1
|
Abdallah ESH, Metwally WGM, Abdel-Rahman MAM, Albano M, Mahmoud MM. Streptococcus agalactiae Infection in Nile Tilapia ( Oreochromis niloticus): A Review. BIOLOGY 2024; 13:914. [PMID: 39596869 PMCID: PMC11591708 DOI: 10.3390/biology13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Streptococcus agalactiae (Group B Lancefield) has emerged as a significant pathogen affecting both humans and animals, including aquatic species. Infections caused by S. agalactiae are becoming a growing concern in aquaculture and have been reported globally in various freshwater and marine fish species, particularly those inhabiting warm water environments. This has led to numerous outbreaks with high morbidity and mortality in fish. Nile tilapia (Oreochromis niloticus), a member of the Cichlid family, is one of the severely affected fish species by S. agalactiae. The current study aims to focus on S. agalactiae infection in cultured O. niloticus with reference to its transmission and sources of infection; risk factors influencing GBS infection, disease clinical signs, lesions, and pathogenesis; S. agalactiae virulence factors; and how to diagnose, treat, control, and prevent infection including vaccination and herbal extract medication.
Collapse
Affiliation(s)
- Ebtsam Sayed Hassan Abdallah
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71529, Egypt; (E.S.H.A.); (M.M.M.)
| | | | | | - Marco Albano
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell’Annunziata, 98168 Messina, Italy
| | - Mahmoud Mostafa Mahmoud
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71529, Egypt; (E.S.H.A.); (M.M.M.)
| |
Collapse
|
2
|
Guérin H, Kulakauskas S, Chapot-Chartier MP. Structural variations and roles of rhamnose-rich cell wall polysaccharides in Gram-positive bacteria. J Biol Chem 2022; 298:102488. [PMID: 36113580 PMCID: PMC9574508 DOI: 10.1016/j.jbc.2022.102488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria—including streptococci, enterococci, and lactococci—of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.
Collapse
Affiliation(s)
- Hugo Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | |
Collapse
|
3
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
4
|
Vogel U, Beerens K, Desmet T. Nucleotide sugar dehydratases: Structure, mechanism, substrate specificity, and application potential. J Biol Chem 2022; 298:101809. [PMID: 35271853 PMCID: PMC8987622 DOI: 10.1016/j.jbc.2022.101809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.
Collapse
Affiliation(s)
- Ulrike Vogel
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| |
Collapse
|
5
|
Lavelle K, Sinderen DV, Mahony J. Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors. Comput Struct Biotechnol J 2021; 19:4018-4031. [PMID: 34377367 PMCID: PMC8327497 DOI: 10.1016/j.csbj.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacterial cell walls are characterised by the presence of a thick peptidoglycan layer which provides protection from extracellular stresses, maintains cell integrity and determines cell morphology, while it also serves as a foundation to anchor a number of crucial polymeric structures. For ovococcal species, including streptococci, enterococci and lactococci, such structures are represented by rhamnose-containing cell wall polysaccharides, which at least in some instances appear to serve as a functional replacement for wall teichoic acids. The biochemical composition of several streptococcal, lactococcal and enterococcal rhamnose-containing cell wall polysaccharides have been elucidated, while associated functional genomic analyses have facilitated the proposition of models for individual biosynthetic pathways. Here, we review the genomic loci which encode the enzymatic machinery to produce rhamnose-containing, cell wall-associated polysaccharide (Rha cwps) structures of the afore-mentioned ovococcal bacteria with particular emphasis on gene content, biochemical structure and common biosynthetic steps. Furthermore, we discuss the role played by these saccharidic polymers as receptors for bacteriophages and the important role phages play in driving Rha cwps diversification and evolution.
