1
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Wang Q, Wei Y, Huang Y, Qin J, Liu B, Liu R, Chen X, Li D, Wang Q, Li X, Yang X, Li Y, Sun H. Z3495, a LysR-Type Transcriptional Regulator Encoded in O Island 97, Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli O157:H7. Microorganisms 2024; 12:140. [PMID: 38257967 PMCID: PMC10819331 DOI: 10.3390/microorganisms12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. The genome of EHEC O157:H7 contains 177 unique O islands (OIs). Certain OIs significantly contribute to the heightened virulence and pathogenicity exhibited by EHEC O157:H7. However, the function of most OI genes remains unknown. We demonstrated here that EHEC O157:H7 adherence to and colonization of the mouse large intestine are both dependent on OI-97. Z3495, which is annotated as a LysR-type transcriptional regulator and encoded in OI-97, contributes to this phenotype. Z3495 activated the locus of enterocyte effacement (LEE) gene expression, promoting bacterial adherence. Deletion of z3495 significantly decreased the transcription of ler and other LEE genes, the ability to adhere to the host cells, and colonization in the mouse large intestine. Furthermore, the ChIP-seq results confirmed that Z3495 can directly bind to the promoter region of rcsF, which is a well-known activator of Ler, and increase LEE gene expression. Finally, phylogenetic analysis revealed that Z3495 is a widespread transcriptional regulator in enterohemorrhagic and enteropathogenic Escherichia coli. As a result of this study, we have gained a deeper understanding of how bacteria control their virulence and provide another example of a laterally acquired regulator that regulates LEE gene expression in bacteria.
Collapse
Affiliation(s)
- Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yi Wei
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yu Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Shenzhen 518045, China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xintong Chen
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Dan Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Qiushi Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xiaoya Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xinyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
3
|
Hajra D, Nair AV, Roy Chowdhury A, Mukherjee S, Chatterjee R, Chakravortty D. Salmonella Typhimurium U32 peptidase, YdcP, promotes bacterial survival by conferring protection against in vitro and in vivo oxidative stress. Microb Pathog 2022; 173:105862. [PMID: 36402347 DOI: 10.1016/j.micpath.2022.105862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
YdcP, a U32 peptidase, is characterized as a putative collagenase with a role in several bacterial infections. However, its role in the pathogenesis of Salmonella Typhimurium remains elusive. Here, we investigated the role of U32 peptidase, YdcP, in the intracellular survival of S. Typhimurium (STM). Our study revealed a novel function of YdcP in protecting wild-type Salmonella from in vitro and in vivo oxidative stress. The ydcP knockout strain showed attenuated intracellular proliferation within the murine and human macrophages. Incubation of wild-type Salmonella with H2O2 induced the transcript level expression of ydcP. Moreover, deleting ydcP increased the susceptibility of the bacteria to in vitro oxidative stress. STM ΔydcP showed increased colocalization with the gp91phox subunit of the NADPH phagocytic oxidase in RAW264.7 cells. Further, we observed a reduction in the expression of bacterial anti-oxidant genes in STM ΔydcP growing within the RAW264.7 cells. The delay in the death of BALB/c mice infected with STM ΔydcP proved the association of ydcP with the in vivo pathogenesis of Salmonella. Finally, the attenuated growth of the ydcP mutant in wild-type C57BL/6 mice and the recovery of their growth inhibition in gp91phox-/- C57BL/6 mice endorsed the role of ydcP in protecting Salmonella from in vivo oxidative stress. Together, our study depicts a novel role of Salmonella Typhimurium YdcP, a putative U32 peptidase in rendering protection against oxidative stress.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Atish Roy Chowdhury
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | | - Ritika Chatterjee
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
4
|
Roy Chowdhury A, Sah S, Varshney U, Chakravortty D. Salmonella Typhimurium outer membrane protein A (OmpA) renders protection from nitrosative stress of macrophages by maintaining the stability of bacterial outer membrane. PLoS Pathog 2022; 18:e1010708. [PMID: 35969640 PMCID: PMC9410544 DOI: 10.1371/journal.ppat.1010708] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/25/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial porins are highly conserved outer membrane proteins used in the selective transport of charged molecules across the membrane. In addition to their significant contributions to the pathogenesis of Gram-negative bacteria, their role(s) in salmonellosis remains elusive. In this study, we investigated the role of outer membrane protein A (OmpA), one of the major outer membrane porins of Salmonella, in the pathogenesis of Salmonella Typhimurium (STM). Our