1
|
Yang W, Wu K, Chen H, Huang J, Yu Z. Emerging role of rare earth elements in biomolecular functions. THE ISME JOURNAL 2025; 19:wrae241. [PMID: 39657633 PMCID: PMC11845868 DOI: 10.1093/ismejo/wrae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The importance of rare earth elements is increasingly recognized due to the increased demand for their mining and separation. This demand is driving research on the biology of rare earth elements. Biomolecules associated with rare earth elements include rare earth element-dependent enzymes (methanol dehydrogenase XoxF, ethanol dehydrogenase ExaF/PedH), rare earth element-binding proteins, and the relevant metallophores. Traditional (chemical) separation methods for rare earth elements harvesting and separation are typically inefficient, while causing environmental problems, whereas bioharvesting, potentially, offers more efficient, more green platforms. Here, we review the current state of research on the biological functions of rare earth element-dependent biomolecules, and the characteristics of the relevant proteins, including the specific amino acids involved in rare earth metal binding. We also provide an outlook at strategies for further understanding of biological processes and the potential applications of rare earth element-dependent enzymes and other biomolecules.
Collapse
Affiliation(s)
- Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
2
|
Jia M, Liu M, Li J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Formaldehyde: An Essential Intermediate for C1 Metabolism and Bioconversion. ACS Synth Biol 2024; 13:3507-3522. [PMID: 39395007 DOI: 10.1021/acssynbio.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Formaldehyde is an intermediate metabolite of methylotrophic microorganisms that can be obtained from formate and methanol through oxidation-reduction reactions. Formaldehyde is also a one-carbon (C1) compound with high uniquely reactive activity and versatility, which is more amenable to further biocatalysis. Biosynthesis of high-value-added chemicals using formaldehyde as an intermediate is theoretically feasible and promising. This review focuses on the design of the biosynthesis of high-value-added chemicals using formaldehyde as an essential intermediate. The upstream biosynthesis and downstream bioconversion pathways of formaldehyde as an intermediate metabolite are described in detail, aiming to highlight the important role of formaldehyde in the transition from inorganic to organic carbon and carbon chain elongation. In addition, challenges and future directions of formaldehyde as an intermediate for the chemicals are discussed, with the expectation of providing ideas for the utilization of C1.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Mengge Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu Biochemical Chiral Engineering Technology Reseach Center, Changmao Biochemical Engineering Co., Ltd., Changzhou 213034, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
3
|
Othman D, Elhosseiny NM, Eltayeb WN, Attia AS. The Moraxella catarrhalis AdhC-FghA system is important for formaldehyde detoxification and protection against pulmonary clearance. Med Microbiol Immunol 2024; 213:3. [PMID: 38448747 PMCID: PMC10917845 DOI: 10.1007/s00430-024-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
Multidrug-resistant clinical isolates of Moraxella catarrhalis have emerged, increasing the demand for the identification of new treatment and prevention strategies. A thorough understanding of how M. catarrhalis can establish an infection and respond to different stressors encountered in the host is crucial for new drug-target identification. Formaldehyde is a highly cytotoxic compound that can be produced endogenously as a by-product of metabolism and exogenously from environmental sources. Pathways responsible for formaldehyde detoxification are thus essential and are found in all domains of life. The current work investigated the role of the system consisting of the S-hydroxymethyl alcohol dehydrogenase (AdhC), a Zn-dependent class III alcohol dehydrogenase, and the S-formyl glutathione hydrolase (FghA) in the formaldehyde detoxification process in M. catarrhalis. Bioinformatics showed that the components of the system are conserved across the species and are highly similar to those of Streptococcus pneumoniae, which share the same biological niche. Isogenic mutants were constructed to study the function of the system in M. catarrhalis. A single fghA knockout mutant did not confer sensitivity to formaldehyde, while the adhC-fghA double mutant is formaldehyde-sensitive. In addition, both mutants were significantly cleared in a murine pulmonary model of infection as compared to the wild type, demonstrating the system's importance for this pathogen's virulence. The respective phenotypes were reversed upon the genetic complementation of the mutants. To date, this is the first study investigating the role of the AdhC-FghA system in formaldehyde detoxification and pathogenesis of M. catarrhalis.
Collapse
Affiliation(s)
- Dina Othman
- Graduate Program, Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Room #D404, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Wafaa N Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University, Cairo, 19648, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Room #D404, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Wani SR, Jain V. Deciphering the molecular mechanism and regulation of formaldehyde detoxification in Mycobacterium smegmatis. Appl Environ Microbiol 2024; 90:e0203923. [PMID: 38259108 PMCID: PMC10880627 DOI: 10.1128/aem.02039-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The build-up of formaldehyde, a highly reactive molecule is cytotoxic and must be eliminated for the organism's survival. Formaldehyde detoxification system is found in nearly all organisms including both pathogenic and non-pathogenic mycobacteria. MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis (Msm), is an indispensable part of this system and forms a bicistronic operon with its downstream uncharacterized gene, fmh. We here show that Fmh, a putative metallo-beta-lactamase, is essential in tolerating higher amounts of formaldehyde when co-overexpressed with mscR in vivo. Our NMR studies indicate that MscR, along with Fmh, enhances formate production through a mycothiol (MSH)-dependent pathway, emphasizing the importance of Fmh in detoxifying formaldehyde. Although another aldehyde dehydrogenase, MSMEG_1543, induces upon formaldehyde addition, it is not involved in its detoxification. We also show that the expression of the mscR operon is constitutive and remains unchanged upon formaldehyde addition, as displayed by the promoter activity of PmscR and by the transcript and protein levels of MscR. Furthermore, we establish the role of a thiol-responsive sigma factor SigH in formaldehyde detoxification. We show that SigH, and not SigE, is crucial for formaldehyde detoxification, even though it does not directly regulate mscR operon expression. In addition, sensitivity to formaldehyde in sigH-knockout could be alleviated by overexpression of mscR. Taken together, our data demonstrate the importance of MSH-dependent pathways in detoxifying formaldehyde in a mycobacterial system. An absence of such MSH-dependent proteins in eukaryotes and its complete conservation in M. tuberculosis, the causative agent of tuberculosis, further unravel new drug targets for this pathogen.IMPORTANCEExtensive research has been done on formaldehyde detoxification in different bacteria. However, our current understanding of the mechanisms underlying this process in mycobacteria remains exceedingly little. We previously showed that MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis, plays a pivotal role in this detoxification pathway. Here, we present a potential S-formyl-mycothiol hydrolase named Fmh, thought to be a metallo-beta-lactamase, which functions along with mycothiol (MSH) and MscR to enhance formate production within this detoxification pathway. Co-expression of Fmh with MscR significantly enhances the efficiency of formaldehyde detoxification in M. smegmatis. Our experiments establish that Fmh catalyzes the final step of this detoxification pathway. Although an alternative sigma factor SigH was found to be involved in formaldehyde detoxification, it did not directly regulate the expression of mscR. Since formaldehyde detoxification is essential for bacterial survival, we envisage this process to be a potential drug target for M. tuberculosis eradication.
