1
|
Ruhal R, Sahu A, Koujalagi T, Das A, Prasanth H, Kataria R. Biofilm-specific determinants of enterococci pathogen. Arch Microbiol 2024; 206:397. [PMID: 39249569 DOI: 10.1007/s00203-024-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Amongst all Enterococcus spp., E. faecalis and E. faecium are most known notorious pathogen and their biofilm formation has been associated with endocarditis, oral, urinary tract, and wound infections. Biofilm formation involves a pattern of initial adhesion, microcolony formation, and mature biofilms. The initial adhesion and microcolony formation involve numerous surface adhesins e.g. pili Ebp and polysaccharide Epa. The mature biofilms are maintained by eDNA, It's worth noting that phage-mediated dispersal plays a prominent role. Further, the involvement of peptide pheromones in regulating biofilm maintenance sets it apart from other pathogens and facilitating the horizontal transfer of resistance genes. The role of fsr based regulation by regulating gelE expression is also discussed. Thus, we provide a concise overview of the significant determinants at each stage of Enterococcus spp. biofilm formation. These elements could serve as promising targets for antibiofilm strategies.
Collapse
Affiliation(s)
- Rohit Ruhal
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, 632014, India.
| | - Abhijeet Sahu
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, 632014, India
| | - Tushar Koujalagi
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, 632014, India
| | - Ankumoni Das
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, 632014, India
| | - Hema Prasanth
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, 632014, India
| | - Rashmi Kataria
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
2
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
3
|
Top J, Zhang X, Hendrickx APA, Boeren S, van Schaik W, Huebner J, Willems RJL, Leavis HL, Paganelli FL. YajC, a predicted membrane protein, promotes Enterococcus faecium biofilm formation in vitro and in a rat endocarditis model. FEMS MICROBES 2024; 5:xtae017. [PMID: 38860142 PMCID: PMC11163983 DOI: 10.1093/femsmc/xtae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Biofilm formation is a critical step in the pathogenesis of difficult-to-treat Gram-positive bacterial infections. We identified that YajC, a conserved membrane protein in bacteria, plays a role in biofilm formation of the clinically relevant Enterococcus faecium strain E1162. Deletion of yajC conferred significantly impaired biofilm formation in vitro and was attenuated in a rat endocarditis model. Mass spectrometry analysis of supernatants of washed ΔyajC cells revealed increased amounts in cytoplasmic and cell-surface-located proteins, including biofilm-associated proteins, suggesting that proteins on the surface of the yajC mutant are only loosely attached. In Streptococcus mutans YajC has been identified in complex with proteins of two cotranslational membrane protein-insertion pathways; the signal recognition particle (SRP)-SecYEG-YajC-YidC1 and the SRP-YajC-YidC2 pathway, but its function is unknown. In S. mutans mutation of yidC1 and yidC2 resulted in impaired protein insertion in the cell membrane and secretion in the supernatant. The E. faecium genome contains all homologous genes encoding for the cotranslational membrane protein-insertion pathways. By combining the studies in S. mutans and E. faecium, we propose that YajC is involved in the stabilization of the SRP-SecYEG-YajC-YidC1 and SRP-YajC-Yid2 pathway or plays a role in retaining proteins for proper docking to the YidC insertases for translocation in and over the membrane.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Building 60, Yujingwan, Linyi City, Shandong Province, 276000, China
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control (Clb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, PO box 8128, 6700 ET Wageningen, the Netherlands
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwig-Maximilian Universität München, Lindwurmstr. 4, 80337 Munich, Germany
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
4
|
Stege PB, Beekman JM, Hendrickx APA, van Eijk L, Rogers MRC, Suen SWF, Vonk AM, Willems RJL, Paganelli FL. Colonization of vancomycin-resistant Enterococcus faecium in human-derived colonic epithelium: unraveling the transcriptional dynamics of host-enterococcal interactions. FEMS MICROBES 2024; 5:xtae014. [PMID: 38813098 PMCID: PMC11134301 DOI: 10.1093/femsmc/xtae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake, and biofilm formation (chromosome). In total, 260 were downregulated, including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.
Collapse
Affiliation(s)
- Paul B Stege
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721MA, The Netherlands
| | - Laura van Eijk
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Sylvia W F Suen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
- Winclove Probiotics, Amsterdam, 1033JS, The Netherlands
| |
Collapse
|
5
|
Șchiopu P, Toc DA, Colosi IA, Costache C, Ruospo G, Berar G, Gălbău ȘG, Ghilea AC, Botan A, Pană AG, Neculicioiu VS, Todea DA. An Overview of the Factors Involved in Biofilm Production by the Enterococcus Genus. Int J Mol Sci 2023; 24:11577. [PMID: 37511337 PMCID: PMC10380289 DOI: 10.3390/ijms241411577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus species are known for their ability to form biofilms, which contributes to their survival in extreme environments and involvement in persistent bacterial infections, especially in the case of multi-drug-resistant strains. This review aims to provide a comprehensive understanding of the mechanisms underlying biofilm formation in clinically important species such as Enterococcus faecalis and the less studied but increasingly multi-drug-resistant Enterococcus faecium, and explores potential strategies for their eradication. Biofilm formation in Enterococcus involves a complex interplay of genes and virulence factors, including gelatinase, cytolysin, Secreted antigen A, pili, microbial surface components that recognize adhesive matrix molecules (MSCRAMMs), and DNA release. Quorum sensing, a process of intercellular communication, mediated by peptide pheromones such as Cob, Ccf, and Cpd, plays a crucial role in coordinating biofilm development by targeting gene expression and regulation. Additionally, the regulation of extracellular DNA (eDNA) release has emerged as a fundamental component in biofilm formation. In E. faecalis, the autolysin N-acetylglucosaminidase and proteases such as gelatinase and serin protease are key players in this process, influencing biofilm development and virulence. Targeting eDNA may offer a promising avenue for intervention in biofilm-producing E. faecalis infections. Overall, gaining insights into the intricate mechanisms of biofilm formation in Enterococcus may provide directions for anti-biofilm therapeutic research, with the purpose of reducing the burden of Enterococcus-associated infections.