study revealed that OmpA plays an important role in the intracellular virulence of Salmonella. An ompA deficient strain of Salmonella (STM ΔompA) showed compromised proliferation in macrophages. We found that the SPI-2 encoded virulence factors such as sifA and ssaV are downregulated in STM ΔompA. The poor colocalization of STM ΔompA with LAMP-1 showed that disruption of SCV facilitated its release into the cytosol of macrophages, where it was assaulted by reactive nitrogen intermediates (RNI). The enhanced recruitment of nitrotyrosine on the cytosolic population of STM ΔompAΔsifA and ΔompAΔssaV compared to STM ΔsifA and ΔssaV showed an additional role of OmpA in protecting the bacteria from host nitrosative stress. Further, we showed that the generation of greater redox burst could be responsible for enhanced sensitivity of STM ΔompA to the nitrosative stress. The expression of several other outer membrane porins such as ompC, ompD, and ompF was upregulated in STM ΔompA. We found that in the absence of ompA, the enhanced expression of ompF increased the outer membrane porosity of Salmonella and made it susceptible to in vitro and in vivo nitrosative stress. Our study illustrates a novel mechanism for the strategic utilization of OmpA by Salmonella to protect itself from the nitrosative stress of macrophages.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
6
|
Ma S, Jiang L, Wang J, Liu X, Li W, Ma S, Feng L. Downregulation of a novel flagellar synthesis regulator AsiR promotes intracellular replication and systemic pathogenicity of Salmonella typhimurium. Virulence 2021; 12:298-311. [PMID: 33410728 PMCID: PMC7808427 DOI: 10.1080/21505594.2020.1870331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits host macrophage as a crucial survival and replicative niche. To minimize host immune response stimulated by flagellin, the expression of flagellar genes is downregulated during S. Typhimurium growth within host macrophages. However, the underlying mechanisms are largely unknown. In this study, we show that STM14_1285 (named AsiR), a putative RpiR-family transcriptional regulator, which is downregulated within macrophages as previously reported and also confirmed here, positively regulates the expression of flagellar genes by directly binding to the promoter of flhDC. By generating an asiR mutant strain and a strain that persistently expresses asiR gene within macrophages, we confirmed that the downregulation of asiR contributes positively to S. Typhimurium replication in macrophages and systemic infection in mice, which could be attributed to decreased flagellar gene expression and therefore reduced flagellin-stimulated secretion of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, the acidic pH in macrophages is identified as a signal for the downregulation of asiR and therefore flagellar genes. Collectively, our results reveal a novel acidic pH signal-mediated regulatory pathway that is utilized by S. Typhimurium to promote intracellular replication and systemic pathogenesis by repressing flagellar gene expression.
Collapse
Affiliation(s)
- Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Jingting Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Wanwu Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| |
Collapse
|
7
|
Whitfield DL, Sharma G, Smaldone GT, Singer M. Peripheral rods: a specialized developmental cell type in Myxococcus xanthus. Genomics 2019; 112:1588-1597. [PMID: 31605730 DOI: 10.1016/j.ygeno.2019.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023]
Abstract
In response to nutrient deprivation, the ubiquitous Gram-negative soil bacterium Myxococcus xanthus undergoes a well-characterized developmental response, resulting in the formation of a multicellular fruiting body. The center of the fruiting body consists of myxospores; surrounding this structure are rod-shaped peripheral cells. Unlike spores, the peripheral rods are a metabolically active cell type that inhabits nutrient-deprived environments. The survival characteristics exhibited by peripheral rods, protection from oxidative stress and heat shock, are common survival characteristics exhibited by cells in stationary phase including modifications to morphology and metabolism. Vegetative M. xanthus cells undergo a number of physiological changes during the transition into stationary phase similar to other proteobacteria. In M. xanthus, stationary-phase cells are not considered a component of the developmental response and occur when cells are grown on nutrient-rich plates or in dispersed aqueous media. However, this cell type is not routinely studied and little of its physiology is known. Similarities between these two stress-induced cell types led to the question of whether peripheral rods are actually a distinct developmental cell type or simply cells in stationary phase. In this study, we examine the transcriptome of peripheral rods and its relationship to development. This work demonstrates that peripheral rods are in fact a distinct developmentally differentiated cell type. Although peripheral rods and stationary phase cells display similar characteristics, each transcriptomic pattern is unique and quite different from that of any other M. xanthus cell type.
