1
|
Papagiannakis A, Yu Q, Govers SK, Lin WH, Wingreen NS, Jacobs-Wagner C. Nonequilibrium polysome dynamics promote chromosome segregation and its coupling to cell growth in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617237. [PMID: 40161845 PMCID: PMC11952301 DOI: 10.1101/2024.10.08.617237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome segregation is essential for cellular proliferation. Unlike eukaryotes, bacteria lack cytoskeleton-based machinery to segregate their chromosomal DNA (nucleoid). The bacterial ParABS system segregates the duplicated chromosomal regions near the origin of replication. However, this function does not explain how bacterial cells partition the rest (bulk) of the chromosomal material. Furthermore, some bacteria, including Escherichia coli, lack a ParABS system. Yet, E. coli faithfully segregates nucleoids across various growth rates. Here, we provide theoretical and experimental evidence that polysome production during chromosomal gene expression helps compact, split, segregate, and position nucleoids in E. coli through out-of-equilibrium dynamics and polysome exclusion from the DNA meshwork, inherently coupling these processes to biomass growth across nutritional conditions. Halting chromosomal gene expression and thus polysome production immediately stops sister nucleoid migration while ensuing polysome depletion gradually reverses nucleoid segregation. Redirecting gene expression away from the chromosome and toward plasmids causes ectopic polysome accumulations that are sufficient to drive aberrant nucleoid dynamics. Cell width enlargement suggest that the proximity of the DNA to the membrane along the radial axis is important to limit the exchange of polysomes across DNA-free regions, ensuring nucleoid segregation along the cell length. Our findings suggest a self-organizing mechanism for coupling nucleoid segregation to cell growth.
Collapse
Affiliation(s)
- Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Qiwei Yu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544, USA
| | - Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, USA
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Izquierdo-Martinez A, Schäper S, Brito AD, Liao Q, Tesseur C, Sorg M, Botinas DS, Wang X, Pinho MG. Chromosome segregation dynamics during the cell cycle of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638847. [PMID: 40027834 PMCID: PMC11870517 DOI: 10.1101/2025.02.18.638847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Research on chromosome organization and cell cycle progression in spherical bacteria, particularly Staphylococcus aureus, remains limited and fragmented. In this study, we established a working model to investigate chromosome dynamics in S. aureus using a Fluorescent Repressor-Operator System (FROS), which enabled precise localization of specific chromosomal loci. This approach revealed that the S. aureus cell cycle and chromosome replication cycle are not coupled, with cells exhibiting two segregated origins of replication at the start of the cell cycle. The chromosome has a specific origin-terminus-origin conformation, with origins localizing near the membrane, towards the tip of each hemisphere, or the "cell poles". We further used this system to assess the role of various proteins with a role in S. aureus chromosome biology, focusing on the ParB-parS and SMC-ScpAB systems. Our results demonstrate that ParB binds five parS chromosomal sequences and the resulting complexes influence chromosome conformation, but play a minor role in chromosome compaction and segregation. In contrast, the SMC-ScpAB complex plays a key role in S. aureus chromosome biology, contributing to chromosome compaction, segregation and spatial organization. Additionally, we systematically assessed and compared the impact of proteins linking chromosome segregation to cell division-Noc, FtsK, SpoIIIE and XerC-on origin and terminus number and positioning. This work provides a comprehensive study of the factors governing chromosome dynamics and organization in S. aureus, contributing to our knowledge on chromosome biology of spherical bacteria.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Qin Liao
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Coralie Tesseur
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniela S. Botinas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
3
|
Matusiak I, Strzałka A, Wadach P, Gongerowska-Jac M, Szwajczak E, Szydłowska-Helbrych A, Kepplinger B, Pióro M, Jakimowicz D. The interplay between the polar growth determinant DivIVA, the segregation protein ParA, and their novel interaction partner PapM controls the Mycobacterium smegmatis cell cycle by modulation of DivIVA subcellular distribution. Microbiol Spectr 2023; 11:e0175223. [PMID: 37966202 PMCID: PMC10714820 DOI: 10.1128/spectrum.01752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The genus of Mycobacterium includes important clinical pathogens (M. tuberculosis). Bacteria of this genus share the unusual features of their cell cycle such as asymmetric polar cell elongation and long generation time. Markedly, control of the mycobacterial cell cycle still remains not fully understood. The main cell growth determinant in mycobacteria is the essential protein DivIVA, which is also involved in cell division. DivIVA activity is controlled by phosphorylation, but the mechanism and significance of this process are unknown. Here, we show how the previously established protein interaction partner of DivIVA in mycobacteria, the segregation protein ParA, affects the DivIVA subcellular distribution. We also demonstrate the role of a newly identified M. smegmatis DivIVA and ParA interaction partner, a protein named PapM, and we establish how their interactions are modulated by phosphorylation. Demonstrating that the tripartite interplay affects the mycobacterial cell cycle contributes to the general understanding of mycobacterial growth regulation.
Collapse
Affiliation(s)
- Izabela Matusiak
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Patrycja Wadach
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Gongerowska-Jac
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | - Bernhard Kepplinger
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
4
|
Kishore V, Gaiwala Sharma SS, Raghunand TR. Septum site placement in Mycobacteria - identification and characterisation of mycobacterial homologues of Escherichia coli MinD. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001359. [PMID: 37526955 PMCID: PMC10482377 DOI: 10.1099/mic.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
A major virulence trait of Mycobacterium tuberculosis (M. tb) is its ability to enter a dormant state within its human host. Since cell division is intimately linked to metabolic shut down, understanding the mechanism of septum formation and its integration with other events in the division pathway is likely to offer clues to the molecular basis of dormancy. The M. tb genome lacks obvious homologues of several conserved cell division proteins, and this study was aimed at identifying and functionally characterising mycobacterial homologues of the E. coli septum site specification protein MinD (Ec MinD). Sequence homology based analyses suggested that the genomes of both M. tb and the saprophyte Mycobacterium smegmatis (M. smegmatis) encode two putative Ec MinD homologues - Rv1708/MSMEG_3743 and Rv3660c/ MSMEG_6171. Of these, Rv1708/MSMEG_3743 were found to be the true homologues, through complementation of the E. coli ∆minDE mutant HL1, overexpression studies, and structural comparisons. Rv1708 and MSMEG_3743 fully complemented the mini-cell phenotype of HL1, and over-expression of MSMEG_3743 in M. smegmatis led to cell elongation and a drastic decrease in c.f.u. counts, indicating its essentiality in cell-division. MSMEG_3743 displayed ATPase activity, consistent with its containing a conserved Walker A motif. Interaction of Rv1708 with the chromosome associated proteins ScpA and ParB, implied a link between its septum formation role, and chromosome segregation. Comparative structural analyses showed Rv1708 to be closer in similarity to Ec MinD than Rv3660c. In summary we identify Rv1708 and MSMEG_3743 to be homologues of Ec MinD, adding a critical missing piece to the mycobacterial cell division puzzle.