Collapse
Affiliation(s)
- Pavel Șchiopu
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Pneumology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Giuseppe Ruospo
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - George Berar
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ștefan-Gabriel Gălbău
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandra Cristina Ghilea
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandru Botan
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian-Gabriel Pană
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Doina Adina Todea
- Department of Pneumology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. Mol Microbiol 2023; 119:1-18. [PMID: 36420961 PMCID: PMC10107303 DOI: 10.1111/mmi.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.
Collapse
Affiliation(s)
- Pei Yi Choo
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Charles Y. Wang
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | | | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and Molecular MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
7
|
Revtovich AV, Tjahjono E, Singh KV, Hanson BM, Murray BE, Kirienko NV. Development and Characterization of High-Throughput Caenorhabditis elegans - Enterococcus faecium Infection Model. Front Cell Infect Microbiol 2021; 11:667327. [PMID: 33996637 PMCID: PMC8116795 DOI: 10.3389/fcimb.2021.667327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Enterococcus includes two Gram-positive pathogens of particular clinical relevance: E. faecalis and E. faecium. Infections with each of these pathogens are becoming more frequent, particularly in the case of hospital-acquired infections. Like most other bacterial species of clinical importance, antimicrobial resistance (and, specifically, multi-drug resistance) is an increasing threat, with both species considered to be of particular importance by the World Health Organization and the US Centers for Disease Control. The threat of antimicrobial resistance is exacerbated by the staggering difference in the speeds of development for the discovery and development of the antimicrobials versus resistance mechanisms. In the search for alternative strategies, modulation of host-pathogen interactions in general, and virulence inhibition in particular, have drawn substantial attention. Unfortunately, these approaches require a fairly comprehensive understanding of virulence determinants. This requirement is complicated by the fact that enterococcal infection models generally require vertebrates, making them slow, expensive, and ethically problematic, particularly when considering the thousands of animals that would be needed for the early stages of experimentation. To address this problem, we developed the first high-throughput C. elegans-E. faecium infection model involving host death. Importantly, this model recapitulates many key aspects of murine peritonitis models, including utilizing similar virulence determinants. Additionally, host death is independent of peroxide production, unlike other E. faecium-C. elegans virulence models, which allows the assessment of other virulence factors. Using this system, we analyzed a panel of lab strains with deletions of targeted virulence factors. Although removal of certain virulence factors (e.g., Δfms15) was sufficient to affect virulence, multiple deletions were generally required to affect pathogenesis, suggesting that host-pathogen interactions are multifactorial. These data were corroborated by genomic analysis of selected isolates with high and low levels of virulence. We anticipate that this platform will be useful for identifying new treatments for E. faecium infection.
Collapse
Affiliation(s)
| | - Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Kavindra V. Singh
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Blake M. Hanson
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Barbara E. Murray
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | |
Collapse
|
8
|
Nisar S, Kirkpatrick LD, Shupp JW. Bacterial Virulence Factors and Their Contribution to Pathophysiology after Thermal Injury. Surg Infect (Larchmt) 2020; 22:69-76. [PMID: 32735479 DOI: 10.1089/sur.2020.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Bacterial infections are the leading cause of morbidity and mortality in burn-injured patients. Pseudomonas aeruginosa and Staphylococcus aureus are among the most common pathogens responsible for infections in thermally injured patients. These and other pathogens have developed a variety of virulence factors to colonize and infect hosts. Methods: A comprehensive literature review was conducted to best summarize the current knowledge of how virulence factors contribute to bacterial pathogenicity. Results: The review highlights the unique mechanisms bacteria utilize to evade host defense systems and further complicate the treatment of burn-injured patients. Conclusion: Further research on virulence factors and their contribution to bacterial pathogenicity is warranted and could potentially lead to development of neutralizing pharmacotherapy that would complement antimicrobial treatment.
Collapse
Affiliation(s)
- Saira Nisar
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Liam D Kirkpatrick
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA.,The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA.,Department of Surgery, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
9
|
Lee RS, Gonçalves da Silva A, Baines SL, Strachan J, Ballard S, Carter GP, Kwong JC, Schultz MB, Bulach DM, Seemann T, Stinear TP, Howden BP. The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study. J Antimicrob Chemother 2019; 73:3268-3278. [PMID: 30189014 DOI: 10.1093/jac/dky331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm. Methods A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid. Results vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission. Conclusions Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.