Collapse
Affiliation(s)
- Damion L Whitfield
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| | - Gaurav Sharma
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Gregory T Smaldone
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Mitchell Singer
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
Liu Y, Liu B, Yang P, Wang T, Chang Z, Wang J, Wang Q, Li W, Wu J, Huang D, Jiang L, Yang B. LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence. Virulence 2019; 10:783-792. [PMID: 31502495 PMCID: PMC6768210 DOI: 10.1080/21505594.2019.1661721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 (O157) is a major foodborne pathogen that causes severe illness in humans worldwide. The genome of O157 contains 177 genomic islands known as O islands (OIs), including Shiga toxin-converting phages (OI-45 and OI-93) and the locus for enterocyte effacement (LEE) pathogenicity island (OI-148). However, most genes in OIs are uncharacterized and code for unknown functions. In this study, we demonstrated, for the first time, that OI-9 encodes a novel transcriptional activator, Z0346 (named OvrB), which is required for bacterial adherence to host cells and LEE gene expression in O157. OvrB directly binds to the promoter region of LEE1 and activates the transcription of ler (encoding a master regulator of LEE genes), which in turn activates LEE1–5 genes to promote O157 adherence. Furthermore, mouse oral infection assays showed that OvrB promotes O157 colonization in the mouse intestine. Finally, OvrB is shown to be a widespread transcriptional activator of virulence genes in other enterohemorrhagic and enteropathogenic Escherichia coli serotypes. Our work significantly expands the understanding of bacterial virulence control and provides new evidence suggesting that horizontally transferred regulator genes mediate LEE gene expression.
Collapse
Affiliation(s)
- Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Pan Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Ting Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Zhanhe Chang
- School of Biomedical Engineering, Tianjin Medical University , Tianjin , P. R. China
| | - Junyue Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| |
Collapse
|
9
|
Yu Y, Qian Y, Du D, Li Q, Xu C, Liu H, Chen M, Yao H, Lu C, Zhang W. Infection and adaption-based proteomic changes of Streptococcus suis serotype 2 in a pig model. J Proteomics 2017; 180:41-52. [PMID: 29247804 DOI: 10.1016/j.jprot.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/28/2022]
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic agent that is responsible for significant economic losses to the porcine industry worldwide. However, most research regarding the pathogenic mechanisms has used in vitro cultures of S. suis, which may not provide an accurate representation of the in vivo biological activities. In this study, 188 differential abundance S. suis proteins were identified in in vivo samples obtained from the blood of the infected pigs. These were compared with in vitro samples by a Tandem Mass Tags (TMT) experiment. Thus, a virulence associated network was established using the enriched differential abundance proteins (obtained via bioinformatics analysis in this study) and the previously reported putative virulence factors associated with in vivo infection. One of the most important up-regulated hubs in this network, adhE (an acetaldehyde-CoA/alcohol dehydrogenase) was found. Furthermore, knocking out adhE in S. suis serotype 2 strain ZY05719 decreased virulence. Cell culture experiments and far-western blot analysis showed that adhE is involved in adhesion to Caco-2 cells; Hsp60 could be one of the receptors for this protein. SIGNIFICANCE This study is a systematical research to identify in vivo regulated virulence associated proteins of S. suis in pigs. It constructs a network consisting of in vivo infection related factors for the first time to get to know the coordinated actions of a multitude of factors that lead to host pathogenicity and filter the most important hubs. The individual factors that contribute to infection is also identified. A novel differential protein adhE which is one of the most important hubs of this network and is up-regulated in abundance in vivo is found to moonlight as an important adhesion by binding Hsp60 and finally contributes to virulence.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yunyun Qian