Collapse
Affiliation(s)
- Vimal Kishore
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: National Centre for Cell Science (NCCS), NCCS Complex, University of Pune Campus, Pune University Rd, Ganeshkhind, Pune, 411007, India
| | - Sujata S. Gaiwala Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tirumalai R. Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
5
|
Pióro M, Matusiak I, Gawek A, Łebkowski T, Jaroszek P, Bergé M, Böhm K, Armitage J, Viollier PH, Bramkamp M, Jakimowicz D. Genus-Specific Interactions of Bacterial Chromosome Segregation Machinery Are Critical for Their Function. Front Microbiol 2022; 13:928139. [PMID: 35875543 PMCID: PMC9298525 DOI: 10.3389/fmicb.2022.928139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Most bacteria use the ParABS system to segregate their newly replicated chromosomes. The two protein components of this system from various bacterial species share their biochemical properties: ParB is a CTPase that binds specific centromere-like parS sequences to assemble a nucleoprotein complex, while the ParA ATPase forms a dimer that binds DNA non-specifically and interacts with ParB complexes. The ParA-ParB interaction incites the movement of ParB complexes toward the opposite cell poles. However, apart from their function in chromosome segregation, both ParAB may engage in genus-specific interactions with other protein partners. One such example is the polar-growth controlling protein DivIVA in Actinomycetota, which binds ParA in Mycobacteria while interacts with ParB in Corynebacteria. Here, we used heterologous hosts to investigate whether the interactions between DivIVA and ParA or ParB are maintained across phylogenic classes. Specifically, we examined interactions of proteins from four bacterial species, two belonging to the Gram positive Actinomycetota phylum and two belonging to the Gram-negative Pseudomonadota. We show that while the interactions between ParA and ParB are preserved for closely related orthologs, the interactions with polarly localised protein partners are not conferred by orthologous ParABs. Moreover, we demonstrate that heterologous ParA cannot substitute for endogenous ParA, despite their high sequence similarity. Therefore, we conclude that ParA orthologs are fine-tuned to interact with their partners, especially their interactions with polarly localised proteins are adjusted to particular bacterial species demands.
Collapse
Affiliation(s)
- Monika Pióro
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Monika Pióro,
| | - Izabela Matusiak
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Adam Gawek
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Tomasz Łebkowski
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Patrycja Jaroszek
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kati Böhm
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Judith Armitage
- Department of Biochemistry, University of Oxford, Oxford,United Kingdom
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
- Dagmara Jakimowicz,
| |
Collapse
|
6
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
7
|
Felice AG, Alves LG, Freitas ASF, Rodrigues TCV, Jaiswal AK, Tiwari S, Gomes LGR, Miranda FM, Ramos RTJ, Azevedo V, Oliveira LC, Oliveira CJ, Soares SDC, Benevides LJ. Pan-genomic analyses of 47 complete genomes of the Rickettsia genus and prediction of new vaccine targets and virulence factors of the species. J Biomol Struct Dyn 2021; 40:7496-7510. [PMID: 33719856 DOI: 10.1080/07391102.2021.1898473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genus Rickettsia belongs to the Proteobacteria phylum and these bacteria infect animals and humans causing a range of diseases worldwide. The genus is divided into 4 groups and despite the public health threat and the knowledge accumulated so far, the mandatory intracellular bacteria behaviour and limitation for in vitro culture makes it difficult to create new vaccines and drug targets to these bacteria. In an attempt to overcome these limitations, pan-genomic approaches has used 47 genomes of the genus Rickettsia, in order to describe species similarities and genomics islands. Moreover, we conducted reverse vaccinology and docking analysis aiming the identification of proteins that have great potential to become vaccine and drug targets. We found out that the bacteria of the four Rickettsia groups have a high similarity with each other, with about 90 to 100% of identity. A pathogenicity island and a resistance island were predicted. In addition, 8 proteins were also predicted as strong candidates for vaccine and 9 as candidates for drug targets. The prediction of the proteins leads us to believe in a possibility of prospecting potential drugs or creating a polyvalent vaccine, which could reach most strains of this large group of bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrei G Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Leandro G Alves
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Alissa S F Freitas
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Thaís C V Rodrigues
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas G R Gomes
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fábio M Miranda
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rommel T J Ramos
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Letícia C Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Carlo J Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Siomar D C Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Leandro J Benevides
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
9
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
10
|
Pióro M, Małecki T, Portas M, Magierowska I, Trojanowski D, Sherratt D, Zakrzewska-Czerwińska J, Ginda K, Jakimowicz D. Competition between DivIVA and the nucleoid for ParA binding promotes segrosome separation and modulates mycobacterial cell elongation. Mol Microbiol 2018; 111:204-220. [PMID: 30318635 PMCID: PMC7379644 DOI: 10.1111/mmi.14149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 01/03/2023]
Abstract
Although mycobacteria are rod shaped and divide by simple binary fission, their cell cycle exhibits unusual features: unequal cell division producing daughter cells that elongate with different velocities, as well as asymmetric chromosome segregation and positioning throughout the cell cycle. As in other bacteria, mycobacterial chromosomes are segregated by pair of proteins, ParA and ParB. ParA is an ATPase that interacts with nucleoprotein ParB complexes – segrosomes and non‐specifically binds the nucleoid. Uniquely in mycobacteria, ParA interacts with a polar protein DivIVA (Wag31), responsible for asymmetric cell elongation, however the biological role of this interaction remained unknown. We hypothesised that this interaction plays a critical role in coordinating chromosome segregation with cell elongation. Using a set of ParA mutants, we determined that disruption of ParA‐DNA binding enhanced the interaction between ParA and DivIVA, indicating a competition between the nucleoid and DivIVA for ParA binding. Having identified the ParA mutation that disrupts its recruitment to DivIVA, we found that it led to inefficient segrosomes separation and increased the cell elongation rate. Our results suggest that ParA modulates DivIVA activity. Thus, we demonstrate that the ParA‐DivIVA interaction facilitates chromosome segregation and modulates cell elongation.