Collapse
Affiliation(s)
- Robyn S Lee
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Level 5, Boston, MA, USA
| | - Anders Gonçalves da Silva
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Janet Strachan
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Susan Ballard
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Glen P Carter
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Mark B Schultz
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Dieter M Bulach
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Melbourne Bioinformatics Group, Lab-14, 700 Swanston Street, Carlton, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia.,Infectious Diseases Department, Austin Health, Studley Rd, Heidelberg, Victoria, Australia
| |
Collapse
|
10
|
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: Enterococcus faecalis and Enterococcus faecium Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remarkably plastic genome allows these two species to readily acquire resistance to further antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resistance, and vancomycin resistance, either through mutation or by horizontal transfer of genetic elements conferring resistance determinants.
Collapse
Affiliation(s)
- Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Enterococcus faecium TIR-Domain Genes Are Part of a Gene Cluster Which Promotes Bacterial Survival in Blood. Int J Microbiol 2019; 2018:1435820. [PMID: 30631364 PMCID: PMC6304867 DOI: 10.1155/2018/1435820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/14/2018] [Indexed: 11/29/2022] Open
Abstract
Enterococcus faecium has undergone a transition to a multidrug-resistant nosocomial pathogen. The population structure of E. faecium is characterized by a sharp distinction of clades, where the hospital-adapted lineage is primarily responsible for bacteremia. So far, factors that were identified in hospital-adapted strains and that promoted pathogenesis of nosocomial E. faecium mainly play a role in adherence and biofilm production, while less is known about factors contributing to survival in blood. This study identified a gene cluster, which includes genes encoding bacterial Toll/interleukin-1 receptor- (TIR-) domain-containing proteins (TirEs). The cluster was found to be unique to nosocomial strains and to be located on a putative mobile genetic element of phage origin. The three genes within the cluster appeared to be expressed as an operon. Expression was detected in bacterial culture media and in the presence of human blood. TirEs are released into the bacterial supernatant, and TirE2 is associated with membrane vesicles. Furthermore, the tirE-gene cluster promotes bacterial proliferation in human blood, indicating that TirE may contribute to the pathogenesis of bacteremia.
Collapse
|
12
|
Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. J Proteomics 2018; 187:28-38. [DOI: 10.1016/j.jprot.2018.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
|
13
|
Lim SY, Teh CSJ, Thong KL. Biofilm-Related Diseases and Omics: Global Transcriptional Profiling of Enterococcus faecium Reveals Different Gene Expression Patterns in the Biofilm and Planktonic Cells. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:592-602. [PMID: 29049010 DOI: 10.1089/omi.2017.0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enterococcus faecium is an opportunistic pathogen with a remarkable ability to acquire resistance toward multiple antibiotics, including those of last-resort drugs such as vancomycin and daptomycin. The occurrence of vancomycin-resistant E. faecium is on the rise and there is a need to understand the virulence of this organism. One of the factors that contributes to the virulence is the ability to form biofilms. Since bacteria in biofilm state are more resistant to antibiotics and host immune response, understanding the molecular mechanism of biofilm development is important to control biofilm-related diseases. The aim of this study was to determine the global gene expression profiles of an E. faecium strain, VREr5, during the early event of sessile growth compared with its planktonic phase through RNA-sequencing approach. The results clearly illustrated distinct expression profiles of the planktonic and biofilm cells. A total of 177 genes were overexpressed in the biofilm cells. Most of them encode for proteins involved in adherence, such as the ebpABCfm locus. Genes associated with plasmid replication, gene exchange, and protein synthesis were also upregulated during the early event of biofilm development. Furthermore, the transcriptome analysis also identified genes such as fsrB, luxS, and spx that might suppress biofilm formation in VREr5. The putative biofilm-related bee locus was found to be downregulated. These new findings could provide caveats for future studies on the regulation and maintenance of biofilm and development of biomarkers for biofilm-related diseases.
Collapse
Affiliation(s)
- Shu Yong Lim
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 2017; 41:76-82. [PMID: 29227922 DOI: 10.1016/j.mib.2017.11.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
Abstract
Enterococci are long-standing members of the human microbiome and they are also widely distributed in nature. However, with the surge of antibiotic-resistance in recent decades, two enterococcal species (Enterococcus faecalis and Enterococcus faecium) have emerged to become significant nosocomial pathogens, acquiring extensive antibiotic resistance. In this review, we summarize what is known about the evolution of virulence in E. faecium, highlighting a specific clone of E. faecium called ST796 that has emerged recently and spread globally.