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dechao Du
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quan Li
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chenyang Xu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hanze Liu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mianmian Chen
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huochun Yao
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Zhang Y, Qin J, Tan B, Kong W, Chen G, Zhang C, Liang H. The P-Type ATPase PA1429 Regulates Quorum-Sensing Systems and Bacterial Virulence. Front Microbiol 2017; 8:2449. [PMID: 29375491 PMCID: PMC5770612 DOI: 10.3389/fmicb.2017.02449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is becoming an increasingly prevalent pathogen, capable of causing numerous life threatening infections in immunocompromised patients. The three hierarchically arranged quorum sensing (QS) systems, namely las, rhl, and pqs play key roles in coordinating virulence expression in P. aeruginosa. However, the regulatory mechanisms of the pqs system have not been fully elucidated. To identify new genes involved in synthesis of the Pseudomonas quinolone signal (PQS), a transposon mutagenesis library was constructed. PA1429 was found to inhibit PQS biosynthesis. The PA1429 deletion mutant also exhibited increased bacterial motility, biofilm formation, and virulence in a mouse model of acute lung infection. Interestingly, it also displayed reduced tolerance to oxidative stress. Mutated pqsH in the PA1429 deletion background restored bacterial susceptibility to H2O2. In addition, our data showed that PA1429 repressed the expression of las and rhl systems. Overall, these results provide new insights into the complex regulatory networks of quorum-sensing and virulence expression in P. aeruginosa.
Collapse
Affiliation(s)
- Yani Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Qin
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Boren Tan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.,Western Reserve Academy, Hudson, OH, United States
| | - Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Chao Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Lee W, Lee DG. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium. Biochem Biophys Res Commun 2017; 489:228-234. [DOI: 10.1016/j.bbrc.2017.05.138] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
|
12
|
Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators. Sci Rep 2016; 6:39454. [PMID: 27991578 PMCID: PMC5171790 DOI: 10.1038/srep39454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022] Open
Abstract
Targeting bacterial virulence mechanisms without compromising bacterial growth is a promising strategy to prevent drug resistance. LysR-type transcriptional regulators (LTTRs) possess structural conservation across bacterial species and regulate virulence in numerous pathogens, making them attractive targets for antimicrobial agents. We targeted AphB, a Vibrio cholerae LTTR, which regulates the expression of genes encoding cholera toxin and toxin-co-regulated pilus for inhibitor designing. Since AphB ligand is unknown, we followed a molecular fragment-based approach for ligand designing using FDA-approved drugs and subsequent screen to identify molecules that exhibited high-affinity binding to AphB ligand-binding pocket. Among the identified compounds, ribavirin, an anti-viral drug, antagonized AphB functions. Ribavirin perturbed Vibrio cholerae pathogenesis in animal models. The inhibitory effects of the drug was limited to the bacteria expressing wild type AphB, but not its constitutively active mutant (AphBN100E), which represents the ligand-bound state, suggesting that ribavirin binds to the active site of AphB to exert its inhibitory role and there exists no AphB-independent mechanism of its action. Similarly, ribavirin suppressed the functions of Salmonella Typhi LTTR Hrg, indicating its broad spectrum efficacy. Moreover, ribavirin did not affect the bacterial viability in culture. This study cites an example of drug repurposing for anti-infective therapy.