Collapse
Affiliation(s)
- Monika Pióro
- Laboratory of Molecular Biology of Microorganisms, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Magda Portas
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Izabela Magierowska
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Damian Trojanowski
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - David Sherratt
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jolanta Zakrzewska-Czerwińska
- Laboratory of Molecular Biology of Microorganisms, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Katarzyna Ginda
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland.,Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dagmara Jakimowicz
- Laboratory of Molecular Biology of Microorganisms, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
11
|
Uhía I, Priestman M, Joyce G, Krishnan N, Shahrezaei V, Robertson BD. Analysis of ParAB dynamics in mycobacteria shows active movement of ParB and differential inheritance of ParA. PLoS One 2018; 13:e0199316. [PMID: 29920558 PMCID: PMC6007833 DOI: 10.1371/journal.pone.0199316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
Correct chromosomal segregation, coordinated with cell division, is crucial for bacterial survival, but despite extensive studies, the mechanisms underlying this remain incompletely understood in mycobacteria. We report a detailed investigation of the dynamic interactions between ParA and ParB partitioning proteins in Mycobacterium smegmatis using microfluidics and time-lapse fluorescence microscopy to observe both proteins simultaneously. During growth and division, ParB presents as a focused fluorescent spot that subsequently splits in two. One focus moves towards a higher concentration of ParA at the new pole, while the other moves towards the old pole. We show ParB movement is in part an active process that does not rely on passive movement associated with cell growth. In some cells, another round of ParB segregation starts before cell division is complete, consistent with initiation of a second round of chromosome replication. ParA fluorescence distribution correlates with cell size, and in sister cells, the larger cell inherits a local peak of concentrated ParA, while the smaller sister inherits more homogeneously distributed protein. Cells which inherit more ParA grow faster than their sister cell, raising the question of whether inheritance of a local concentration of ParA provides a growth advantage. Alterations in levels of ParA and ParB were also found to disturb cell growth.
Collapse
Affiliation(s)
- Iria Uhía
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Miles Priestman
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Graham Joyce
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
The Origin of Chromosomal Replication Is Asymmetrically Positioned on the Mycobacterial Nucleoid, and the Timing of Its Firing Depends on HupB. J Bacteriol 2018. [PMID: 29531181 DOI: 10.1128/jb.00044-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bacterial chromosome undergoes dynamic changes in response to ongoing cellular processes and adaptation to environmental conditions. Among the many proteins involved in maintaining this dynamism, the most abundant is the nucleoid-associated protein (NAP) HU. In mycobacteria, the HU homolog, HupB, possesses an additional C-terminal domain that resembles that of eukaryotic histones H1/H5. Recently, we demonstrated that the highly abundant HupB protein occupies the entirety of the Mycobacterium smegmatis chromosome and that the HupB-binding sites exhibit a bias from the origin (oriC) to the terminus (ter). In this study, we used HupB fused with enhanced green fluorescent protein (EGFP) to perform the first analysis of chromosome dynamics and to track the oriC and replication machinery directly on the chromosome during the mycobacterial cell cycle. We show that the chromosome is located in an off-center position that reflects the unequal division and growth of mycobacterial cells. Moreover, unlike the situation in E. coli, the sister oriC regions of M. smegmatis move asymmetrically along the mycobacterial nucleoid. Interestingly, in this slow-growing organism, the initiation of the next round of replication precedes the physical separation of sister chromosomes. Finally, we show that HupB is involved in the precise timing of replication initiation.IMPORTANCE Although our view of mycobacterial nucleoid organization has evolved considerably over time, we still know little about the dynamics of the mycobacterial nucleoid during the cell cycle. HupB is a highly abundant mycobacterial nucleoid-associated protein (NAP) with an indispensable histone-like tail. It was previously suggested as a potential target for antibiotic therapy against tuberculosis. Here, we fused HupB with enhanced green fluorescent protein (EGFP) to study the dynamics of the mycobacterial chromosome in real time and to monitor the replication process directly on the chromosome. Our results reveal that, unlike the situation in Escherichia coli, the nucleoid of an apically growing mycobacterium is positioned asymmetrically within the cell throughout the cell cycle. We show that HupB is involved in controlling the timing of replication initiation. Since tuberculosis remains a serious health problem, studies concerning mycobacterial cell biology are of great importance.
Collapse
|
13
|
Puffal J, García-Heredia A, Rahlwes KC, Siegrist MS, Morita YS. Spatial control of cell envelope biosynthesis in mycobacteria. Pathog Dis 2018; 76:4953754. [DOI: 10.1093/femspd/fty027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/25/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Nonphotodynamic Roles of Methylene Blue: Display of Distinct Antimycobacterial and Anticandidal Mode of Actions. J Pathog 2018; 2018:3759704. [PMID: 29666708 PMCID: PMC5831920 DOI: 10.1155/2018/3759704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/12/2022] Open
Abstract
Significance of methylene blue (MB) in photodynamic therapy against microbes is well established. Previously, we have reported the antifungal potential of MB against Candida albicans. The present study attempts to identify additional antimicrobial effect of MB against another prevalent human pathogen, Mycobacterium tuberculosis (MTB). We explored that MB is efficiently inhibiting the growth of Mycobacterium at 15.62 μg/ml albeit in bacteriostatic manner similar to its fungistatic nature. We uncovered additional cell surface phenotypes (colony morphology and cell sedimentation rate) which were impaired only in Mycobacterium. Mechanistic insights revealed that MB causes energy dependent membrane perturbation in both C. albicans and Mycobacterium. We also confirmed that MB leads to enhanced reactive oxygen species generation in both organisms that could be reversed upon antioxidant supplementation; however, DNA damage could only be observed in Mycobacterium. We provided evidence that although biofilm formation was disrupted in both organisms, cell adherence to human epithelial cells was inhibited only in Mycobacterium. Lastly, RT-PCR results showed good correlation with the biochemical assay. Together, apart from the well-established role of MB in photodynamic therapy, this study provides insights into the distinct antimicrobial mode of actions in two significant human pathogens, Candida and Mycobacterium, which can be extrapolated to improve our understanding of finding novel therapeutic options.
Collapse
|
15
|
Abstract
In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs) responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy) and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing), we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC) to the terminus (ter) of the mycobacterial chromosome (numbers of binding sites decreased toward ter). We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.IMPORTANCE We currently know little about the organization of the mycobacterial chromosome and its dynamics during the cell cycle. Among the mycobacterial nucleoid-associated proteins (NAPs) responsible for chromosome organization and dynamics, HupB is one of the most intriguing. It contains a long and distinctive C-terminal domain that harbors several PAKK/KAAK motifs, which are characteristic of the eukaryotic histone H1/H5 proteins. The HupB protein is also known to be crucial for the survival of tubercle bacilli during infection. Here, we provide in vivo experimental evidence showing that the C-terminal domain of HupB is crucial for its DNA binding. Our results suggest that HupB may be involved in organizing newly replicated regions and could help coordinate chromosome replication with segregation. Given that tuberculosis (TB) remains a serious worldwide health problem (10.4 million new TB cases were diagnosed in 2015, according to WHO) and new multidrug-resistant Mycobacterium tuberculosis strains are continually emerging, further studies of the biological function of HupB are needed to determine if this protein could be a prospect for novel antimicrobial drug development.