Collapse
Affiliation(s)
- Katherine Lavelle
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
Silvestre I, Nunes A, Borges V, Isidro J, Silva C, Vieira L, Gomes JP, Borrego MJ. Genomic insights on DNase production in Streptococcus agalactiae ST17 and ST19 strains. INFECTION GENETICS AND EVOLUTION 2021; 93:104969. [PMID: 34147652 DOI: 10.1016/j.meegid.2021.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus agalactiae evasion from the human defense mechanisms has been linked to the production of DNases. These were proposed to contribute to the hypervirulence of S. agalactiae ST17/capsular-type III strains, mostly associated with neonatal meningitis. We performed a comparative genomic analysis between ST17 and ST19 human strains with different cell tropism and distinct DNase production phenotypes. All S. agalactiae ST17 strains, with the exception of 2211-04, were found to display DNase activity, while the opposite scenario was observed for ST19, where 1203-05 was the only DNase(+) strain. The analysis of the genetic variability of the seven genes putatively encoding secreted DNases in S. agalactiae revealed an exclusive amino acid change in the predicted signal peptide of GBS0661 (NucA) of the ST17 DNase(-), and an exclusive amino acid change alteration in GBS0609 of the ST19 DNase(+) strain. Further core-genome analysis identified some specificities (SNVs or indels) differentiating the DNase(-) ST17 2211-04 and the DNase(+) ST19 1203-05 from the remaining strains of each ST. The pan-genomic analysis evidenced an intact phage without homology in S. agalactiae and a transposon homologous to TnGBS2.3 in ST17 DNase(-) 2211-04; the transposon was also found in one ST17 DNase(+) strain, yet with a different site of insertion. A group of nine accessory genes were identified among all ST17 DNase(+) strains, including the Eco47II family restriction endonuclease and the C-5 cytosine-specific DNA methylase. None of these loci was found in any DNase(-) strain, which may suggest that these proteins might contribute to the lack of DNase activity. In summary, we provide novel insights on the genetic diversity between DNase(+) and DNase(-) strains, and identified genetic traits, namely specific mutations affecting predicted DNases (NucA and GBS0609) and differences in the accessory genome, that need further investigation as they may justify distinct DNase-related virulence phenotypes in S. agalactiae.
Collapse
Affiliation(s)
- Inês Silvestre
- Department of Life Sciences, UCIBIO, Nova School of Science and Technology, 2829-516 Caparica, Portugal; National Reference Laboratory for Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; CBIOS - Research Center for Biosciences & Health Technologies, Lusófona University of Humanities and Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Maria José Borrego
- National Reference Laboratory for Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
7
|
Research Advances on Tilapia Streptococcosis. Pathogens 2021; 10:pathogens10050558. [PMID: 34066313 PMCID: PMC8148123 DOI: 10.3390/pathogens10050558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus agalactiae, often referred to as group B streptococci (GBS), is a severe pathogen that can infect humans as well as other animals, including tilapia, which is extremely popular in commercial aquaculture. This pathogen causes enormous pecuniary loss, and typical symptoms of streptococcosis—the disease caused by S. agalactiae—include abnormal behavior, exophthalmos, and meningitis, among others. Multiple studies have examined virulence factors associated with S. agalactiae infection, and vaccines were explored, including studies of subunit vaccines. Known virulence factors include capsular polysaccharide (CPS), hemolysin, Christie-Atkins-Munch-Peterson (CAMP) factor, hyaluronidase (HAase), superoxide dismutase (SOD), and serine-threonine protein kinase (STPK), and effective vaccine antigens reported to date include GapA, Sip, OCT, PGK, FbsA, and EF-Tu. In this review, I summarize findings from several studies about the etiology, pathology, virulence factors, and vaccine prospects for S. agalactiae. I end by considering which research areas are likely to yield success in the prevention and treatment of tilapia streptococcosis.
Collapse
|
8
|
Zorzoli A, Meyer BH, Adair E, Torgov VI, Veselovsky VV, Danilov LL, Uhrin D, Dorfmueller HC. Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase. J Biol Chem 2019; 294:15237-15256. [PMID: 31506299 PMCID: PMC6802508 DOI: 10.1074/jbc.ra119.009894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-β-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-β-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.