Collapse
|
13
|
Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide. BMC Genomics 2014; 15:1065. [PMID: 25477071 PMCID: PMC4289026 DOI: 10.1186/1471-2164-15-1065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 11/23/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. Results We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Conclusions Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1065) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Villarreal JM, Becerra-Lobato N, Rebollar-Flores JE, Medina-Aparicio L, Carbajal-Gómez E, Zavala-García ML, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Encarnación S, Martínez-Batallar AG, Calva E, Hernández-Lucas I. The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol 2014; 92:1005-24. [PMID: 24720747 DOI: 10.1111/mmi.12610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 01/25/2023]
Abstract
A characterization of the LtrR regulator, an S. Typhi protein belonging to the LysR family is presented. Proteomics, outer membrane protein profiles and transcriptional analyses demonstrated that LtrR is required for the synthesis of OmpR, OmpC and OmpF. DNA-protein interaction analysis showed that LtrR binds to the regulatory region of ompR and then OmpR interacts with the ompC and ompF promoters inducing porin synthesis. LtrR-dependent and independent ompR promoters were identified, and both promoters are involved in the synthesis of OmpR for OmpC and OmpF production. To define the functional role of the ltrR-ompR-ompC-ompF genetic network, mutants in each gene were obtained. We found that ltrR, ompR, ompC and ompF were involved in the control of bacterial transformation, while the two regulators and ompC are necessary for the optimal growth of S. Typhi in the presence of one of the major bile salts found in the gut, sodium deoxycholate. The data presented establish the pivotal role of LtrR in the regulatory network of porin synthesis and reveal new genetic strategies of survival and cellular adaptation to the environment used by Salmonella.
Collapse
Affiliation(s)
- J M Villarreal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hammarlöf DL, Canals R, Hinton JCD. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Curr Opin Microbiol 2013; 16:643-51. [PMID: 24021902 DOI: 10.1016/j.mib.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 02/01/2023]
Abstract
The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens.
Collapse
Affiliation(s)
- Disa L Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | |
Collapse
|
16
|
Reen FJ, Haynes JM, Mooij MJ, O'Gara F. A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa. PLoS One 2013; 8:e54479. [PMID: 23382903 PMCID: PMC3557286 DOI: 10.1371/journal.pone.0054479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5′-ATTGCCTGGGGTTAT-3′ LysR box adjacent to the predicted −35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
17
|
Possible roles of LysR-type transcriptional regulator (LTTR) homolog as a global regulator in Cronobacter sakazakii ATCC 29544. Int J Med Microbiol 2012; 302:270-5. [DOI: 10.1016/j.ijmm.2012.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 02/07/2023] Open
|
18
|
Dillon SC, Espinosa E, Hokamp K, Ussery DW, Casadesús J, Dorman CJ. LeuO is a global regulator of gene expression inSalmonella entericaserovar Typhimurium. Mol Microbiol 2012; 85:1072-89. [DOI: 10.1111/j.1365-2958.2012.08162.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Das K, De la Garza G, Maffi S, Saikolappan S, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS One 2012; 7:e36247. [PMID: 22558404 PMCID: PMC3340341 DOI: 10.1371/journal.pone.0036247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/29/2012] [Indexed: 02/02/2023] Open
Abstract
Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells.
Collapse
Affiliation(s)
- Kishore Das
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Georgina De la Garza
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Shivani Maffi
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Sankaralingam Saikolappan
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Subramanian Dhandayuthapani
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| |
Collapse
|
20
|
Baños RC, Martínez J, Polo C, Madrid C, Prenafeta A, Juárez A. The yfeR gene of Salmonella enterica serovar Typhimurium encodes an osmoregulated LysR-type transcriptional regulator. FEMS Microbiol Lett 2010; 315:63-71. [DOI: 10.1111/j.1574-6968.2010.02171.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Das P, Lahiri A, Lahiri A, Sen M, Iyer N, Kapoor N, Balaji KN, Chakravortty D. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS One 2010; 5:e15466. [PMID: 21151933 PMCID: PMC2997073 DOI: 10.1371/journal.pone.0015466] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/24/2010] [Indexed: 11/25/2022] Open
Abstract
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.
Collapse
Affiliation(s)
- Priyanka Das
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ayan Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Minakshi Sen
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Namrata Iyer
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nisha Kapoor
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kithiganahalli Narayanaswamy Balaji
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
22
|
Lahiri A, Lahiri A, Iyer N, Das P, Chakravortty D. Visiting the cell biology of Salmonella infection. Microbes Infect 2010; 12:809-818. [PMID: 20538070 DOI: 10.1016/j.micinf.2010.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management.
Collapse
Affiliation(s)
- Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
23
|
Marathe SA, Ray S, Chakravortty D. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model. PLoS One 2010; 5:e11511. [PMID: 20634977 PMCID: PMC2901387 DOI: 10.1371/journal.pone.0011511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/16/2010] [Indexed: 12/27/2022] Open
Abstract
Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides--pmrD and pmrHFIJKLM and genes with antioxidant function--mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.