Collapse
|
16
|
Logsdon MM, Ho PY, Papavinasasundaram K, Richardson K, Cokol M, Sassetti CM, Amir A, Aldridge BB. A Parallel Adder Coordinates Mycobacterial Cell-Cycle Progression and Cell-Size Homeostasis in the Context of Asymmetric Growth and Organization. Curr Biol 2017; 27:3367-3374.e7. [PMID: 29107550 DOI: 10.1016/j.cub.2017.09.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/24/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
In model bacteria, such as E. coli and B. subtilis, regulation of cell-cycle progression and cellular organization achieves consistency in cell size, replication dynamics, and chromosome positioning [1-3]. Mycobacteria elongate and divide asymmetrically, giving rise to significant variation in cell size and elongation rate among closely related cells [4, 5]. Given the physical asymmetry of mycobacteria, the models that describe coordination of cellular organization and cell-cycle progression in model bacteria are not directly translatable [1, 2, 6-8]. Here, we used time-lapse microscopy and fluorescent reporters of DNA replication and chromosome positioning to examine the coordination of growth, division, and chromosome dynamics at a single-cell level in Mycobacterium smegmatis (M. smegmatis) and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). By analyzing chromosome and replisome localization, we demonstrated that chromosome positioning is asymmetric and proportional to cell size. Furthermore, we found that cellular asymmetry is maintained throughout the cell cycle and is not established at division. Using measurements and stochastic modeling of mycobacterial cell size and cell-cycle timing in both slow and fast growth conditions, we found that well-studied models of cell-size control are insufficient to explain the mycobacterial cell cycle. Instead, we showed that mycobacterial cell-cycle progression is regulated by an unprecedented mechanism involving parallel adders (i.e., constant growth increments) that start at replication initiation. Together, these adders enable mycobacterial populations to regulate cell size, growth, and heterogeneity in the face of varying environments.
Collapse
Affiliation(s)
- Michelle M Logsdon
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Po-Yi Ho
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worchester, MA 01655, USA
| | - Kirill Richardson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Murat Cokol
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worchester, MA 01655, USA
| | - Ariel Amir
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
17
|
Sesamol exhibits potent antimycobacterial activity: Underlying mechanisms and impact on virulence traits. J Glob Antimicrob Resist 2017; 10:228-237. [DOI: 10.1016/j.jgar.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/31/2017] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
|
18
|
Ginda K, Santi I, Bousbaine D, Zakrzewska-Czerwińska J, Jakimowicz D, McKinney J. The studies of ParA and ParB dynamics reveal asymmetry of chromosome segregation in mycobacteria. Mol Microbiol 2017; 105:453-468. [PMID: 28517109 DOI: 10.1111/mmi.13712] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
Active segregation of bacterial chromosomes usually involves the action of ParB proteins, which bind in proximity of chromosomal origin (oriC) regions forming nucleoprotein complexes - segrosomes. Newly duplicated segrosomes are moved either uni- or bidirectionally by the action of ATPases - ParA proteins. In Mycobacterium smegmatis the oriC region is located in an off-centred position and newly replicated segrosomes are segregated towards cell poles. The elimination of M. smegmatis ParA and/or ParB leads to chromosome segregation defects. Here, we took advantage of microfluidic time-lapse fluorescent microscopy to address the question of ParA and ParB dynamics in M. smegmatis and M. tuberculosis cells. Our results reveal that ParB complexes are segregated in an asymmetrical manner. The rapid movement of segrosomes is dependent on ParA that is transiently associated with the new pole. Remarkably in M. tuberculosis, the movement of the ParB complex is much slower than in M. smegmatis, but segregation as in M. smegmatis lasts approximately 10% of the cell cycle, which suggests a correlation between segregation dynamics and the growth rate. On the basis of our results, we propose a model for the asymmetric action of segregation machinery that reflects unequal division and growth of mycobacterial cells.
Collapse
Affiliation(s)
- Katarzyna Ginda
- Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Isabella Santi
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Djenet Bousbaine
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - John McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
19
|
Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. mBio 2017; 8:mBio.00511-17. [PMID: 28588128 PMCID: PMC5461407 DOI: 10.1128/mbio.00511-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum. Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
Collapse
|
20
|
Multifork chromosome replication in slow-growing bacteria. Sci Rep 2017; 7:43836. [PMID: 28262767 PMCID: PMC5338351 DOI: 10.1038/srep43836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/30/2017] [Indexed: 01/20/2023] Open
Abstract
The growth rates of bacteria must be coordinated with major cell cycle events, including chromosome replication. When the doubling time (Td) is shorter than the duration of chromosome replication (C period), a new round of replication begins before the previous round terminates. Thus, newborn cells inherit partially duplicated chromosomes. This phenomenon, which is termed multifork replication, occurs among fast-growing bacteria such as Escherichia coli and Bacillus subtilis. In contrast, it was historically believed that slow-growing bacteria (including mycobacteria) do not reinitiate chromosome replication until the previous round has been completed. Here, we use single-cell time-lapse analyses to reveal that mycobacterial cell populations exhibit heterogeneity in their DNA replication dynamics. In addition to cells with non-overlapping replication rounds, we observed cells in which the next replication round was initiated before completion of the previous replication round. We speculate that this heterogeneity may reflect a relaxation of cell cycle checkpoints, possibly increasing the ability of slow-growing mycobacteria to adapt to environmental conditions.
Collapse
|
21
|
Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. Subcell Biochem 2017; 84:103-137. [PMID: 28500524 DOI: 10.1007/978-3-319-53047-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.