Collapse
Affiliation(s)
- Saloni Rajesh Wani
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
5
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Alloul A, Blansaer N, Cabecas Segura P, Wattiez R, Vlaeminck SE, Leroy B. Dehazing redox homeostasis to foster purple bacteria biotechnology. Trends Biotechnol 2023; 41:106-119. [PMID: 35843758 DOI: 10.1016/j.tibtech.2022.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022]
Abstract
Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several 'electron sinking' strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.
Collapse
Affiliation(s)
- Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium.
| | - Naïm Blansaer
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
| |
Collapse
|
7
|
Jawaharraj K, Sigdel P, Gu Z, Muthusamy G, Sani RK, Gadhamshetty V. Photosynthetic microbial fuel cells for methanol treatment using graphene electrodes. ENVIRONMENTAL RESEARCH 2022; 215:114045. [PMID: 35995227 DOI: 10.1016/j.envres.2022.114045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbial fuel cells (pMFC) represent a promising approach for treating methanol (CH3OH) wastewater. However, their use is constrained by a lack of knowledge on the extracellular electron transfer capabilities of photosynthetic methylotrophs, especially when coupled with metal electrodes. This study assessed the CH3OH oxidation capabilities of Rhodobacter sphaeroides 2.4.1 in two-compartment pMFCs. A 3D nickel (Ni) foam modified with plasma-grown graphene (Gr) was used as an anode, nitrate mineral salts media (NMS) supplemented with 0.1% CH3OH as anolyte, carbon brush as cathode, and 50 mM ferricyanide as catholyte. Two simultaneous pMFCs that used bare Ni foam and carbon felt served as controls. The Ni/Gr electrode registered a two-fold lower charge transfer resistance (0.005 kΩ cm2) and correspondingly 16-fold higher power density (141 mW/m2) compared to controls. The underlying reasons for the enhanced performance of R. sphaeroides at the graphene interface were discerned. The real-time polymerase chain reaction (PCR) analysis revealed the upregulation of cytochrome c oxidase, aa3 type, subunit I gene, and Flp pilus assembly protein genes in the sessile cells compared to their planktonic counterparts. The key EET pathways used for sustaining CH3OH oxidation were discussed.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Pawan Sigdel
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Zhengrong Gu
- Agricultural and Biosystems Engineering, South Dakota State University, 2100 University Station, Brookings, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea, 80 Daehak-ro, Buk-gu, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Rajesh Kumar Sani
- Chemical and Biological Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
| |
Collapse
|
8
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
9
|
Fan Y, Shen J, Liu Z, Xia K, Zhu W, Fu P. Methylene-bridged dimeric natural products involving one-carbon unit in biosynthesis. Nat Prod Rep 2022; 39:1305-1324. [DOI: 10.1039/d2np00022a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the methylene-bridged dimeric natural products involving one-carbon unit in biosynthesis, including their structures, biological activities, synthetic methods, and formation mechanisms.
Collapse
Affiliation(s)
- Yaqin Fan
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingjing Shen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kunyu Xia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
10
|
Guo J, Xiong Y, Kang T, Zhu H, Yang Q, Qin C. Effect of formaldehyde exposure on bacterial communities in simulating indoor environments. Sci Rep 2021; 11:20575. [PMID: 34663860 PMCID: PMC8523742 DOI: 10.1038/s41598-021-00197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
Indoor formaldehyde (CH2O) exceeding the recommended level is a severe threat to human health. Few studies have investigated its effect on indoor surface bacterial communities, affecting habitants' health. This study used 20-L glass containers to mimic the indoor environment with bacterial inputs from human oral respiration. The behavior of bacterial communities responding to CH2O varied among the different CH2O levels. The bacterial community structure significantly changed over time in the 0.054 mg·m-3 CH2O group, which varied from the 0.1 mg·m-3 and 0.25 mg·m-3 CH2O groups. The Chao1 and Shannon index significantly increased in the 0.054 mg·m-3 CH2O group at 6 week, while they remained unchanged in the 0.25 mg·m-3 CH2O group. At 12 week, the Chao1 significantly increased in the 0.25 mg·m-3 CH2O group, while it remained unchanged in the 0.054 mg·m-3 CH2O group. Only a few Operational Taxonomic Units (OTUs) significantly correlated with the CH2O concentration. CH2O-induced OTUs mainly belong to the Proteobacteria and Firmicutes. Furthermore, bacterial communities formed at 6 or 12 weeks differed significantly among different CH2O levels. Functional analysis of bacterial communities showed that inferred genes related to chemical degradation and diseases were the highest in the 0.25 mg·m-3 CH2O group at 12 weeks. The development of nematodes fed with bacteria collected at 12 weeks was applied to evaluate the bacterial community's hazards. This showed significantly impaired growth in the 0.1 mg·m-3 and 0.25 mg·m-3 CH2O groups. These findings confirmed that CH2O concentration and exposure time could affect the indoor bacterial community and formed bacterial communities with a possibly more significant hazard to human health after long-term exposure to high CH2O levels.