Collapse
Affiliation(s)
- Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elaine Adair
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Vladimir I Torgov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir V Veselovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Leonid L Danilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dusan Uhrin
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
9
|
Theodorou I, Courtin P, Palussière S, Kulakauskas S, Bidnenko E, Péchoux C, Fenaille F, Penno C, Mahony J, van Sinderen D, Chapot-Chartier MP. A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. J Biol Chem 2019; 294:17612-17625. [PMID: 31582566 DOI: 10.1074/jbc.ra119.009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
In Lactococcus lactis, cell-wall polysaccharides (CWPSs) act as receptors for many bacteriophages, and their structural diversity among strains explains, at least partially, the narrow host range of these viral predators. Previous studies have reported that lactococcal CWPS consists of two distinct components, a variable chain exposed at the bacterial surface, named polysaccharide pellicle (PSP), and a more conserved rhamnan chain anchored to, and embedded inside, peptidoglycan. These two chains appear to be covalently linked to form a large heteropolysaccharide. The molecular machinery for biosynthesis of both components is encoded by a large gene cluster, named cwps In this study, using a CRISPR/Cas-based method, we performed a mutational analysis of the cwps genes. MALDI-TOF MS-based structural analysis of the mutant CWPS combined with sequence homology, transmission EM, and phage sensitivity analyses enabled us to infer a role for each protein encoded by the cwps cluster. We propose a comprehensive CWPS biosynthesis scheme in which the rhamnan and PSP chains are independently synthesized from two distinct lipid-sugar precursors and are joined at the extracellular side of the cytoplasmic membrane by a mechanism involving a membrane-embedded glycosyltransferase with a GT-C fold. The proposed scheme encompasses a system that allows extracytoplasmic modification of rhamnan by complex substituting oligo-/polysaccharides. It accounts for the extensive diversity of CWPS structures observed among lactococci and may also have relevance to the biosynthesis of complex rhamnose-containing CWPSs in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Ilias Theodorou
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Pascal Courtin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Simon Palussière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Christine Péchoux
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative (GABI), Plate-forme MIMA2, 78350 Jouy-en-Josas, France
| | - François Fenaille
- CEA, Institut Joliot, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Christophe Penno
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | | |
Collapse
|
10
|
van der Beek SL, Zorzoli A, Çanak E, Chapman RN, Lucas K, Meyer BH, Evangelopoulos D, de Carvalho LPS, Boons GJ, Dorfmueller HC, van Sorge NM. Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification. Mol Microbiol 2019; 111:951-964. [PMID: 30600561 PMCID: PMC6487966 DOI: 10.1111/mmi.14197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
Biosynthesis of the nucleotide sugar precursor dTDP‐L‐rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP‐L‐rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP‐L‐rhamnose biosynthesis through their action as dTDP‐glucose‐4,6‐dehydratase and dTDP‐4‐keto‐6‐deoxyglucose‐3,5‐epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio‐layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP‐rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose‐dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP‐L‐rhamnose formation in a concentration‐dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP‐L‐rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP‐rhamnose biosynthesis in pathogenic bacteria.
Collapse
Affiliation(s)
- Samantha L van der Beek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Ebru Çanak
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Robert N Chapman
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA
| | - Kieron Lucas
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Dimitrios Evangelopoulos
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Geert-Jan Boons
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA.,Department of Medical Chemistry and Chemical Biology, Utrecht Institute Pharmaceutical Science, University Utrecht, Utrecht, 3508 TB, The Netherlands
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
11
|