Collapse
|
22
|
Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera D, Russell DA, Hatfull GF. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol Microbiol 2016; 101:625-44. [PMID: 27146086 DOI: 10.1111/mmi.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wei L Ng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Matthew R Olm
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachael E Rush
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
23
|
Abstract
Traditionally eukaryotes exclusive cytoskeleton has been found in bacteria and other prokaryotes. FtsZ, MreB and CreS are bacterial counterpart of eukaryotic tubulin, actin filaments and intermediate filaments, respectively. FtsZ can assemble to a Z-ring at the cell division site, regulate bacterial cell division; MreB can form helical structure, and involve in maintaining cell shape, regulating chromosome segregation; CreS, found in Caulobacter crescentus (C. crescentus), can form curve or helical filaments in intracellular membrane. CreS is crucial for cell morphology maintenance. There are also some prokaryotic unique cytoskeleton components playing crucial roles in cell division, chromosome segregation and cell morphology. The cytoskeleton components of Mycobacterium tuberculosis (M. tuberculosis), together with their dynamics during exposure to antibiotics are summarized in this article to provide insights into the unique organization of this formidable pathogen and druggable targets for new antibiotics.
Collapse
Affiliation(s)
- Huan Wang
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Longxiang Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Hongping Luo
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Jianping Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| |
Collapse
|
24
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
25
|
Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system. PLoS One 2015; 10:e0119907. [PMID: 25807382 PMCID: PMC4373775 DOI: 10.1371/journal.pone.0119907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.
Collapse
|
26
|
Abstract
It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. Despite significant progress in elucidating the basic processes of bacterial chromosome replication and segregation, understanding of chromosome dynamics during the mycobacterial cell cycle remains incomplete. Here, we provide in vivo experimental evidence that replisomes in Mycobacterium smegmatis are highly dynamic, frequently splitting into two distinct replication forks. However, unlike in Escherichia coli, the forks do not segregate toward opposite cell poles but remain in relatively close proximity. In addition, we show that replication cycles do not overlap. Finally, our data suggest that ParB participates in the positioning of newly born replisomes in M. smegmatis cells. The present results broaden our understanding of chromosome segregation in slow-growing bacteria. In view of the complexity of the mycobacterial cell cycle, especially for pathogenic representatives of the genus, understanding the mechanisms and factors that affect chromosome dynamics will facilitate the identification of novel antimicrobial factors.
Collapse
|
27
|
Abstract
UNLABELLED Subcellular organization of the bacterial nucleoid and spatiotemporal dynamics of DNA replication and segregation have been studied intensively, but the functional link between these processes remains poorly understood. Here we use quantitative time-lapse fluorescence microscopy for single-cell analysis of chromosome organization and DNA replisome dynamics in Mycobacterium smegmatis. We report that DNA replication takes place near midcell, where, following assembly of the replisome on the replication origin, the left and right replication forks colocalize throughout the replication cycle. From its initial position near the cell pole, a fluorescently tagged chromosomal locus (attB, 245° from the origin) moves rapidly to the replisome complex just before it is replicated. The newly duplicated attB loci then segregate to mirror-symmetric positions relative to midcell. Genetic ablation of ParB, a component of the ParABS chromosome segregation system, causes marked defects in chromosome organization, condensation, and segregation. ParB deficiency also results in mislocalization of the DNA replication machinery and SMC (structural maintenance of chromosome) protein. These observations suggest that ParB and SMC play important and overlapping roles in chromosome organization and replisome dynamics in mycobacteria. IMPORTANCE We studied the spatiotemporal organization of the chromosome and DNA replication machinery in Mycobacterium smegmatis, a fast-growing relative of the human pathogen Mycobacterium tuberculosis. We show that genetic ablation of the DNA-binding proteins ParB and SMC disturbs the organization of the chromosome and causes a severe defect in subcellular localization and movement of the DNA replication complexes. These observations suggest that ParB and SMC provide a functional link between chromosome organization and DNA replication dynamics. This work also reveals important differences in the biological roles of the ParABS and SMC systems in mycobacteria versus better-characterized model organisms, such as Escherichia coli and Bacillus subtilis.
Collapse
|
28
|
Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 2014; 3:e02758. [PMID: 24859756 PMCID: PMC4067530 DOI: 10.7554/elife.02758] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The widely conserved ParABS system plays a major role in bacterial chromosome segregation. How the components of this system work together to generate translocation force and directional motion remains uncertain. Here, we combine biochemical approaches, quantitative imaging and mathematical modeling to examine the mechanism by which ParA drives the translocation of the ParB/parS partition complex in Caulobacter crescentus. Our experiments, together with simulations grounded on experimentally-determined biochemical and cellular parameters, suggest a novel 'DNA-relay' mechanism in which the chromosome plays a mechanical function. In this model, DNA-bound ParA-ATP dimers serve as transient tethers that harness the elastic dynamics of the chromosome to relay the partition complex from one DNA region to another across a ParA-ATP dimer gradient. Since ParA-like proteins are implicated in the partitioning of various cytoplasmic cargos, the conservation of their DNA-binding activity suggests that the DNA-relay mechanism may be a general form of intracellular transport in bacteria.DOI: http://dx.doi.org/10.7554/eLife.02758.001.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States Microbial Diversity Institute, Yale University, West Haven, United States
| | - Ivan Vladimirovich Surovtsev
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Bruno Gabriel Beltran
- Department of Mathematics, Louisiana State University, Baton Rouge, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Fang Huang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Jörg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, United States Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Christine Jacobs-Wagner
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|
29
|
Abstract
ABSTRACT Bacterial ParA and ParB proteins are best known for their contribution to plasmid and chromosome segregation, but they may also contribute to other cell functions. In segregation, ParA interacts with ParB, which binds to parS centromere-analogous sites. In transcription, plasmid Par proteins can serve as repressors by specifically binding to their own promoters and, additionally, in the case of ParB, by spreading from a parS site to nearby promoters. Here, we have asked whether chromosomal Par proteins can likewise control transcription. Analysis of genome-wide ParB1 binding in Vibrio cholerae revealed preferential binding to the three known parS1 sites and limited spreading of ParB1 beyond the parS1 sites. Comparison of wild-type transcriptomes with those of ΔparA1, ΔparB1, and ΔparAB1 mutants revealed that two out of 20 genes (VC0067 and VC0069) covered by ParB1 spreading are repressed by both ParB1 and ParA1. A third gene (VC0076) at the outskirts of the spreading area and a few genes further away were also repressed, particularly the gene for an outer membrane protein, ompU (VC0633). Since ParA1 or ParB1 binding was not evident near VC0076 and ompU genes, the repression may require participation of additional factors. Indeed, both ParA1 and ParB1 proteins were found to interact with several V. cholerae proteins in bacterial and yeast two-hybrid screens. These studies demonstrate that chromosomal Par proteins can repress genes unlinked to parS and can do so without direct binding to the cognate promoter DNA. IMPORTANCE Directed segregation of chromosomes is essential for their maintenance in dividing cells. Many bacteria have genes (par) that were thought to be dedicated to segregation based on analogy to their roles in plasmid maintenance. It is becoming clear that chromosomal par genes are pleiotropic and that they contribute to diverse processes such as DNA replication, cell division, cell growth, and motility. One way to explain the pleiotropy is to suggest that Par proteins serve as or control other transcription factors. We tested this model by determining how Par proteins affect genome-wide transcription activity. We found that genes implicated in drug resistance, stress response, and pathogenesis were repressed by Par. Unexpectedly, the repression did not involve direct Par binding to cognate promoter DNA, indicating that the repression may involve Par interactions with other regulators. This pleiotropy highlights the degree of integration of chromosomal Par proteins into cellular control circuitries.