Collapse
Affiliation(s)
- Wei Gao
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
15
|
Tarazanova M, Beerthuyzen M, Siezen R, Fernandez-Gutierrez MM, de Jong A, van der Meulen S, Kok J, Bachmann H. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster. PLoS One 2016; 11:e0167970. [PMID: 27941999 PMCID: PMC5152845 DOI: 10.1371/journal.pone.0167970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Marke Beerthuyzen
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Roland Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud UMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Marcela M. Fernandez-Gutierrez
- TI Food and Nutrition, Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Sjoerd van der Meulen
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Herwig Bachmann
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Wardal E, Kuch A, Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E. Diversity of plasmids and Tn1546-type transposons among VanA Enterococcus faecium in Poland. Eur J Clin Microbiol Infect Dis 2016; 36:313-328. [PMID: 27752789 PMCID: PMC5253160 DOI: 10.1007/s10096-016-2804-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/26/2016] [Indexed: 10/26/2022]
Abstract
The objective of this study was to investigate the antimicrobial resistance, Tn1546 transposon variability and plasmid diversity among Polish vancomycin-resistant Enterococcus faecium (VREfm) isolates of VanA phenotype in the context of their clonal structure. Two hundred sixteen clinical VREfm isolates collected between 1997 and 2010 were studied by antimicrobial susceptibility testing, MLST, MLVA and detection of IS16, esp Efm, pilA, intA and plasmid-specific genes by PCR. Tn1546 structure was revealed by overlapping PCR and sequencing. Selected isolates were subjected to PFGE-S1 and Southern hybridization analyses. The vast majority of the isolates (95.8 %) belonged to lineages 17/18 (during the whole study period 1997-2010) and 78 (mostly in 2006-2010) of hospital-adapted meroclone of E. faecium. All isolates displayed a multi-drug resistance phenotype. Twenty-eight Tn1546 types (including 26 novel ones) were associated with eight different ISs (IS1216, IS1251, ISEfa4, ISEfa5, ISEfm2, ISEf1, IS3-like, ISEfm1-like). The vanA-determinant was typically located on plasmids, which most commonly carried rep2pRE25, rep17pRUM, rep18pEF418, rep1pIP501, ω-ε-ζ and axe-txe genes. VanA isolates from 1997-2005 to 2006-2010 differed in clonal composition, prevalence of gentamicin- and tetracycline-resistance and plasmidome. Our analysis revealed high complexity of Tn1546-type transposons and vanA-plasmids, and suggested that diverse genetic events, such as conjugation transfer, recombination, chromosomal integration and DNA mutations shaped the structure of these elements among Polish VREfm.
Collapse
Affiliation(s)
- E Wardal
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - A Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - I Gawryszewska
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - E Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
17
|
Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism. Appl Environ Microbiol 2016; 82:5756-62. [PMID: 27422834 PMCID: PMC5038030 DOI: 10.1128/aem.01243-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. IMPORTANCE Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of Lactobacillus rhamnosus GG in VRE decolonization strategies. Our results provide support for a new molecular mechanism, in which probiotics can perform competitive exclusion and possibly immune interaction. Moreover, we spur further exploration of the potential of intact L. rhamnosus GG and purified SpaC pilin as prophylactic and curative agents of the VRE carrier state.
Collapse
|
18
|
Nagarajan R, Hendrickx APA, Ponnuraj K. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) ofEnterococcus faeciumreveals a new protein fold: functional characterization and insights into its adhesion function. FEBS J 2016; 283:3039-55. [DOI: 10.1111/febs.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Revathi Nagarajan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | | | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
19
|
Yang J, Jiang Y, Guo L, Ye LI, Ma Y, Luo Y. Prevalence of Diverse Clones of Vancomycin-ResistantEnterococcus faeciumST78 in a Chinese Hospital. Microb Drug Resist 2016; 22:294-300. [PMID: 26652286 DOI: 10.1089/mdr.2015.0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jiyong Yang
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China
| | - Yufeng Jiang
- Wound Healing Unit, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Ling Guo
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China
| | - LIyan Ye
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China
| | - Yanning Ma
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China
| | - Yanping Luo
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection. Infect Immun 2016; 84:1491-1500. [PMID: 26930703 DOI: 10.1128/iai.01396-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract.
Collapse
|
21
|
Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS One 2016; 11:e0153373. [PMID: 27070897 PMCID: PMC4829219 DOI: 10.1371/journal.pone.0153373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
Collapse
Affiliation(s)
- François P. Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FPD); (WMdV)
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Bhattacharjee
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (FPD); (WMdV)
| |
Collapse
|
22
|
Tytgat HLP, van Teijlingen NH, Sullan RMA, Douillard FP, Rasinkangas P, Messing M, Reunanen J, Satokari R, Vanderleyden J, Dufrêne YF, Geijtenbeek TBH, de Vos WM, Lebeer S. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. PLoS One 2016; 11:e0151824. [PMID: 26985831 PMCID: PMC4795749 DOI: 10.1371/journal.pone.0151824] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions.
Collapse
Affiliation(s)
- Hanne L. P. Tytgat
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Environmental Ecology & Applied Microbiology, University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Nienke H. van Teijlingen
- Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruby May A. Sullan
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Marcel Messing
- Immunobiology Research Program and Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Justus Reunanen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Reetta Satokari
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Teunis B. H. Geijtenbeek
- Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Immunobiology Research Program and Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Sarah Lebeer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Environmental Ecology & Applied Microbiology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
23
|
Complete Genome Sequence of Enterococcus faecium Commensal Isolate E1002. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00113-16. [PMID: 26988041 PMCID: PMC4796120 DOI: 10.1128/genomea.00113-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of vancomycin-resistant enterococci (VRE) has been associated with an increase in multidrug-resistant nosocomial infections. Here, we report the 2.614-Mb genome sequence of the Enterococcus faecium commensal isolate E1002, which will be instrumental in further understanding the determinants of the commensal and pathogenic lifestyle of E. faecium.
Collapse
|
24
|
The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets. Sci Rep 2015; 5:18255. [PMID: 26675410 PMCID: PMC4682149 DOI: 10.1038/srep18255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.