Collapse
Affiliation(s)
- Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Taisheng Kang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing, 100021, China. .,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, China.
| |
Collapse
|
11
|
Li T, Wei Y, Qu M, Mou L, Miao J, Xi M, Liu Y, He R. Formaldehyde and De/Methylation in Age-Related Cognitive Impairment. Genes (Basel) 2021; 12:913. [PMID: 34199279 PMCID: PMC8231798 DOI: 10.3390/genes12060913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Formaldehyde (FA) is a highly reactive substance that is ubiquitous in the environment and is usually considered as a pollutant. In the human body, FA is a product of various metabolic pathways and participates in one-carbon cycle, which provides carbon for the synthesis and modification of bio-compounds, such as DNA, RNA, and amino acids. Endogenous FA plays a role in epigenetic regulation, especially in the methylation and demethylation of DNA, histones, and RNA. Recently, epigenetic alterations associated with FA dysmetabolism have been considered as one of the important features in age-related cognitive impairment (ARCI), suggesting the potential of using FA as a diagnostic biomarker of ARCI. Notably, FA plays multifaceted roles, and, at certain concentrations, it promotes cell proliferation, enhances memory formation, and elongates life span, effects that could also be involved in the aetiology of ARCI. Further investigation of and the regulation of the epigenetics landscape may provide new insights about the aetiology of ARCI and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Ting Li
- Bayannur Hospital, Bayannur 015000, China;
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| | - Meihua Qu
- Translational Medical Center, Weifang Second People’s Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang 261041, China;
| | - Lixian Mou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| | - Junye Miao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| | - Mengqi Xi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (M.X.); (Y.L.)
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (M.X.); (Y.L.)
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| |
Collapse
|
12
|
Sarmiento-Pavía PD, Sosa-Torres ME. Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases. J Biol Inorg Chem 2021; 26:177-203. [PMID: 33606117 DOI: 10.1007/s00775-021-01852-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, β, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.
Collapse
Affiliation(s)
- Pedro D Sarmiento-Pavía
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Martha E Sosa-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs. Methods Enzymol 2021; 650:1-18. [PMID: 33867018 DOI: 10.1016/bs.mie.2021.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lanthanide elements (Lns) affect the physiology and growth of certain microorganisms known as "Ln-responsive microorganisms." Among them, in 2011, it was first reported that strains of Methylobacterium exhibited high methanol dehydrogenase (MDH) activity when grown in the presence of Lns; the purified Ln-inducible MDH was identified as XoxF-type MDH, whose catalytic function had previously been unknown. XoxF was the first enzyme to be identified as Ln-dependent, and its function in methylotrophy is more fundamental and important than that of the corresponding Ca2+-dependent MDH MxaFI. XoxF is encoded in the genomes of methylotrophic as well as non-methylotrophic bacteria. Thus, Lns are among the most fascinating and important growth factors for bacteria that potentially utilize methanol. Bacteria that require Lns for methanol growth are called "Ln-dependent methylotrophs." Recent findings indicate that these microorganisms comprise an "Ln-dependent ecosystem" that we have not been able to reconstruct under laboratory conditions without Lns. In this chapter, we summarize methods for (1) screening of Ln-responsive microorganisms, (2) purification of native XoxFs from Ln-dependent methylotrophs, and (3) screening of Ln-dependent methylotrophs from natural environments, while providing a history of the discovery of the Ln-dependent methylotrophs.
Collapse
|
14
|
Jawaharraj K, Shrestha N, Chilkoor G, Dhiman SS, Islam J, Gadhamshetty V. Valorization of methane from environmental engineering applications: A critical review. WATER RESEARCH 2020; 187:116400. [PMID: 32979578 DOI: 10.1016/j.watres.2020.116400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/09/2023]
Abstract
Wastewater and waste management sectors alone account for 18% of the anthropogenic methane (CH4) emissions. This study presents a critical overview of methanotrophs ("methane oxidizing microorganisms") for valorizing typically discarded CH4 from environmental engineering applications, focusing on wastewater treatment plants. Methanotrophs can convert CH4 into valuable bioproducts including chemicals, biodiesel, DC electricity, polymers, and S-layers, all under ambient conditions. As discarded CH4 and its oxidation products can also be used as a carbon source in nitrification and annamox processes. Here we discuss modes of CH4 assimilation by methanotrophs in both natural and engineered systems. We also highlight the technical challenges and technological breakthroughs needed to enable targeted CH4 oxidation in wastewater treatment plants.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Namita Shrestha
- Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute 47803, IN, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States
| | - Saurabh Sudha Dhiman
- BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; Biological and Chemical Engineering, South Dakota School of Mines & Technology, Rapid City 57701, SD, United States
| | - Jamil Islam
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States.
| |
Collapse
|
15
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
16
|
Jawaharraj K, Shrestha N, Chilkoor G, Vemuri B, Gadhamshetty V. Electricity from methanol using indigenous methylotrophs from hydraulic fracturing flowback water. Bioelectrochemistry 2020; 135:107549. [DOI: 10.1016/j.bioelechem.2020.107549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022]
|
17
|
Abstract
At least two types of pincer complexes are known to exist in biology. A metal-pyrroloquinolone quinone (PQQ) cofactor was first identified in bacterial methanol dehydrogenase, and later also found in selected short-chain alcohol dehydrogenases of other microorganisms. The PQQ-associated metal can be calcium, magnesium, or a rare earth element depending on the enzyme sequence. Synthesis of this organic ligand requires a series of accessory proteins acting on a small peptide, PqqA. Binding of metal to PQQ yields an ONO-type pincer complex. More recently, a nickel-pincer nucleotide (NPN) cofactor was discovered in lactate racemase, LarA. This cofactor derives from nicotinic acid adenine dinucleotide via action of a carboxylase/hydrolase, sulfur transferase, and nickel insertase, resulting in an SCS-type pincer complex. The NPN cofactor likely occurs in selected other racemases and epimerases of bacteria, archaea, and a few eukaryotes.