Collapse
|
30
|
Propionate represses the dnaA gene via the methylcitrate pathway-regulating transcription factor, PrpR, in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek 2014; 105:951-9. [PMID: 24705740 PMCID: PMC3982210 DOI: 10.1007/s10482-014-0153-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/10/2014] [Indexed: 11/22/2022]
Abstract
During infection of macrophages, Mycobacterium tuberculosis, the pathogen that causes tuberculosis, utilizes fatty acids as a major carbon source. However, little is known about the coordination of the central carbon metabolism of M. tuberculosis with its chromosomal replication, particularly during infection. A recently characterized transcription factor called PrpR is known to directly regulate the genes involved in fatty acid catabolism by M. tuberculosis. Here, we report for the first time that PrpR also regulates the dnaA gene, which encodes the DnaA initiator protein responsible for initiating chromosomal replication. Using cell-free systems and intact cells, we demonstrated an interaction between PrpR and the dnaA promoter region. Moreover, real-time quantitative reverse-transcription PCR analysis revealed that PrpR acts as a transcriptional repressor of dnaA when propionate (a product of odd-chain-length fatty acid catabolism) was used as the sole carbon source. We hypothesize that PrpR may be an important element of the complex regulatory system(s) required for tubercle bacilli to survive within macrophages, presumably coordinating the catabolism of host-derived fatty acids with chromosomal replication.
Collapse
|
31
|
Ginda K, Bezulska M, Ziółkiewicz M, Dziadek J, Zakrzewska-Czerwińska J, Jakimowicz D. ParA ofMycobacterium smegmatisco-ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant DivIVA. Mol Microbiol 2013; 87:998-1012. [DOI: 10.1111/mmi.12146] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Katarzyna Ginda
- Faculty of Biotechnology; University of Wrocław; Wrocław; Poland
| | - Martyna Bezulska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław; Poland
| | | | - Jarosław Dziadek
- Medical Biology Institute; Polish Academy of Sciences; Lodowa 106; 93-232; Łódź; Poland
| | | | | |
Collapse
|
32
|
Qian S, Dean R, Urban VS, Chaudhuri BN. The internal organization of mycobacterial partition assembly: does the DNA wrap a protein core? PLoS One 2012; 7:e52690. [PMID: 23285150 PMCID: PMC3527565 DOI: 10.1371/journal.pone.0052690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
Before cell division in many bacteria, the ParBs spread on a large segment of DNA encompassing the origin-proximal parS site(s) to form the partition assembly that participates in chromosome segregation. Little is known about the structural organization of chromosomal partition assembly. We report solution X-ray and neutron scattering data characterizing the size parameters and internal organization of a nucleoprotein assembly formed by the mycobacterial chromosomal ParB and a 120-meric DNA containing a parS-encompassing region from the mycobacterial genome. The cross-sectional radii of gyration and linear mass density describing the rod-like ParB-DNA assembly were determined from solution scattering. A "DNA outside, protein inside" mode of partition assembly organization consistent with the neutron scattering hydrogen/deuterium contrast variation data is discussed. In this organization, the high scattering DNA is positioned towards the outer region of the partition assembly. The new results presented here provide a basis for understanding how ParBs organize the parS-proximal chromosome, thus setting the stage for further interactions with the DNA condensins, the origin tethering factors and the ParA.
Collapse
Affiliation(s)
- Shuo Qian
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Rebecca Dean
- Hauptman Woodward Institute, Buffalo, New York, United States of America
| | - Volker S. Urban
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Barnali N. Chaudhuri
- Hauptman Woodward Institute, Buffalo, New York, United States of America
- Department of Structural Biology, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
33
|
Masiewicz P, Brzostek A, Wolański M, Dziadek J, Zakrzewska-Czerwińska J. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. PLoS One 2012; 7:e43651. [PMID: 22916289 PMCID: PMC3420887 DOI: 10.1371/journal.pone.0043651] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, presumably utilizes fatty acids as a major carbon source during infection within the host. Metabolism of even-chain-length fatty acids yields acetyl-CoA, whereas metabolism of odd-chain-length fatty acids additionally yields propionyl-CoA. Utilization of these compounds by tubercle bacilli requires functional glyoxylate and methylcitrate cycles, respectively. Enzymes involved in both pathways are essential for M. tuberculosis viability and persistence during growth on fatty acids. However, little is known about regulatory factors responsible for adjusting the expression of genes encoding these enzymes to particular growth conditions. Here, we characterized the novel role of PrpR as a transcription factor that is directly involved in regulating genes encoding the key enzymes of methylcitrate (methylcitrate dehydratase [PrpD] and methylcitrate synthase [PrpC]) and glyoxylate (isocitrate lyase [Icl1]) cycles. Using cell-free systems and intact cells, we demonstrated an interaction of PrpR protein with prpDC and icl1 promoter regions and identified a consensus sequence recognized by PrpR. Moreover, we showed that an M. tuberculosis prpR-deletion strain exhibits impaired growth in vitro on propionate as the sole carbon source. Real-time quantitative reverse transcription-polymerase chain reaction confirmed that PrpR acts as a transcriptional activator of prpDC and icl1 genes when propionate is the main carbon source. Similar results were also obtained for a non-pathogenic Mycobacterium smegmatis strain. Additionally, we found that ramB, a prpR paralog that controls the glyoxylate cycle, is negatively regulated by PrpR. Our data demonstrate that PrpR is essential for the utilization of odd-chain-length fatty acids by tubercle bacilli. Since PrpR also acts as a ramB repressor, our findings suggest that it plays a key role in regulating expression of enzymes involved in both glyoxylate and methylcitrate pathways.