Collapse
|
25
|
Ali L, Spiess M, Wobser D, Rodriguez M, Blum HE, Sakιnç T. Identification and functional characterization of the putative polysaccharide biosynthesis protein (CapD) of Enterococcus faecium U0317. INFECTION GENETICS AND EVOLUTION 2015; 37:215-24. [PMID: 26611826 DOI: 10.1016/j.meegid.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
Most bacterial species produce capsular polysaccharides that contribute to disease pathogenesis through evasion of the host innate immune system and are also involved in inhibiting leukocyte killing. In the present study, we identified a gene in Enterococcus faecium U0317 with homologies to the polysaccharide biosynthesis protein CapD that is made up of 336 amino acids and putatively catalyzes N-linked glycosylation. A capD deletion mutant was constructed and complemented by homologous recombination that was confirmed by PCR and sequencing. The mutant revealed different growth behavior and morphological changes compared to wild-type by scanning electron microscopy, also the capD mutant showed a strong hydrophobicity and that was reversed in the reconstituted mutant. For further characterization and functional analyses, in-vitro cell culture and in-vivo a mouse infection models were used. Antibodies directed against alpha lipotechoic acid (αLTA) and the peptidyl-prolyl cis-trans isomerase (αPpiC), effectively mediated the opsonophagocytic killing in the capD knock-out mutant, while this activity was not observed in the wild-type and reconstituted mutant. By comparison more than 2-fold decrease was seen in mutant colonization and adherence to both T24 and Caco2 cells. However, a significant higher bacterial colonization was observed in capD mutant during bacteremia in the animal model, while virulence in a mouse UTI (urinary tract infection) model, there were no obvious differences. Further studies are needed to elucidate the function of capsular polysaccharide synthesis gene clusters and its involvement in the disease pathogenesis with the aim to develop targeted therapies to treat multidrug-resistant E. faecium infections.
Collapse
Affiliation(s)
- Liaqat Ali
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Meike Spiess
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Marta Rodriguez
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Hubert E Blum
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Türkân Sakιnç
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
26
|
Sinnige JC, de Been M, Zhou M, Bonten MJM, Willems RJL, Top J. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium. Proteomics 2015; 15:3806-14. [PMID: 26316380 DOI: 10.1002/pmic.201500138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/16/2015] [Accepted: 08/24/2015] [Indexed: 01/25/2023]
Abstract
The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497).
Collapse
Affiliation(s)
- Jan C Sinnige
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Biodiversity Centre, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
Rossmann FS, Racek T, Wobser D, Puchalka J, Rabener EM, Reiger M, Hendrickx APA, Diederich AK, Jung K, Klein C, Huebner J. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog 2015; 11:e1004653. [PMID: 25706310 PMCID: PMC4338201 DOI: 10.1371/journal.ppat.1004653] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023] Open
Abstract
The microbiome and the phage meta-genome within the human gut are influenced by antibiotic treatments. Identifying a novel mechanism, here we demonstrate that bacteria use the universal communication molecule AI-2 to induce virulence genes and transfer them via phage release. High concentrations (i.e. 100 μM) of AI-2 promote dispersal of bacteria from already established biofilms, and is associated with release of phages capable of infecting other bacteria. Enterococcus faecalis V583ΔABC harbours 7 prophages in its genome, and a mutant deficient in one of these prophages (i.e. prophage 5) showed a greatly reduced dispersal of biofilm. Infection of a probiotic E. faecalis strain without lytic prophages with prophage 5 resulted in increased biofilm formation and also in biofilm dispersal upon induction with AI-2. Infection of the probiotic E. faecalis strain with phage-containing supernatants released through AI-2 from E. faecalis V583ΔABC resulted in a strong increase in pathogenicity of this strain. The polylysogenic probiotic strain was also more virulent in a mouse sepsis model and a rat endocarditis model. Both AI-2 and ciprofloxacin lead to phage release, indicating that conditions in the gastrointestinal tract of hospitalized patients treated with antibiotics might lead to distribution of virulence genes to apathogenic enterococci and possibly also to other commensals or even to beneficial probiotic strains. All higher organisms live in intimate contact with bacteria and viruses in their direct environment. Some of these bacteria in our gut can switch between being harmless commensals and causing severe and sometimes lethal infections. This involves a tight regulation of the mechanisms needed to initially colonize and later to harm the host. Here we describe a novel mechanism by which phages (i.e. viruses that infect bacteria) contribute to virulence in commensal gut bacteria. Our results show that bacteria "sense" the number of bacteria present at any given moment through a process called quorum sensing and this provides them with the information needed to assess the specific step during the infectious process. At late stages of infection bacteria are usually present in high numbers, and at this point release viruses that can infect nearby bacteria and transfer genes that are needed to cause infection, thereby enabling previously harmless bacteria to become dangerous pathogens.