Collapse
Affiliation(s)
- Jorge Nevarez
- Department of Chemistry, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824 (USA)
| | - Aiko Turmo
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Michigan State University, East Lansing, Michigan 48824 (USA)
| | - Jian Hu
- Department of Chemistry, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824 (USA).,Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Michigan State University, East Lansing, Michigan 48824 (USA)
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Michigan State University, East Lansing, Michigan 48824 (USA).,Department of Microbiology and Molecular Genetics, 567 Wilson Road, 2215 Biomedical Physical Sciences, Michigan State University, East Lansing, Michigan 48824 (USA)
| |
Collapse
|
18
|
Ghashghavi M, Belova SE, Bodelier PLE, Dedysh SN, Kox MAR, Speth DR, Frenzel P, Jetten MSM, Lücker S, Lüke C. Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. mSphere 2019; 4:e00631-18. [PMID: 31167950 PMCID: PMC6553558 DOI: 10.1128/msphere.00631-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named "Methylotetracoccus oryzae" C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C16:1ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems.IMPORTANCE Most of the methane produced on our planet gets naturally oxidized by a group of methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy source. Although methanotrophs have been studied for more than a century, there are still many unknown and uncultivated groups prevalent in various ecosystems. This study focused on the diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create a countergradient of oxygen and methane for preenrichment, followed by classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in the discovery and isolation of a novel methanotroph with interesting physiological and genomic properties that could possibly make this bacterium able to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mohammad Ghashghavi
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Martine A R Kox
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Daan R Speth
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Peter Frenzel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30T. J Biosci Bioeng 2018; 126:667-675. [DOI: 10.1016/j.jbiosc.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
|
20
|
Pyne P, Alam M, Rameez MJ, Mandal S, Sar A, Mondal N, Debnath U, Mathew B, Misra AK, Mandal AK, Ghosh W. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation. Mol Microbiol 2018; 109:169-191. [DOI: 10.1111/mmi.13972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Prosenjit Pyne
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Masrure Alam
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Moidu Jameela Rameez
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Subhrangshu Mandal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Abhijit Sar
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Nibendu Mondal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Utsab Debnath
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Wriddhiman Ghosh
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| |
Collapse
|
21
|
Howat AM, Vollmers J, Taubert M, Grob C, Dixon JL, Todd JD, Chen Y, Kaster AK, Murrell JC. Comparative Genomics and Mutational Analysis Reveals a Novel XoxF-Utilizing Methylotroph in the Roseobacter Group Isolated From the Marine Environment. Front Microbiol 2018; 9:766. [PMID: 29755426 PMCID: PMC5934484 DOI: 10.3389/fmicb.2018.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
The Roseobacter group comprises a significant group of marine bacteria which are involved in global carbon and sulfur cycles. Some members are methylotrophs, using one-carbon compounds as a carbon and energy source. It has recently been shown that methylotrophs generally require a rare earth element when using the methanol dehydrogenase enzyme XoxF for growth on methanol. Addition of lanthanum to methanol enrichments of coastal seawater facilitated the isolation of a novel methylotroph in the Roseobacter group: Marinibacterium anthonyi strain La 6. Mutation of xoxF5 revealed the essential nature of this gene during growth on methanol and ethanol. Physiological characterization demonstrated the metabolic versatility of this strain. Genome sequencing revealed that strain La 6 has the largest genome of all Roseobacter group members sequenced to date, at 7.18 Mbp. Multilocus sequence analysis (MLSA) showed that whilst it displays the highest core gene sequence similarity with subgroup 1 of the Roseobacter group, it shares very little of its pangenome, suggesting unique genetic adaptations. This research revealed that the addition of lanthanides to isolation procedures was key to cultivating novel XoxF-utilizing methylotrophs from the marine environment, whilst genome sequencing and MLSA provided insights into their potential genetic adaptations and relationship to the wider community.
Collapse
Affiliation(s)
- Alexandra M. Howat
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Carolina Grob
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - J. C. Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
22
|
Mateos-Rivera A, Islam T, Marshall IPG, Schreiber L, Øvreås L. High-quality draft genome of the methanotroph Methylovulum psychrotolerans Str. HV10-M2 isolated from plant material at a high-altitude environment. Stand Genomic Sci 2018; 13:10. [PMID: 29686747 PMCID: PMC5898042 DOI: 10.1186/s40793-018-0314-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
Here we present the genome of Methylovulum psychrotolerans strain HV10-M2, a methanotroph isolated from Hardangervidda national park (Norway). This strain represents the second of the two validly published species genus with a sequenced genome. The other is M. miyakonense HT12, which is the type strain of the species and the type species of the genus Methylovulum. We present the genome of M. psychrotolerants str. HV10-M2 and discuss the differences between M. psychrotolerans and M. miyakonense. The genome size of M. psychrotolerans str. HV10-M2 is 4,923,400 bp and contains 4415 protein-coding genes, 50 RNA genes and an average GC content of 50.88%.
Collapse
Affiliation(s)
- Alejandro Mateos-Rivera
- 1Department of Biology, University of Bergen, Bergen, Norway.,2Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Tajul Islam
- 1Department of Biology, University of Bergen, Bergen, Norway
| | - Ian P G Marshall
- 3Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- 3Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,5Present address: Energy, Mining and Environment, National Research Council, Montreal, QC Canada
| | - Lise Øvreås
- 1Department of Biology, University of Bergen, Bergen, Norway.,4UNIS, the University Centre in Svalbard, Longyearbyen, Norway
| |
Collapse
|
23
|
Zhang T, Wang X, Zhou J, Zhang Y. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J Environ Sci (China) 2018; 65:133-143. [PMID: 29548384 DOI: 10.1016/j.jes.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/08/2023]
Abstract
Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O2 content synthesized more PHB, which had a wider optimal CH4:O2 range and produced a high PHB content (48.7%) even though in the presence of N2. In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaowei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Abstract
Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a "copper switch" that controls the expression of alternative methane monooxygenases and a "rare-earth element switch" that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals.
