APCs. In this study, we have further investigated the molecular mechanism of innate immune activation by TDM and TDB. The Syk-coupling adapter protein FcRgamma was essential for macrophage activation and Th17 adjuvanticity. The FcRgamma-associated C-type lectin receptor Mincle was expressed in macrophages and upregulated by TDM and TDB. Recombinant Mincle-Fc fusion protein specifically bound to the glycolipids. Genetic ablation of Mincle abolished TDM/TDB-induced macrophage activation and induction of T cell immune responses to a tuberculosis subunit vaccine. Macrophages lacking Mincle or FcRgamma were impaired in the inflammatory response to Mycobacterium bovis bacillus Calmette-Guérin. These results establish that Mincle is a key receptor for the mycobacterial cord factor and controls the Th1/Th17 adjuvanticity of TDM and TDB.
Collapse
Affiliation(s)
- Hanne Schoenen
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| | - Barbara Bodendorfer
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| | | | | | - Kerstin Werninghaus
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Medical Department 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| | - Else Marie Agger
- Adjuvant Research, Dept. of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Steffen Stenger
- Institute of Medical Microbiology, University Hospital Ulm, Germany
| | - Peter Andersen
- Adjuvant Research, Dept. of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jürgen Ruland
- Department of Hematology, Technical University Munich, Germany
| | - Gordon D. Brown
- Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | - Roland Lang
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Hunter RL, Armitige L, Jagannath C, Actor JK. TB research at UT-Houston--a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 2009; 89 Suppl 1:S18-25. [PMID: 20006299 PMCID: PMC3682682 DOI: 10.1016/s1472-9792(09)70007-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.
Collapse
Affiliation(s)
- Robert L Hunter
- University of Texas--Houston Medical School, Department of Pathology and Laboratory, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Nicol A, Nuovo G, Coelho J, Rolla V, Horn C. SOCS in situ expression in tuberculous lymphadenitis in an endemic area. Exp Mol Pathol 2008; 84:240-4. [DOI: 10.1016/j.yexmp.2008.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 03/07/2008] [Accepted: 04/08/2008] [Indexed: 11/16/2022]
|
30
|
Goude R, Parish T. The genetics of cell wall biosynthesis in Mycobacterium tuberculosis. Future Microbiol 2008; 3:299-313. [DOI: 10.2217/17460913.3.3.299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite an available vaccine and effective antibiotics, Mycobacterium tuberculosis is still the causative agent of almost 2 million deaths every year. The cell wall of M. tuberculosis is composed of sugars and lipids of exotic structure, many of which contribute to its pathogenicity. The majority of the enzymes responsible for building this structure are essential. However, they share very little homology with well-characterized enzymes, which makes their identification in the genome difficult. Despite this, our knowledge of the structure of the cell wall of M. tuberculosis is fairly complete and an increasing number of genes have been identified that are involved in its biosynthesis. By contrast, data concerning regulation of the expression of these genes and control of the cell wall composition are restricted. This review summarizes current information on the genetics of cell wall biosynthesis in M. tuberculosis, incorporating available data on gene organization and regulation.
Collapse
Affiliation(s)
| | - Tanya Parish
- Barts & the London, London, UK and, Infectious Disease Research Institute, Seattle, USA
| |
Collapse
|
31
|
Live Mycobacterium avium subsp. paratuberculosis and a killed-bacterium vaccine induce distinct subcutaneous granulomas, with unique cellular and cytokine profiles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:783-93. [PMID: 18337380 DOI: 10.1128/cvi.00480-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type II (lepromatous) granulomas are characterized by a lack of organization, with large numbers of macrophages heavily burdened with bacilli and disorganized lymphocyte infiltrations. Type II granulomas are a characteristic feature of the enteric lesions that develop during clinical Mycobacterium avium subsp. paratuberculosis infection in the bovine. Considering the poor organization and function of these granulomas, it is our hypothesis that dendritic cell (DC) function within the granuloma is impaired during initial infection. In order to test our hypothesis, we used a subcutaneous M. avium subsp. paratuberculosis infection model to examine early DC function within M. avium subsp. paratuberculosis-induced granulomas. In this model, we first characterized the morphology, cellular composition, and cytokine profiles of subcutaneous granulomas that develop 7 days after subcutaneous inoculation with either vaccine or live M. avium subsp. paratuberculosis. Second, we isolated CD11c(+) cells from within granulomas and measured their maturation status and ability to induce T-cell responses. Our results demonstrate that M. avium subsp. paratuberculosis or vaccine administration resulted in the formation of distinct granulomas with unique cellular and cytokine profiles. These distinct profiles corresponded to significant differences in the phenotypes and functional responses of DCs from within the granulomas. Specifically, the DCs from the M. avium subsp. paratuberculosis-induced granulomas had lower levels of expression of costimulatory and chemokine receptors, suggesting limited maturation. This DC phenotype was associated with weaker induction of T-cell proliferation. Taken together, these findings suggest that M. avium subsp. paratuberculosis infection in vivo influences DC function, which may shape the developing granuloma and initial local protection.
Collapse
|