Collapse
Affiliation(s)
- Friederike S. Rossmann
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
| | - Jacek Puchalka
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - Elaine M. Rabener
- Department of Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Matthias Reiger
- Department of Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Ann-Kristin Diederich
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
28
|
Sivertsen A, Billström H, Melefors Ö, Liljequist BO, Wisell KT, Ullberg M, Özenci V, Sundsfjord A, Hegstad K. A multicentre hospital outbreak in Sweden caused by introduction of a vanB2 transposon into a stably maintained pRUM-plasmid in an Enterococcus faecium ST192 clone. PLoS One 2014; 9:e103274. [PMID: 25153894 PMCID: PMC4143159 DOI: 10.1371/journal.pone.0103274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
The clonal dissemination of VanB-type vancomycin-resistant Enterococcus faecium (VREfm) strains in three Swedish hospitals between 2007 and 2011 prompted further analysis to reveal the possible origin and molecular characteristics of the outbreak strain. A representative subset of VREfm isolates (n = 18) and vancomycin-susceptible E. faecium (VSEfm, n = 2) reflecting the spread in time and location was approached by an array of methods including: selective whole genome sequencing (WGS; n = 3), multi locus sequence typing (MLST), antimicrobial susceptibility testing, virulence gene profiling, identification of mobile genetic elements conferring glycopeptide resistance and their ability to support glycopeptide resistance transfer. In addition, a single VREfm strain with an unrelated PFGE pattern collected prior to the outbreak was examined by WGS. MLST revealed a predominance of ST192, belonging to a hospital adapted high-risk lineage harbouring several known virulence determinants (n≥10). The VREfm outbreak strain was resistant to ampicillin, gentamicin, ciprofloxacin and vancomycin, and susceptible to teicoplanin. Consistently, a vanB2-subtype as part of Tn1549/Tn5382 with a unique genetic signature was identified in the VREfm outbreak strains. Moreover, Southern blot hybridisation analyses of PFGE separated S1 nuclease-restricted total DNAs and filter mating experiments showed that vanB2-Tn1549/Tn5382 was located in a 70-kb sized rep17/pRUM plasmid readily transferable between E. faecium. This plasmid contained an axe-txe toxin-antitoxin module associated with stable maintenance. The two clonally related VSEfm harboured a 40 kb rep17/pRUM plasmid absent of the 30 kb vanB2-Tn1549/Tn5382 gene complex. Otherwise, these two isolates were similar to the VREfm outbreak strain in virulence- and resistance profile. In conclusion, our observations support that the origin of the multicentre outbreak was caused by an introduction of vanB2-Tn1549/Tn5382 into a rep17/pRUM plasmid harboured in a pre-existing high-risk E. faecium ST192 clone. The subsequent dissemination of VREfm to other centres was primarily caused by clonal spread rather than plasmid transfer to pre-existing high-risk clones.
Collapse
Affiliation(s)
- Audun Sivertsen
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Hanna Billström
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | - Öjar Melefors
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | | | - Karin Tegmark Wisell
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | - Måns Ullberg
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
29
|
Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates. ScientificWorldJournal 2014; 2014:623174. [PMID: 25147855 PMCID: PMC4124215 DOI: 10.1155/2014/623174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 12/02/2022] Open
Abstract
Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.
Collapse
|
30
|
Turroni F, Serafini F, Mangifesta M, Arioli S, Mora D, van Sinderen D, Ventura M. Expression of sortase-dependent pili ofBifidobacterium bifidumPRL2010 in response to environmental gut conditions. FEMS Microbiol Lett 2014; 357:23-33. [DOI: 10.1111/1574-6968.12509] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre and Department of Microbiology; Bioscience Institute; National University of Ireland; Cork Ireland
| | - Fausta Serafini
- Department of Life Sciences; Laboratory of Probiogenomics; University of Parma; Parma Italy
| | | | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences; University of Milan; Milan Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences; University of Milan; Milan Italy
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and Department of Microbiology; Bioscience Institute; National University of Ireland; Cork Ireland
| | - Marco Ventura
- Department of Life Sciences; Laboratory of Probiogenomics; University of Parma; Parma Italy
| |
Collapse
|
31
|
Neonatal piglet diarrhoea associated with enteroadherent Enterococcus hirae. J Comp Pathol 2014; 151:137-47. [PMID: 24915885 DOI: 10.1016/j.jcpa.2014.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/27/2014] [Accepted: 04/09/2014] [Indexed: 01/19/2023]
Abstract
Neonatal porcine diarrhoea of uncertain aetiology is an increasing problem in several countries. The aim of the present study was to investigate the unexpected finding of enteroadherent cocci in the small intestine of piglets selected for necropsy examination from six herds (18 diarrhoeic piglets and 11 healthy controls). Gross and microscopical lesions were characterized and selected intestinal sections were further examined by immunohistochemistry for expression of active caspase-3. The enteroadherent bacterium was characterized in situ by Gram staining, ultrastructural imaging, fluorescence in-situ hybridization (FISH) and 16S rRNA gene analysis. Species identification of enterococci from intestinal cultures was performed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for one diarrhoeic and one control animal per herd. Gross changes were mild. Microscopically, small intestinal colonization by gram-positive cocci was observed in diarrhoeic animals only and was accompanied by villus atrophy (4/18) and mild epithelial lesions (10/18), including increased apoptosis of enterocytes. Transmission electron microscopy revealed coccoid bacteria adjacent to the epithelium, but without effacement of microvilli. 16S rRNA gene analysis yielded a sequence identical to Enterococcus hirae and FISH identified the enteroadherent bacteria as Enterococcus spp. in all colonized animals. The proportion of bacterial isolates identified as E. hirae by MALDI-TOF MS analysis was significantly higher (P = 0.0138) in diarrhoeic pigs. Species identification was confirmed by species-specific polymerase chain reaction for one E. hirae isolate per herd. These isolates were further tested for antimicrobial susceptibility, which indicated decreased susceptibility to ciprofloxacin for one isolate (minimum inhibitory concentration >4 mg/l). These findings suggested that neonatal porcine diarrhoea was associated with small intestinal colonization by E. hirae accompanied by mucosal lesions.