Collapse
|
25
|
Sun J, Jeffryes JG, Henry CS, Bruner SD, Hanson AD. Metabolite damage and repair in metabolic engineering design. Metab Eng 2017; 44:150-159. [PMID: 29030275 DOI: 10.1016/j.ymben.2017.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023]
Abstract
The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.
Collapse
Affiliation(s)
- Jiayi Sun
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - James G Jeffryes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA; Computation Institute, The University of Chicago, Chicago, IL, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Osman D, Piergentili C, Chen J, Sayer LN, Usón I, Huggins TG, Robinson NJ, Pohl E. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant. J Biol Chem 2016; 291:19502-16. [PMID: 27474740 PMCID: PMC5016687 DOI: 10.1074/jbc.m116.745174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmR(E64H) gains responsiveness to Zn(II) and cobalt in vivo Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro Sensitivity to formaldehyde requires a cysteine (Cys(35) in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmR(E64H) reveals that an FrmR-specific amino-terminal Pro(2) is proximal to Cys(35), and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmR(P2S) and RcnR(S2P), respectively, impair and enhance formaldehyde reactivity in vitro Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate.
Collapse
Affiliation(s)
- Deenah Osman
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Cecilia Piergentili
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Junjun Chen
- Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040
| | | | - Isabel Usón
- the Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, 08028 Barcelona, Spain, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas G Huggins
- Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040
| | - Nigel J Robinson
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom,
| | - Ehmke Pohl
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
27
|
Millerick KA, Johnston JT, Finneran KT. Photobiological transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using Rhodobacter sphaeroides. CHEMOSPHERE 2016; 159:138-144. [PMID: 27285383 DOI: 10.1016/j.chemosphere.2016.05.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Pump-and-treat strategies for groundwater containing explosives may be necessary when the contaminated water approaches sensitive receptors. This project investigated bacterial photosynthesis as a strategy for ex situ treatment, using light as the primary energy source to facilitate RDX transformation. The objective was to characterize the ability of photosynthetic Rhodobacter sphaeroides (strain ATCC(®) 17023 ™) to transform the high-energy explosive RDX. R. sphaeroides transformed 30 μM RDX within 40 h under light conditions; RDX was not fully transformed in the dark (non-photosynthetic conditions), suggesting that photosynthetic electron transfer was the primary mechanism. Experiments with RDX demonstrated that succinate and malate were the most effective electron donors for photosynthesis, but glycerol was also utilized as a photosynthetic electron donor. RDX was transformed irrespective of the presence of carbon dioxide. The electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) increased transformation kinetics in the absence of CO2, when the cells had excess NADPH that needed to be re-oxidized because there was limited CO2 for carbon fixation. When CO2 was added, the cells generated more biomass, and AQDS had no stimulatory effect. End products indicated that RDX carbon became CO2, biomass, and a soluble, uncharacterized aqueous metabolite, determined using (14)C-labeled RDX. These data are the first to suggest that photobiological explosives transformation is possible and will provide a framework for which phototrophy can be used in environmental restoration of explosives contaminated water.
Collapse
Affiliation(s)
- Kayleigh A Millerick
- Environmental Engineering and Earth Sciences, Clemson University, 312 Biosystems Research Complex, Clemson, SC 29634, United States; Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Juliet T Johnston
- Environmental Engineering and Earth Sciences, Clemson University, 312 Biosystems Research Complex, Clemson, SC 29634, United States
| | - Kevin T Finneran
- Environmental Engineering and Earth Sciences, Clemson University, 312 Biosystems Research Complex, Clemson, SC 29634, United States.
| |
Collapse
|
28
|
Chen NH, Djoko KY, Veyrier FJ, McEwan AG. Formaldehyde Stress Responses in Bacterial Pathogens. Front Microbiol 2016; 7:257. [PMID: 26973631 PMCID: PMC4776306 DOI: 10.3389/fmicb.2016.00257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.
Collapse
Affiliation(s)
- Nathan H Chen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| | - Frédéric J Veyrier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval QC, Canada
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| |
Collapse
|
29
|
XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 2016; 81:1442-51. [PMID: 25527536 DOI: 10.1128/aem.03292-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
“Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gramnegative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaF) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “Ca. Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “Ca. Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity (Vmax of 10 micromole min(-1) mg(-1) protein, Km of 17 microM). PQQ was present as the prosthetic group,which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “Ca. Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described.