Xu J, Xie YD, Liu L, Guo S, Su YL, Li AX. Virulence regulation of cel-EIIB protein mediated PTS system in Streptococcus agalactiae in Nile tilapia. JOURNAL OF FISH DISEASES 2019; 42:11-19. [PMID: 30374993 DOI: 10.1111/jfd.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus agalactiae is a major pathogen of tilapia causing significant economic losses for the global aquatic industry yearly. To elucidate the role of cel-EIIB protein-mediated phosphotransferase systems (PTS) in the virulence regulation of S. agalactiae, cel-EIIB gene deletion in a virulent strain THN0901 was achieved by homologous recombination. The cellobiose utilization of △cel-EIIB strain was significantly decreased relative to S.a.THN0901 strain incubating in LB with 10 mg/ml cellobiose (p < 0.05). The biofilm formation ability of △cel-EIIB strain was also significantly decreased when cultured in BHI medium (p < 0.05). Under a lower infection dose, the accumulative mortality of tilapia caused by △cel-EIIB strain was dramatically decreased (20%), of which S.a.THN0901 strain and △cel-EIIB::i strain were 53.33% and 50%, respectively. The competition experience using tilapia model indicated the invasion and colonization ability of △cel-EIIB strain was significantly weaker than that of S.a.THN0901 strain (p < 0.05). Compared to △cel-EIIB::i strain, the mRNA expression of csrS, csrR, rgfA, rgfC, bgrR and bgrS was significantly downregulated in △cel-EIIB strain (p < 0.05). In conclusion, cel-EIIB protein-mediated cel-PTS not only contributes to biofilm formation and virulence regulation, but also plays an important role in the invasion and colonization of S. agalactiae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yun-Dan Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Ling Liu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Song Guo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - You-Lu Su
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Périchon B, Szili N, du Merle L, Rosinski-Chupin I, Gominet M, Bellais S, Poyart C, Trieu-Cuot P, Dramsi S. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110. PLoS One 2017; 12:e0169840. [PMID: 28107386 PMCID: PMC5249243 DOI: 10.1371/journal.pone.0169840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) “hypervirulent” ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5’ promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect. Collectively, our results indicate that PI-2b expression is regulated in GBS ST17 strains, which may confer a selective advantage in the human host either by reducing host immune responses and/or increasing their dissemination potential.
Collapse
Affiliation(s)
- Bruno Périchon
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Noémi Szili
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Laurence du Merle
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | | | - Myriam Gominet
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Samuel Bellais
- Équipe Barrières et Pathogènes, Institut Cochin, Inserm 1016, CNRS UMR, Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre-Site Cochin, France
| | - Claire Poyart
- Équipe Barrières et Pathogènes, Institut Cochin, Inserm 1016, CNRS UMR, Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre-Site Cochin, France
- CNR Streptocoques, Hôpitaux Universitaires Paris Centre, site Cochin, AP-HP
- DHU Risques et Grossesse, AP-HP, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) ERL3526, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Mistou MY, Sutcliffe IC, van Sorge NM. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:464-79. [PMID: 26975195 PMCID: PMC4931226 DOI: 10.1093/femsre/fuw006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Michel-Yves Mistou
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France
| | - Iain C Sutcliffe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
14
|
van der Beek SL, Le Breton Y, Ferenbach AT, Chapman RN, van Aalten DMF, Navratilova I, Boons GJ, McIver KS, van Sorge NM, Dorfmueller HC. GacA is essential for Group A Streptococcus and defines a new class of monomeric dTDP-4-dehydrorhamnose reductases (RmlD). Mol Microbiol 2015; 98:946-62. [PMID: 26278404 PMCID: PMC4832382 DOI: 10.1111/mmi.13169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 12/29/2022]
Abstract
The sugar nucleotide dTDP‐L‐rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four‐step dTDP‐L‐rhamnose biosynthesis pathway is catalyzed by dTDP‐4‐dehydrorhamnose reductases (RmlD). RmlD from the Gram‐negative bacterium Salmonella is the only structurally characterized family member and requires metal‐dependent homo‐dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram‐negative and Gram‐positive RmlD homologues predicts that enzymes from all Gram‐positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn‐sequencing and generation of a conditional‐expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram‐positive bacteria and a subset of Gram‐negative bacteria. These results will help future screens for novel inhibitors of dTDP‐L‐rhamnose biosynthesis.