Collapse
|
32
|
Douillard FP, Rasinkangas P, von Ossowski I, Reunanen J, Palva A, de Vos WM. Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis. J Biol Chem 2014; 289:15764-75. [PMID: 24753244 DOI: 10.1074/jbc.m113.542332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.
Collapse
Affiliation(s)
- François P Douillard
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Pia Rasinkangas
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Ingemar von Ossowski
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Justus Reunanen
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Airi Palva
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Willem M de Vos
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and the Laboratory of Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
33
|
Hendrickx APA, van Schaik W, Willems RJL. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 2014; 8:993-1010. [PMID: 23902146 DOI: 10.2217/fmb.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell wall of Gram-positive bacteria functions as a surface organelle that continuously interacts with its environment through a plethora of cell wall-associated molecules. Enterococcus faecium is a normal inhabitant of the GI tract of mammals, but has recently become an important etiological agent of hospital-acquired infections in debilitated patients. Insights into the assembly and function of enterococcal cell wall components and their interactions with the host during colonization and infection are essential to explain the worldwide emergence of E. faecium as an important multiantibiotic-resistant nosocomial pathogen. Understanding the biochemistry of cell wall biogenesis and principles of antibiotic resistance at the molecular level may open up new frontiers in research on enterococci, particularly for the development of novel antimicrobial strategies. In this article, we outline the current knowledge on the most important antimicrobial resistance mechanisms that involve peptidoglycan synthesis and the role of cell wall constituents, including lipoteichoic acid, wall teichoic acid, capsular polysaccharides, LPxTG cell wall-anchored surface proteins, WxL-type surface proteins and pili, in the pathogenesis of E. faecium.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
34
|
Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl Environ Microbiol 2014; 80:1899-909. [PMID: 24413604 DOI: 10.1128/aem.03859-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products.
Collapse
|
35
|
Spaniol V, Wyder S, Aebi C. RNA-Seq-based analysis of the physiologic cold shock-induced changes in Moraxella catarrhalis gene expression. PLoS One 2013; 8:e68298. [PMID: 23844181 PMCID: PMC3699543 DOI: 10.1371/journal.pone.0068298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.
Collapse
Affiliation(s)
- Violeta Spaniol
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
36
|
Top J, Paganelli FL, Zhang X, van Schaik W, Leavis HL, van Luit-Asbroek M, van der Poll T, Leendertse M, Bonten MJM, Willems RJL. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization. PLoS One 2013; 8:e65224. [PMID: 23741484 PMCID: PMC3669262 DOI: 10.1371/journal.pone.0065224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp) encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351), which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Marchand P, Hassan IA, Parkin IP, Carmalt CJ. Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 2013; 42:9406-22. [PMID: 23629474 DOI: 10.1039/c3dt50607j] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The production of thin films of materials has become the attention of a great deal of research throughout academia and industry worldwide owing to the array of applications which utilise them, including electronic devices, gas sensors, solar cells, window coatings and catalytic systems. Whilst a number of deposition techniques are in common use, chemical vapour deposition (CVD) is an attractive process for the production of a wide range of materials due to the control it offers over film composition, coverage and uniformity, even on large scales. Conventional CVD processes can be limited, however, by the need for suitably volatile precursors. Aerosol-assisted (AA)CVD is a solution-based process which relies on the solubility of the precursor, rather than its volatility and thus vastly extends the range of potentially applicable precursors. In addition, AACVD offers extra means to control film morphology and concurrently the properties of the deposited materials. In this perspective we discuss the AACVD process, the influence of deposition conditions on film characteristics and a number of materials and applications to which AACVD has been found beneficial.
Collapse
Affiliation(s)
- Peter Marchand
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | | | | | | |
Collapse
|
38
|
Abstract
Pili or fimbriae are recognized as essential virulence determinants assembled on the bacterial surface. Gram-positive bacteria produce covalently linked pilus structures that are distinct from gram-negative counterparts. In this chapter, we describe three commonly used techniques to extract, detect, and visualize pili from gram-positive bacteria: (1) Western blot analysis, (2) Immuno-Electron Microscopy, and (3) Atomic Force Microscopy.
Collapse
|
39
|
Oxaran V, Ledue-Clier F, Dieye Y, Herry JM, Péchoux C, Meylheuc T, Briandet R, Juillard V, Piard JC. Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation. PLoS One 2012; 7:e50989. [PMID: 23236417 PMCID: PMC3516528 DOI: 10.1371/journal.pone.0050989] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/29/2012] [Indexed: 02/07/2023] Open
Abstract
The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.