Collapse
Affiliation(s)
- Sandhya A. Marathe
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Seemun Ray
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
24
|
The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli. J Bacteriol 2010; 192:3699-712. [PMID: 20494990 DOI: 10.1128/jb.00382-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 responds to the host-produced epinephrine and norepinephrine, and bacterially produced autoinducer 3 (AI-3), through two-component systems. Further integration of multiple regulatory signaling networks, involving regulators such as the LysR-type transcriptional regulator (LTTR) QseA, promotes effective regulation of virulence factors. These include the production of flagella, a phage-encoded Shiga toxin, and genes within the locus of enterocyte effacement (LEE) responsible for attaching and effacing (AE) lesion formation. Here, we describe a new member of this signaling cascade, an LTTR heretofore renamed QseD (quorum-sensing E. coli regulator D). QseD is present in all enterobacteria but exists almost exclusively in O157:H7 isolates as a helix-turn-helix (HTH) truncated isoform. This "short" isoform (sQseD) is still able to regulate gene expression through a different mechanism than the full-length K-12 E. coli "long" QseD isoform (lQseD). The EHEC Delta qseD mutant exhibits increased expression of all LEE operons and deregulation of AE lesion formation. The loss of qseD in EHEC does not affect motility, but the K-12 Delta qseD mutant is hypermotile. While the lQseD directly binds to the ler promoter, encoding the LEE master regulator, to repress LEE transcription, the sQseD isoform does not. LTTRs bind to DNA as tetramers, and these data suggest that sQseD regulates ler by forming heterotetramers with another LTTR. The LTTRs known to regulate LEE transcription, QseA and LrhA, do not interact with sQseD, suggesting that sQseD acts as a dominant-negative partner with a yet-unidentified LTTR.
Collapse
|
25
|
Lahiri A, Das P, Chakravortty D. Salmonella Typhimurium: insight into the multi-faceted role of the LysR-type transcriptional regulators in Salmonella. Int J Biochem Cell Biol 2009; 41:2129-2133. [PMID: 19447191 DOI: 10.1016/j.biocel.2009.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/27/2009] [Accepted: 05/08/2009] [Indexed: 12/30/2022]
Abstract
The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes. LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription. Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands. In Salmonella genome the existence of 44 LTTRs has been documented. These LTTRs regulate bacterial stress response, systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a successful pathogen.
Collapse
Affiliation(s)
- Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
26
|
Das P, Lahiri A, Lahiri A, Chakravortty D. Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. MICROBIOLOGY (READING, ENGLAND) 2009; 155:2476-2489. [PMID: 19520723 DOI: 10.1099/mic.0.029611-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activation of macrophages by interferon gamma (IFN-gamma) and the subsequent production of nitric oxide (NO) are critical for the host defence against Salmonella enterica serovar Typhimurium infection. We report here the inhibition of IFN-gamma-induced NO production in RAW264.7 macrophages infected with wild-type Salmonella. This phenomenon was shown to be dependent on the nirC gene, which encodes a potential nitrite transporter. We observed a higher NO output from IFN-gamma-treated macrophages infected with a nirC mutant of Salmonella. The nirC mutant also showed significantly decreased intracellular proliferation in a NO-dependent manner in activated RAW264.7 macrophages and in liver, spleen and secondary lymph nodes of mice, which was restored by complementing the gene in trans. Under acidified nitrite stress, a twofold more pronounced NO-mediated repression of SPI2 was observed in the nirC knockout strain compared to the wild-type. This enhanced SPI2 repression in the nirC knockout led to a higher level of STAT-1 phosphorylation and inducible nitric oxide synthase (iNOS) expression than seen with the wild-type strain. In iNOS knockout mice, the organ load of the nirC knockout strain was similar to that of the wild-type strain, indicating that the mutant is exclusively sensitive to the host nitrosative stress. Taken together, these results reveal that intracellular Salmonella evade killing in activated macrophages by downregulating IFN-gamma-induced NO production, and they highlight the critical role of nirC as a virulence gene.
Collapse
Affiliation(s)
- Priyanka Das
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ayan Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|