Collapse
Affiliation(s)
- Samantha L van der Beek
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, 3124 Biosciences Research Building, College Park, MD 20742, USA
| | - Andrew T Ferenbach
- Division of Molecular Microbiology, University of Dundee, School of Life Sciences, Dow Street, DD1 5EH, Dundee, UK
| | - Robert N Chapman
- Complex Carbohydrate Research Center, Department of Chemistry, The University of Georgia, 315 Riverbend Road, Athens, USA
| | - Daan M F van Aalten
- Division of Molecular Microbiology, University of Dundee, School of Life Sciences, Dow Street, DD1 5EH, Dundee, UK
| | - Iva Navratilova
- Division of Biological Chemistry and Drug Discovery, University of Dundee, School of Life Sciences, Dow Street, DD1 5EH, Dundee, UK
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, Department of Chemistry, The University of Georgia, 315 Riverbend Road, Athens, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, 3124 Biosciences Research Building, College Park, MD 20742, USA
| | - Nina M van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, University of Dundee, School of Life Sciences, Dow Street, DD1 5EH, Dundee, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, OX11 0FA, Didcot, UK
| |
Collapse
|
15
|
Morello E, Mallet A, Konto-Ghiorghi Y, Chaze T, Mistou MY, Oliva G, Oliveira L, Di Guilmi AM, Trieu-Cuot P, Dramsi S. Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316. PLoS One 2015; 10:e0138103. [PMID: 26407005 PMCID: PMC4583379 DOI: 10.1371/journal.pone.0138103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host.
Collapse
Affiliation(s)
- Eric Morello
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Adeline Mallet
- Institut Pasteur, Imagopole, Ultrastructural Microscopy Platform, Paris, France
| | - Yoan Konto-Ghiorghi
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Thibault Chaze
- Institut Pasteur, Spectrométrie de Masse Structurale et Protéomique, Paris, France
- INRA UMR 1319, MICALIS, Jouy-en-Josas, France
| | | | - Giulia Oliva
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Liliana Oliveira
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Anne-Marie Di Guilmi
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
- * E-mail:
| |
Collapse
|
16
|
van Sorge NM, Cole JN, Kuipers K, Henningham A, Aziz RK, Kasirer-Friede A, Lin L, Berends ETM, Davies MR, Dougan G, Zhang F, Dahesh S, Shaw L, Gin J, Cunningham M, Merriman JA, Hütter J, Lepenies B, Rooijakkers SHM, Malley R, Walker MJ, Shattil SJ, Schlievert PM, Choudhury B, Nizet V. The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 2015; 15:729-740. [PMID: 24922575 DOI: 10.1016/j.chom.2014.05.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
Abstract
Group A Streptococcus (GAS) is a leading cause of infection-related mortality in humans. All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has been attributed to this conserved antigen. Here we identify and characterize the GAC biosynthesis genes, gacA through gacL. An isogenic mutant of the glycosyltransferase gacI, which is defective for GlcNAc side-chain addition, is attenuated for virulence in two infection models, in association with increased sensitivity to neutrophil killing, platelet-derived antimicrobials in serum, and the cathelicidin antimicrobial peptide LL-37. Antibodies to GAC lacking the GlcNAc side chain and containing only polyrhamnose promoted opsonophagocytic killing of multiple GAS serotypes and protected against systemic GAS challenge after passive immunization. Thus, the Lancefield antigen plays a functional role in GAS pathogenesis, and a deeper understanding of this unique polysaccharide has implications for vaccine development.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ramy K Aziz
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University,11562 Cairo, Egypt
| | - Ana Kasirer-Friede
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Leo Lin
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Mark R Davies
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia.,The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, CB10 1SA,United Kingdom
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, CB10 1SA,United Kingdom
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura Shaw
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeleine Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joseph A Merriman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Hütter
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia
| | - Sanford J Shattil
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick M Schlievert
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence. Vet Microbiol 2014; 170:135-43. [PMID: 24594355 DOI: 10.1016/j.vetmic.2014.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 11/22/2022]
Abstract
Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new diagnostic markers and help to understand the pathogenesis of S. agalactiae.
Collapse
|
18
|
Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog 2012; 8:e1002891. [PMID: 22969424 PMCID: PMC3435245 DOI: 10.1371/journal.ppat.1002891] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.
Collapse
Affiliation(s)
- Ron Saar-Dover
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Ravit Nezer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Eyal Shimoni
- Electron Microscopy Unit, The Weizmann Institute of Science, Rehovot, Israel
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
19
|
Caliot É, Dramsi S, Chapot-Chartier MP, Courtin P, Kulakauskas S, Péchoux C, Trieu-Cuot P, Mistou MY. Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis. PLoS Pathog 2012; 8:e1002756. [PMID: 22719253 PMCID: PMC3375309 DOI: 10.1371/journal.ppat.1002756] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.