Collapse
|
30
|
Dziewit L, Czarnecki J, Prochwicz E, Wibberg D, Schlüter A, Pühler A, Bartosik D. Genome-guided insight into the methylotrophy of Paracoccus aminophilus JCM 7686. Front Microbiol 2015; 6:852. [PMID: 26347732 PMCID: PMC4543880 DOI: 10.3389/fmicb.2015.00852] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/04/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccus aminophilus JCM 7686 (Alphaproteobacteria) is a facultative, heterotrophic methylotroph capable of utilizing a wide range of C1 compounds as sole carbon and energy sources. Analysis of the JCM 7686 genome revealed the presence of genes involved in the oxidation of methanol, methylamine, dimethylamine, trimethylamine, N,N-dimethylformamide, and formamide, as well as the serine cycle, which appears to be the only C1 assimilatory pathway in this strain. Many of these genes are located in different extrachromosomal replicons and are not present in the genomes of most members of the genus Paracoccus, which strongly suggests that they have been horizontally acquired. When compared with Paracoccus denitrificans Pd1222 (type strain of the genus Paracoccus), P. aminophilus JCM 7686 has many additional methylotrophic capabilities (oxidation of dimethylamine, trimethylamine, N,N-dimethylformamide, the serine cycle), which are determined by the presence of three separate gene clusters. Interestingly, related clusters form compact methylotrophy islands within the genomes of Paracoccus sp. N5 and many marine bacteria of the Roseobacter clade.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Emilia Prochwicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Daniel Wibberg
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University Bielefeld, Germany
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University Bielefeld, Germany
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University Bielefeld, Germany
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
31
|
Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL, Chen Y, Murrell JC. XoxF
encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. Environ Microbiol 2015; 17:3937-48. [DOI: 10.1111/1462-2920.12896] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/28/2015] [Accepted: 05/02/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Martin Taubert
- School of Environmental Sciences; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
- Department of Aquatic Geomicrobiology; Friedrich Schiller University Jena; Dornburger Str. 159 Jena 07743 Germany
| | - Carolina Grob
- School of Environmental Sciences; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Alexandra M. Howat
- School of Environmental Sciences; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Oliver J. Burns
- School of Biological Sciences; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Joanna L. Dixon
- Plymouth Marine Laboratory; Prospect Place, The Hoe; Plymouth PL1 3DH UK
| | - Yin Chen
- School of Life Sciences; University of Warwick; Coventry CV4 7AL UK
| | - J. Colin Murrell
- School of Environmental Sciences; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
32
|
A cluster of four homologous small RNAs modulates C1 metabolism and the pyruvate dehydrogenase complex in Rhodobacter sphaeroides under various stress conditions. J Bacteriol 2015; 197:1839-52. [PMID: 25777678 DOI: 10.1128/jb.02475-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In bacteria, regulatory RNAs play an important role in the regulation and balancing of many cellular processes and stress responses. Among these regulatory RNAs, trans-encoded small RNAs (sRNAs) are of particular interest since one sRNA can lead to the regulation of multiple target mRNAs. In the purple bacterium Rhodobacter sphaeroides, several sRNAs are induced by oxidative stress. In this study, we focused on the functional characterization of four homologous sRNAs that are cotranscribed with the gene for the conserved hypothetical protein RSP_6037, a genetic arrangement described for only a few sRNAs until now. Each of the four sRNAs is characterized by two stem-loops that carry CCUCCUCCC motifs in their loops. They are induced under oxidative stress, as well as by various other stress conditions, and were therefore renamed here sRNAs CcsR1 to CcsR4 (CcsR1-4) for conserved CCUCCUCCC motif stress-induced RNAs 1 to 4. Increased CcsR1-4 expression decreases the expression of genes involved in C1 metabolism or encoding components of the pyruvate dehydrogenase complex either directly by binding to their target mRNAs or indirectly. One of the CcsR1-4 target mRNAs encodes the transcriptional regulator FlhR, an activator of glutathione-dependent methanol/formaldehyde metabolism. Downregulation of this glutathione-dependent pathway increases the pool of glutathione, which helps to counteract oxidative stress. The FlhR-dependent downregulation of the pyruvate dehydrogenase complex reduces a primary target of reactive oxygen species and reduces aerobic electron transport, a main source of reactive oxygen species. Our findings reveal a previously unknown strategy used by bacteria to counteract oxidative stress. IMPORTANCE Phototrophic organisms have to cope with photo-oxidative stress due to the function of chlorophylls as photosensitizers for the formation of singlet oxygen. Our study assigns an important role in photo-oxidative stress resistance to a cluster of four homologous sRNAs in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides. We reveal a function of these regulatory RNAs in the fine-tuning of C1 metabolism. A model that relates oxidative stress defense to C1 metabolism is presented.
Collapse
|
33
|
Oka T, Komachi Y, Ohshima K, Kawano Y, Fukuda K, Nagahama K, Ekino K, Nomura Y. Isolation, sequencing, and heterologous expression of the Paecilomyces variotii gene encoding S-hydroxymethylglutathione dehydrogenase (fldA). Appl Microbiol Biotechnol 2014; 99:1755-63. [PMID: 25398285 PMCID: PMC4322224 DOI: 10.1007/s00253-014-6203-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
The filamentous fungus Paecilomyces variotii NBRC 109023 (teleomorph: Byssochlamys spectabilis NBRC 109023) degrades formaldehyde at concentrations as high as 2.4 % (w/v). In many prokaryotes and in all known eukaryotes, formaldehyde degradation is catalyzed by S-hydroxymethylglutathione (S-HMGSH) dehydrogenase. We report here the isolation and characterization of the gene encoding S-HMGSH dehydrogenase activity in P. variotii. The 1.6-kb fldA gene contained 5 introns and 6 exons, and the corresponding cDNA was 1143 bp, encoding a 40-kDa protein composed of 380 amino acids. FldA was predicted to have 74.3, 73.7, 68.5, and 67.4 % amino acid identity to the S-HMGSH dehydrogenases of Hansenula polymorpha, Candida boidinii, Saccharomyces cerevisiae, and Kluyveromyces lactis, respectively. The predicted protein also showed high amino acid similarity (84∼86 %) to the products of putative fldA genes from other filamentous fungi, including Aspergillus sp. and Penicillium sp. Notably, the P. variotii fldA gene was able to functionally complement a Saccharomyces cerevisiae strain (BY4741 ∆sfa1) lacking the gene for S-HMGSH dehydrogenase. The heterologous expression construct rendered BY4741 ∆sfa1 tolerant to exogenous formaldehyde. Although BY4741 (parental wild-type strain) was unable to degrade even low concentrations of formaldehyde, BY4741 ∆sfa1 harboring Paecilomyces fldA was able to degrade 4 mM formaldehyde within 30 h. The findings from this study confirm the essential role of S-HMGSH dehydrogenase in detoxifying formaldehyde.
Collapse
Affiliation(s)
- Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Yuji Komachi
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Kazufumi Ohshima
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Yoichi Kawano
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Kohsai Fukuda
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Kazuhiro Nagahama
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| | - Yoshiyuki Nomura
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082 Japan
| |
Collapse
|
34
|
Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163-83. [PMID: 24816778 DOI: 10.1007/s00253-014-5766-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.