Collapse
Affiliation(s)
- Paweł Masiewicz
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Brzostek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
34
|
Characterization of a conserved interaction between DNA glycosylase and ParA in Mycobacterium smegmatis and M. tuberculosis. PLoS One 2012; 7:e38276. [PMID: 22675536 PMCID: PMC3366916 DOI: 10.1371/journal.pone.0038276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/02/2012] [Indexed: 11/19/2022] Open
Abstract
The chromosome partitioning proteins, ParAB, ensure accurate segregation of genetic materials into daughter cells and most bacterial species contain their homologs. However, little is known about the regulation of ParAB proteins. In this study, we found that 3-methyladenine DNA glycosylase I MsTAG(Ms5082) regulates bacterial growth and cell morphology by directly interacting with MsParA (Ms6939) and inhibiting its ATPase activity in Mycobacterium smegmatis. Using bacterial two-hybrid and pull-down techniques in combination with co-immunoprecipitation assays, we show that MsTAG physically interacts with MsParA both in vitro and in vivo. Expression of MsTAG under conditions of DNA damage induction exhibited similar inhibition of growth as the deletion of the parA gene in M. smegmatis. Further, the effect of MsTAG on mycobacterial growth was found to be independent of its DNA glycosylase activity, and to result instead from direct inhibition of the ATPase activity of MsParA. Co-expression of these two proteins could counteract the growth defect phenotypes observed in strains overexpressing MsTAG alone in response to DNA damage induction. Based on protein co-expression and fluorescent co-localization assays, MsParA and MsTAG were further found to co-localize in mycobacterial cells. In addition, the interaction between the DNA glycosylase and ParA, and the regulation of ParA by the glycosylase were conserved in M. tuberculosis and M. smegmatis. Our findings provide important new insights into the regulatory mechanism of cell growth and division in mycobacteria.
Collapse
|
35
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
36
|
Donovan C, Sieger B, Krämer R, Bramkamp M. A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 2012; 84:105-16. [DOI: 10.1111/j.1365-2958.2012.08011.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Overproduction and localization of Mycobacterium tuberculosis ParA and ParB proteins. Tuberculosis (Edinb) 2011; 89 Suppl 1:S65-9. [PMID: 20006309 DOI: 10.1016/s1472-9792(09)70015-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ParA and ParB family proteins are required for accurate partitioning of replicated chromosomes. The Mycobacterium tuberculosis genome contains parB, parA and two parA homologs, Rv1708 and Rv3213c. It is unknown if parA and its homologs are functionally related. To understand the roles of ParA and ParB proteins in M. tuberculosis cell cycle, we have evaluated the consequences of their overproduction and visualized their localization patterns in M. smegmatis. We show that cells overproducing ParA, Rv1708 and Rv3213c and ParB are filamentous and multinucleoidal indicating defects in cell-cycle progression. Visualization of green-fluorescent protein fusions of ParA and its homologues showed similar localization patterns with foci at poles, quarter-cell, midcell positions and spiral-like structures indicating that they are functionally related. On the other hand, the ParB- GFP fusion protein localized only to the cell poles. The cyan- and yellow-fluorescent fusion proteins of ParA and ParB, respectively, colocalized at the cell poles indicating that these proteins interact and possibly associate with the chromosomal origin of replication. Collectively our results suggest that the M. tuberculosis Par proteins play important roles in cell-cycle progression.
Collapse
|
38
|
Mierzejewska J, Jagura-Burdzy G. Prokaryotic ParA-ParB-parS system links bacterial chromosome segregation with the cell cycle. Plasmid 2011; 67:1-14. [PMID: 21924286 DOI: 10.1016/j.plasmid.2011.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/17/2022]
Abstract
While the essential role of episomal par loci in plasmid DNA partitioning has long been appreciated, the function of chromosomally encoded par loci is less clear. The chromosomal parA-parB genes are conserved throughout the bacterial kingdom and encode proteins homologous to those of the plasmidic Type I active partitioning systems. The third conserved element, the centromere-like sequence called parS, occurs in several copies in the chromosome. Recent studies show that the ParA-ParB-parS system is a key player of a mitosis-like process ensuring proper intracellular localization of certain chromosomal regions such as oriC domain and their active and directed segregation. Moreover, the chromosomal par systems link chromosome segregation with initiation of DNA replication and the cell cycle.
Collapse
Affiliation(s)
- Jolanta Mierzejewska
- The Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | | |
Collapse
|
39
|
The evidence of large-scale DNA-induced compaction in the mycobacterial chromosomal ParB. J Mol Biol 2011; 413:901-7. [PMID: 21839743 DOI: 10.1016/j.jmb.2011.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/21/2022]
Abstract
The bacterial chromosome trafficking apparatus or the segrosome participates in the mitotic-like segregation of the chromosomes prior to cell division in several bacteria. ParB, which is the parS DNA-binding component of the segrosome, polymerizes on the parS-adjacent chromosome to form a nucleoprotein filament of unknown nature for the segregation function. We combined static light scattering, circular dichroism and small-angle X-ray scattering to present evidence that the apo form of the mycobacterial ParB forms an elongated dimer with intrinsically disordered regions as well as folded domains in solution. A comparison of the solution scattering of the apo and the parS-bound ParBs indicates a rather drastic compaction of the protein upon DNA binding. We propose that this binding-induced conformational transition is priming the ParB for polymerization on the DNA template.
Collapse
|
40
|
Chaudhuri BN, Gupta S, Urban VS, Chance MR, D'Mello R, Smith L, Lyons K, Gee J. A combined global and local approach to elucidate spatial organization of the Mycobacterial ParB-parS partition assembly. Biochemistry 2011; 50:1799-807. [PMID: 21142182 PMCID: PMC3081668 DOI: 10.1021/bi1016759] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.
Collapse
|
41
|
Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol 2011; 193:1504-14. [PMID: 21257772 DOI: 10.1128/jb.01067-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae carries homologs of plasmid-borne parA and parB genes on both of its chromosomes. The par genes help to segregate many plasmids and chromosomes. Here we have studied the par genes of V. cholerae chromosome I. Earlier studies suggested that ParBI binds to the centromeric site parSI near the origin of replication (oriI), and parSI-ParBI complexes are placed at the cell poles by ParAI. Deletion of parAI and parSI caused the origin-proximal DNA to be less polar. Here we found that deletion of parBI also resulted in a less polar localization of oriI. However, unlike the deletion of parAI, the deletion of parBI increased the oriI number. Replication was normal when both parAI and parBI were deleted, suggesting that ParBI mediates its action through ParAI. Overexpression of ParAI in a parABI-deleted strain also increased the DNA content. The results are similar to those found for Bacillus subtilis, where ParA (Soj) stimulates replication and this activity is repressed by ParB (SpoOJ). As in B. subtilis, the stimulation of replication most likely involves the replication initiator DnaA. Our results indicate that control of chromosomal DNA replication is an additional function of chromosomal par genes conserved across the Gram-positive/Gram-negative divide.