Collapse
Affiliation(s)
- Élise Caliot
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu G. Gnom(Cmp): a quantitative approach for comparative analysis of closely related genomes of bacterial pathogens. Genome 2011; 54:402-18. [PMID: 21539441 DOI: 10.1139/g11-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative genome analysis is a powerful approach to understanding the biology of infectious bacterial pathogens. In this study, a quantitative approach, referred to as Gnom(Cmp), was developed to study the microevolution of bacterial pathogens. Although much more time-consuming than existing tools, this procedure provides a much higher resolution. Gnom(Cmp) accomplishes this by establishing genome-wide heterogeneity genotypes, which are then quantified and comparatively analyzed. The heterogeneity genotypes are defined as chromosomal base positions that have multiple variants within particular genomes, resulted from DNA duplications and subsequent mutations. To prove the concept, the procedure was applied on the genomes of 15 Staphylococcus aureus strains, focusing extensively on two pairs of hVISA/VISA strains. hVISA refers to heteroresistant vancomycin-intermediate S. aureus strains and VISA is their VISA mutants. hVISA/VISA displays some remarkable properties. hVISA is susceptible to vancomycin, but VISA mutants emerge soon after a short period of vancomycin therapy, therefore making the pathogen a great model organism for fast-evolving bacterial pathogens. The analysis indicated that Gnom(Cmp) could reveal variants within the genomes, which can be analyzed within the global genome context. Gnom(Cmp) discovered evolutionary hotspots and their dynamics among many closely related, even isogenic genomes. The analysis thus allows the exploration of the molecular mechanisms behind hVISA/VISA evolution, providing a working hypotheses for experimental testing and validation.
Collapse
Affiliation(s)
- GongXin Yu
- Department of Biological Science, Department of Computer Science, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
21
|
Lin FPY, Lan R, Sintchenko V, Gilbert GL, Kong F, Coiera E. Computational bacterial genome-wide analysis of phylogenetic profiles reveals potential virulence genes of Streptococcus agalactiae. PLoS One 2011; 6:e17964. [PMID: 21483735 PMCID: PMC3070697 DOI: 10.1371/journal.pone.0017964] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/21/2011] [Indexed: 12/30/2022] Open
Abstract
The phylogenetic profile of a gene is a reflection of its evolutionary history
and can be defined as the differential presence or absence of a gene in a set of
reference genomes. It has been employed to facilitate the prediction of gene
functions. However, the hypothesis that the application of this concept can also
facilitate the discovery of bacterial virulence factors has not been fully
examined. In this paper, we test this hypothesis and report a computational
pipeline designed to identify previously unknown bacterial virulence genes using
group B streptococcus (GBS) as an example. Phylogenetic profiles of all GBS
genes across 467 bacterial reference genomes were determined by
candidate-against-all BLAST searches,which were then used to identify candidate
virulence genes by machine learning models. Evaluation experiments with known
GBS virulence genes suggested good functional and model consistency in
cross-validation analyses (areas under ROC curve, 0.80 and 0.98 respectively).
Inspection of the top-10 genes in each of the 15 virulence functional groups
revealed at least 15 (of 119) homologous genes implicated in virulence in other
human pathogens but previously unrecognized as potential virulence genes in GBS.
Among these highly-ranked genes, many encode hypothetical proteins with possible
roles in GBS virulence. Thus, our approach has led to the identification of a
set of genes potentially affecting the virulence potential of GBS, which are
potential candidates for further in vitro and in
vivo investigations. This computational pipeline can also be
extended to in silico analysis of virulence determinants of
other bacterial pathogens.