Collapse
Affiliation(s)
- Jan T Keltjens
- Department of Microbiology, Institute of Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Zeng Z, Qi C, Chen Q, Li K, Chen L. Absorption and metabolism of formaldehyde in solutions by detached banana leaves. J Biosci Bioeng 2014; 117:602-12. [DOI: 10.1016/j.jbiosc.2013.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/25/2013] [Accepted: 10/21/2013] [Indexed: 11/16/2022]
|
36
|
Higashiura N, Hadano H, Hirakawa H, Matsutani M, Takebe S, Matsushita K, Azuma Y. Draft Genomic DNA Sequence of the Facultatively Methylotrophic Bacterium Acidomonas methanolica type strain MB58. FEMS Microbiol Lett 2013; 351:9-13. [PMID: 24330138 DOI: 10.1111/1574-6968.12357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 11/30/2022] Open
Abstract
Acidomonas methanolica (former name Acetobacter methanolicus) is a unique acetic acid bacterium capable to grow on methanol as a sole carbon source. Here we report the draft genome sequencing of A. methanolica type strain MB58, showing that it contains 3,270 protein-coding genes, including the genes involved in oxidation of methanol such as mxaFJGIRSACKL and hxlAB, and oxidation of ethanol such as adhAB and adhS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Norie Higashiura
- Biology-oriented Science and Technology, Kinki University, Nishimitani 930 Kinokawa, Wakayama, 649-6493, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Kolb S, Stacheter A. Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 2013; 4:268. [PMID: 24046766 PMCID: PMC3763247 DOI: 10.3389/fmicb.2013.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth Bayreuth, Germany
| | | |
Collapse
|
38
|
Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic Study. Front Microbiol 2013; 4:40. [PMID: 23565111 PMCID: PMC3615186 DOI: 10.3389/fmicb.2013.00040] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 11/20/2022] Open
Abstract
Methane utilizing bacteria (methanotrophs) are important in both environmental and biotechnological applications, due to their ability to convert methane to multicarbon compounds. However, systems-level studies of methane metabolism have not been carried out in methanotrophs. In this work we have integrated genomic and transcriptomic information to provide an overview of central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotroph. Particulate methane monooxygenase, PQQ-dependent methanol dehydrogenase, the H4MPT-pathway, and NAD-dependent formate dehydrogenase are involved in methane oxidation to CO2. All genes essential for operation of the serine cycle, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle were expressed. PEP-pyruvate-oxaloacetate interconversions may have a function in regulation and balancing carbon between the serine cycle and the EMC pathway. A set of transaminases may contribute to carbon partitioning between the pathways. Metabolic pathways for acquisition and/or assimilation of nitrogen and iron are discussed.
Collapse
Affiliation(s)
- Janet B Matsen
- Department of Chemical Engineering, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
39
|
Lu H, Kalyuzhnaya M, Chandran K. Comparative proteomic analysis reveals insights into anoxic growth ofMethyloversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 2012; 14:2935-45. [DOI: 10.1111/j.1462-2920.2012.02857.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Huijie Lu
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| | - Marina Kalyuzhnaya
- Department of Microbiology; University of Washington; Seattle; WA; 98105; USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| |
Collapse
|
40
|
Chen Y. Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm, gmaS). Environ Microbiol 2012; 14:2308-22. [DOI: 10.1111/j.1462-2920.2012.02765.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME. XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 2011; 193:6032-8. [PMID: 21873495 PMCID: PMC3194914 DOI: 10.1128/jb.05367-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/16/2011] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-2180, USA.
| | | | | | | | | |
Collapse
|
42
|
Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, Landry ZC, Giovannoni SJ. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 2011; 6:e23973. [PMID: 21886845 PMCID: PMC3160333 DOI: 10.1371/journal.pone.0023973] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
Abstract
The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of 14C-labeled compounds to 14CO2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of 14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27–35%) than of C1 compounds (2–6%) into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO2 in the upper ocean.
Collapse
Affiliation(s)
- Jing Sun
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Laura Steindler
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Cameron Thrash
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kimberly H. Halsey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Daniel P. Smith
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Amy E. Carter
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Zachary C. Landry
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen J. Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
43
|
Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the methylophilaceae. J Bacteriol 2011; 193:3757-64. [PMID: 21622745 DOI: 10.1128/jb.00404-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of three representatives of the family Methylophilaceae, Methylotenera mobilis JLW8, Methylotenera versatilis 301, and Methylovorus glucosetrophus SIP3-4, all isolated from a single study site, Lake Washington in Seattle, WA, were completely sequenced. These were compared to each other and to the previously published genomes of Methylobacillus flagellatus KT and an unclassified Methylophilales strain, HTCC2181. Comparative analysis revealed that the core genome of Methylophilaceae may be as small as approximately 600 genes, while the pangenome may be as large as approximately 6,000 genes. Significant divergence between the genomes in terms of both gene content and gene and protein conservation was uncovered, including the varied presence of certain genes involved in methylotrophy. Overall, our data demonstrate that metabolic potentials can vary significantly between different species of Methylophilaceae, including organisms inhabiting the very same environment. These data suggest that genetic divergence among the members of this family may be responsible for their specialized and nonredundant functions in C₁ cycling, which in turn suggests means for their successful coexistence in their specific ecological niches.
Collapse
|
44
|
|
45
|
Nagashima S, Shimada K, Verméglio A, Nagashima KVP. The cytochrome c₈ involved in the nitrite reduction pathway acts also as electron donor to the photosynthetic reaction center in Rubrivivax gelatinosus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:189-96. [PMID: 21055386 DOI: 10.1016/j.bbabio.2010.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022]
Abstract
The purple photosynthetic bacterium Rubrivivax gelatinosus has, at least, four periplasmic electron carriers, i.e., HiPIP, two cytochromes c₈with low- and high-midpoint potentials, and cytochrome c₄ as electron donors to the photochemical reaction center. The quadruple mutant lacking all four electron carrier proteins showed extremely slow photosynthetic growth. During the long-term cultivation of this mutant under photosynthetic conditions, a suppressor strain recovering the wild-type growth level appeared. In the cells of the suppressor strain, we found significant accumulation of a soluble c-type cytochrome that has not been detected in wild-type cells. This cytochrome c has a redox midpoint potential of about +280 mV and could function as an electron donor to the photochemical reaction center in vitro. The amino acid sequence of this cytochrome c was 65% identical to that of the high-potential cytochrome c₈of this bacterium. The gene for this cytochrome c was identified as nirM on the basis of its location in the newly identified nir operon, which includes a gene coding cytochrome cd₁-type nitrite reductase. Phylogenetic analysis and the well-conserved nir operon gene arrangement suggest that the origin of the three cytochromes c₈ in this bacterium is NirM. The two other cytochromes c₈, of high and low potentials, proposed to be generated by gene duplication from NirM, have evolved to function in distinct pathways.