Collapse
|
42
|
Flärdh K. Cell polarity and the control of apical growth in Streptomyces. Curr Opin Microbiol 2010; 13:758-65. [DOI: 10.1016/j.mib.2010.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 01/10/2023]
|
43
|
Nisa S, Blokpoel MCJ, Robertson BD, Tyndall JDA, Lun S, Bishai WR, O'Toole R. Targeting the chromosome partitioning protein ParA in tuberculosis drug discovery. J Antimicrob Chemother 2010; 65:2347-58. [PMID: 20810423 PMCID: PMC2980951 DOI: 10.1093/jac/dkq311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/07/2010] [Accepted: 07/19/2010] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To identify inhibitors of the essential chromosome partitioning protein ParA that are active against Mycobacterium tuberculosis. METHODS Antisense expression of the parA orthologue MSMEG_6939 was induced on the Mycobacterium smegmatis background. Screening of synthetic chemical libraries was performed to identify compounds with higher anti-mycobacterial activity in the presence of parA antisense. Differentially active compounds were validated for specific inhibition of purified ParA protein from M. tuberculosis (Rv3918c). ParA inhibitors were then characterized for their activity towards M. tuberculosis in vitro. RESULTS Under a number of culture conditions, parA antisense expression in M. smegmatis resulted in reduced growth. This effect on growth provided a basis for the detection of compounds that increased susceptibility to expression of parA antisense. Two compounds identified from library screening, phenoxybenzamine and octoclothepin, also inhibited the in vitro ATPase activity of ParA from M. tuberculosis. Structural in silico analyses predict that phenoxybenzamine and octoclothepin undergo interactions compatible with the active site of ParA. Octoclothepin exhibited significant bacteriostatic activity towards M. tuberculosis. CONCLUSIONS Our data support the use of whole-cell differential antisense screens for the discovery of inhibitors of specific anti-tubercular drug targets. Using this approach, we have identified an inhibitor of purified ParA and whole cells of M. tuberculosis.
Collapse
Affiliation(s)
- Shahista Nisa
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Marian C. J. Blokpoel
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Imperial College London, London, UK
| | - Brian D. Robertson
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Imperial College London, London, UK
| | | | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronan O'Toole
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
44
|
Abstract
Bacterial chromosomes are generally approximately 1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segregation of daughter chromosomes and anchoring of DNA to the cell envelope. Active segregation by a mitotic machinery appears to be common; however, the mode of chromosome segregation varies significantly from species to species.
Collapse
Affiliation(s)
- Esteban Toro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
45
|
Abstract
Mycobacterium tuberculosis causes more deaths in humans than any other bacterial pathogen. The most recent data from the World Health Organization reveal that over 9million new cases of tuberculosis occur each year and that the incidence appears to be increasing with population growth. Despite the global burden of tuberculosis, we are still reliant on relatively dated measures to prevent, diagnose, and treat the disease. New, more effective tools are needed to diminish the incidence of tuberculosis. M. tuberculosis lacks a natural host beyond humans and, hence, surrogate models have been employed in the study of the pathogen. The discovery and development of new vaccines, diagnostics, or antitubercular drugs are dependent upon the validity of any experimental model used and its relevance to tuberculosis in humans. In this review, a range of experimental models, from in vitro studies with fast-growing low-pathogenic species of mycobacteria to the infection of nonhuman primates with virulent M. tuberculosis, will be discussed.
Collapse
Affiliation(s)
- Ronan O'Toole
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
46
|
Jang HJ, Nde C, Toghrol F, Bentley WE. Microarray analysis of Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:9465-9472. [PMID: 19924887 DOI: 10.1021/es902255q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mycobacterium bovis BCG strain Pasteur 1173P2 responds with adaptive and protective strategies against oxidative stress. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure. This study was therefore carried out to investigate the genome-wide response of M. bovis BCG to hydrogen peroxide after 10 and 60 min of treatment. ATP measurements were carried out in order to monitor the changes in M. bovis BCG growth over a 1 h period. The furA gene in Mycobacterium bovis, a pleiotropic regulator that couples iron metabolism to the oxidative stress response was involved in the response to hydrogen peroxide stress. There were also increased levels of catalase/ peroxidase (KatG) and the biosynthesis operon of mycobactin. This study revealed significant upregulation of the oxidative response group of M. bovis, amino acid transport and metabolism, defense mechanisms, DNA replication, recombination and repair, and downregulation of cell cycle control, mitosis, and meiosis, lipid transport and metabolism, and cell wall/membrane biogenesis. This study shows that the treatment of M. bovis BCG with hydrogen peroxide induces iron acquisition related genes and oxidative stress response genes within one hour of treatment.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- Department of Biochemistry, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Xu Q, Traag BA, Willemse J, McMullan D, Miller MD, Elsliger MA, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Chruszcz M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Minor W, Mommaas AM, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Wang S, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA, van Wezel GP. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. J Biol Chem 2009; 284:25268-79. [PMID: 19567872 DOI: 10.1074/jbc.m109.018564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. MICROBIOLOGY-SGM 2009; 155:1080-1092. [PMID: 19332810 PMCID: PMC2895232 DOI: 10.1099/mic.0.024661-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa.
Collapse
Affiliation(s)
- A A Bartosik
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | - J Mierzejewska
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | - C M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - G Jagura-Burdzy
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| |
Collapse
|
49
|
Murray H, Errington J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 2008; 135:74-84. [PMID: 18854156 DOI: 10.1016/j.cell.2008.07.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/25/2008] [Accepted: 07/31/2008] [Indexed: 11/15/2022]
Abstract
Regulation of DNA replication and segregation is essential for all cells. Orthologs of the plasmid partitioning genes parA, parB, and parS are present in bacterial genomes throughout the prokaryotic evolutionary tree and are required for accurate chromosome segregation. However, the mechanism(s) by which parABS genes ensure proper DNA segregation have remained unclear. Here we report that the ParA ortholog in B. subtilis (Soj) controls the activity of the DNA replication initiator protein DnaA. Subcellular localization of several Soj mutants indicates that Soj acts as a spatially regulated molecular switch, capable of either inhibiting or activating DnaA. We show that the classical effect of Soj inhibiting sporulation is an indirect consequence of its action on DnaA through activation of the Sda DNA replication checkpoint. These results suggest that the pleiotropy manifested by chromosomal parABS mutations could be the indirect effects of a primary activity regulating DNA replication initiation.
Collapse
Affiliation(s)
- Heath Murray
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|