Collapse
Affiliation(s)
- Frank Po-Yen Lin
- Centre for Health Informatics, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Yang Q, Zhang M, Harrington DJ, Black GW, Sutcliffe IC. A proteomic investigation of Streptococcus agalactiae grown under conditions associated with neonatal exposure reveals the upregulation of the putative virulence factor C protein β antigen. Int J Med Microbiol 2010; 300:331-7. [DOI: 10.1016/j.ijmm.2010.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/30/2009] [Accepted: 01/06/2010] [Indexed: 12/14/2022] Open
|
23
|
Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou MY, Trieu-Cuot P, Furlan S, Bidnenko E, Courtin P, Péchoux C, Hols P, Dufrêne YF, Kulakauskas S. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 2010; 285:10464-71. [PMID: 20106971 DOI: 10.1074/jbc.m109.082958] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Gram-positive bacteria, the functional role of surface polysaccharides (PS) that are not of capsular nature remains poorly understood. Here, we report the presence of a novel cell wall PS pellicle on the surface of Lactococcus lactis. Spontaneous PS-negative mutants were selected using semi-liquid growth conditions, and all mutations were mapped in a single chromosomal locus coding for PS biosynthesis. PS molecules were shown to be composed of hexasaccharide phosphate repeating units that are distinct from other bacterial PS. Using complementary atomic force and transmission electron microscopy techniques, we showed that the PS layer forms an outer pellicle surrounding the cell. Notably, we found that this cell wall layer confers a protective barrier against host phagocytosis by murine macrophages. Altogether, our results suggest that the PS pellicle could represent a new cell envelope structural component of Gram-positive bacteria.
Collapse
|
24
|
Xia G, Kohler T, Peschel A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 2009; 300:148-54. [PMID: 19896895 DOI: 10.1016/j.ijmm.2009.10.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococci and most other Gram-positive bacteria incorporate complex teichoic acid (TA) polymers into their cell envelopes. Several crucial roles in Staphylococcus aureus fitness and cell wall maintenance have been assigned to these polymers, which are either covalently linked to peptidoglycan (wall teichoic acid, WTA) or to the cytoplasmic membrane (lipoteichoic acid, LTA). However, the exact TA structures, functions, and biosynthetic pathways are only superficially understood. Recently, most of the enzymes mediating TA biosynthesis have been identified and mutants lacking or with defined changes in WTA or LTA have become available. Their characterization has revealed crucial roles of TAs in protection against harmful molecules and environmental stresses; in control of enzymes directing cell division or morphogenesis and of cation homeostasis; and in interaction with host or bacteriophage receptors and biomaterials. Accordingly, several in vivo studies have demonstrated the importance of WTA and LTA in S. aureus colonization, infection, and immune evasion. TAs and enzymes required for TA biosynthesis represent attractive candidates for novel vaccines and antibiotics and are targeted by recently developed antibacterial therapeutics.
Collapse
Affiliation(s)
- Guoqing Xia
- Division of Cellular and Molecular Microbiology, Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
25
|
Bray BA, Sutcliffe IC, Harrington DJ. Impact of lgt mutation on lipoprotein biosynthesis and in vitro phenotypes of Streptococcus agalactiae. MICROBIOLOGY-SGM 2009; 155:1451-1458. [PMID: 19383708 DOI: 10.1099/mic.0.025213-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although Streptococcus agalactiae, the group B Streptococcus, is a leading cause of invasive neonatal disease worldwide the molecular basis of its virulence is still poorly understood. To investigate the role of lipoproteins in the physiology and interaction of this pathogen with host cells, we generated a mutant S. agalactiae strain (A909DeltaLgt) deficient in the Lgt enzyme and thus unable to lipidate lipoprotein precursors (pro-lipoproteins). The loss of pro-lipoprotein lipidation did not affect the viability of S. agalactiae or its growth in several different media, including cation-depleted media. The processing of two well-characterized lipoproteins, but not a non-lipoprotein, was clearly shown to be aberrant in A909DeltaLgt. The mutant strain was shown to be more sensitive to oxidative stress in vitro although the molecular basis of this increased sensitivity was not apparent. The inactivation of Lgt also resulted in changes to the bacterial cell envelope, as demonstrated by reduced retention of both the group B carbohydrate and the polysaccharide capsule and a statistically significant reduction (P=0.0079) in A909DeltaLgt adherence to human endothelial cells of fetal origin. These data confirm that failure to process lipoproteins correctly has pleiotropic effects that may be of significance to S. agalactiae colonization and pathogenesis.
Collapse
|