Collapse
Affiliation(s)
- Sakiko Nagashima
- Department of Biological Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
46
|
Meyer T, Van Driessche G, Ambler R, Kyndt J, Devreese B, Van Beeumen J, Cusanovich M. Evidence from the structure and function of cytochromes c(2) that nonsulfur purple bacterial photosynthesis followed the evolution of oxygen respiration. Arch Microbiol 2010; 192:855-65. [PMID: 20697695 DOI: 10.1007/s00203-010-0608-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/23/2010] [Accepted: 07/03/2010] [Indexed: 11/27/2022]
Abstract
Cytochromes c(2) are the nearest bacterial homologs of mitochondrial cytochrome c. The sequences of the known cytochromes c(2) can be placed in two subfamilies based upon insertions and deletions, one subfamily is most like mitochondrial cytochrome c (the small C2s, without significant insertions and deletions), and the other, designated large C2, shares 3- and 8-residue insertions as well as a single-residue deletion. C2s generally function between cytochrome bc(1) and cytochrome oxidase in respiration (ca 80 examples known to date) and between cytochrome bc(1) and the reaction center in nonsulfur purple bacterial photosynthesis (ca 21 examples). However, members of the large C2 subfamily are almost always involved in photosynthesis (12 of 14 examples). In addition, the gene for the large C2 (cycA) is associated with those for the photosynthetic reaction center (pufBALM). We hypothesize that the insertions in the large C2s, which were already functioning in photosynthesis, allowed them to replace the membrane-bound tetraheme cytochrome, PufC, that otherwise mediates between the small C2 or other redox proteins and photosynthetic reaction centers. Based upon our analysis, we propose that the involvement of C2 in nonsulfur purple bacterial photosynthesis was a metabolic feature subsequent to the evolution of oxygen respiration.
Collapse
Affiliation(s)
- Terry Meyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, 85721, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Schmidt S, Christen P, Kiefer P, Vorholt JA. Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology (Reading) 2010; 156:2575-2586. [DOI: 10.1099/mic.0.038570-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methanol dehydrogenase-like protein XoxF of Methylobacterium extorquens AM1 exhibits a sequence identity of 50 % to the catalytic subunit MxaF of periplasmic methanol dehydrogenase in the same organism. The latter has been characterized in detail, identified as a pyrroloquinoline quinone (PQQ)-dependent protein, and shown to be essential for growth in the presence of methanol in this methylotrophic model bacterium. In contrast, the function of XoxF in M. extorquens AM1 has not yet been elucidated, and a phenotype remained to be described for a xoxF mutant. Here, we found that a xoxF mutant is less competitive than the wild-type during colonization of the phyllosphere of Arabidopsis thaliana, indicating a function for XoxF during plant colonization. A comparison of the growth parameters of the M. extorquens AM1 xoxF mutant with those of the wild-type during exponential growth revealed a reduced methanol uptake rate and a reduced growth rate for the xoxF mutant of about 30 %. Experiments with cells starved for carbon revealed that methanol oxidation in the xoxF mutant occurs less rapidly compared with the wild-type, especially in the first minutes after methanol addition. A distinct phenotype for the xoxF mutant was also observed when formate and CO2 production were measured after the addition of methanol or formaldehyde to starved cells. The wild-type, but not the xoxF mutant, accumulated formate upon substrate addition and had a 1 h lag in CO2 production under the experimental conditions. Determination of the kinetic properties of the purified enzyme showed a conversion capacity for both formaldehyde and methanol. The results suggest that XoxF is involved in one-carbon metabolism in M. extorquens AM1.
Collapse
Affiliation(s)
- Sabrina Schmidt
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
48
|
Antony CP, Kumaresan D, Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Murrell JC. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME JOURNAL 2010; 4:1470-80. [DOI: 10.1038/ismej.2010.70] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Kalyuhznaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L. Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:385-392. [PMID: 23765891 DOI: 10.1111/j.1758-2229.2009.00046.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work we assessed the potential for the denitrification linked to methanol consumption in a microbial community inhabiting the top layer of the sediment of a pristine lake, Lake Washington in Seattle. Stable isotope probing with (13) C methanol was implemented in near in situ conditions and also in the presence of added nitrate. This revealed that the bacterial population involved in methanol uptake was dominated by species belonging to the Methylophilaceae, most prominently species belonging to the genus Methylotenera. Based on relative abundance of specific phylotypes in DNA clone libraries generated from (13) C labelled DNA, some of these species appear not to require nitrate to assimilate methanol while others assimilate methanol in a nitrate-dependent fashion. A pure culture of Methylotenera mobilis strain JLW8 previously isolated from the same study site was investigated for denitrification capability. This culture was demonstrated to be able to grow on methanol when nitrate was present, in aerobic conditions, while in media supplemented with ammonium it did not grow on methanol. The denitrifying capability of this strain was further demonstrated in defined laboratory conditions, by measuring accumulation of N2 O. This study provides new insights into the potential involvement of Methylophilaceae in global nitrogen cycling in natural environments and highlights the connection between global carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Marina G Kalyuhznaya
- Departments of Microbiology, Civil and Environmental Engineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 2009; 4:e5584. [PMID: 19440302 PMCID: PMC2680597 DOI: 10.1371/journal.pone.0005584] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 03/30/2009] [Indexed: 11/22/2022] Open
Abstract
Background Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid). Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.
Collapse
|