Collapse
Affiliation(s)
- Virginie Oxaran
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Florence Ledue-Clier
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Yakhya Dieye
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Jean-Marie Herry
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | | | - Thierry Meylheuc
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Romain Briandet
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Vincent Juillard
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Jean-Christophe Piard
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
40
|
Rosvoll TC, Lindstad BL, Lunde TM, Hegstad K, Aasnæs B, Hammerum AM, Lester CH, Simonsen GS, Sundsfjord A, Pedersen T. Increased high-level gentamicin resistance in invasiveEnterococcus faeciumis associated withaac(6′)Ie-aph(2″)Ia-encoding transferable megaplasmids hosted by major hospital-adapted lineages. ACTA ACUST UNITED AC 2012; 66:166-76. [DOI: 10.1111/j.1574-695x.2012.00997.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/23/2012] [Accepted: 05/24/2012] [Indexed: 12/22/2022]
|
41
|
Danne C, Dramsi S. Pili of gram-positive bacteria: roles in host colonization. Res Microbiol 2012; 163:645-58. [PMID: 23116627 DOI: 10.1016/j.resmic.2012.10.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/11/2012] [Indexed: 02/06/2023]
Abstract
In the last decade, pili, which are encoded within pathogenicity islands, have been found in many Gram-positive bacteria, including the major streptococcal and enterococcal pathogens. These long proteinaceous polymers extending from the bacterial surface are constituted of covalently linked pilin subunits, which play major roles in adhesion and host colonization. They are also involved in biofilm formation, a characteristic life-style of the bacteria constituting the oral flora. Pili are highly immunogenic structures that are under the selective pressure of host immune responses. Indeed, pilus expression was found to be heterogeneous in several bacteria with the co-existence of two subpopulations expressing various levels of pili. The molecular mechanisms underlying this complex regulation are poorly characterized except for Streptococcus pneumoniae. In this review, we will discuss the roles of Gram-positive bacteria pili in adhesion to host extracellular matrix proteins, tissue tropism, biofilm formation, modulation of innate immune responses and their contribution to virulence, and in a second part the regulation of their expression. This overview should help to understand the rise of pili as an intensive field of investigation and pinpoints the areas that need further study.
Collapse
Affiliation(s)
- Camille Danne
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris F-75015, France
| | | |
Collapse
|
42
|
The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 2012; 3:e00177-12. [PMID: 22829678 PMCID: PMC3419518 DOI: 10.1128/mbio.00177-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse model of E. faecalis ascending UTI. The Ebp pilus comprises the major EbpC shaft subunit and the EbpA and EbpB minor subunits. We investigated the biogenesis and function of Ebp pili in an experimental model of CAUTI using a panel of chromosomal pilin deletion mutants. A nonpiliated pilus knockout mutant (EbpABC(-) strain) was severely attenuated compared to its isogenic parent OG1RF in experimental CAUTI. In contrast, a nonpiliated ebpC deletion mutant (EbpC(-) strain) behaved similarly to OG1RF in vivo because it expressed EbpA and EbpB. Deletion of the minor pilin gene ebpA or ebpB perturbed pilus biogenesis and led to defects in experimental CAUTI. We discovered that the function of Ebp pili in vivo depended on a predicted metal ion-dependent adhesion site (MIDAS) motif in EbpA's von Willebrand factor A domain, a common protein domain among the tip subunits of sortase-assembled pili. Thus, this study identified the Ebp pilus as a virulence factor in E. faecalis CAUTI and also defined the molecular basis of this function, critical knowledge for the rational development of targeted therapeutics. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs), one of the most common hospital-acquired infections (HAIs), present considerable treatment challenges for physicians. Inherently resistant to several classes of antibiotics and with a propensity to acquire vancomycin resistance, enterococci are particularly worrisome etiologic agents of CAUTI. A detailed understanding of the molecular basis of Enterococcus faecalis pathogenesis in CAUTI is necessary for the development of preventative and therapeutic strategies. Our results elucidated the importance of the E. faecalis Ebp pilus and its subunits for enterococcal virulence in a mouse model of CAUTI. We further showed that the metal ion-dependent adhesion site (MIDAS) motif in EbpA is necessary for Ebp function in vivo. As this motif occurs in other sortase-assembled pili, our results have implications for the molecular basis of virulence not only in E. faecalis CAUTI but also in additional infections caused by enterococci and other Gram-positive pathogens.
Collapse
|
43
|
Abstract
Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen.
Collapse
|
44
|
Hendrickx APA, Poor CB, Jureller JE, Budzik JM, He C, Schneewind O. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus. Mol Microbiol 2012; 85:152-63. [PMID: 22624947 DOI: 10.1111/j.1365-2958.2012.08098.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA - CNA(1), CNA(2), XNA and CNA(3) - each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA(2) or CNA(3) domains retain the ability to form pilus bundles. A mutant lacking the CNA(1) isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp(312) Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp(312) Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA(1) and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.
Collapse
|
45
|
Abstract
The genus Enterococcus includes some of the most important nosocomial multidrug-resistant organisms, and these pathogens usually affect patients who are debilitated by other, concurrent illnesses and undergoing prolonged hospitalization. This Review discusses the factors involved in the changing epidemiology of enterococcal infections, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem. The effects of antibiotics on the gut microbiota and on colonization with vancomycin-resistant enterococci are highlighted, including how enterococci benefit from the antibiotic-mediated eradication of gram-negative members of the gut microbiota. Analyses of enterococcal genomes indicate that there are certain genetic lineages, including an E. faecium clade of ancient origin, with the ability to succeed in the hospital environment, and the possible virulence determinants that are found in these genetic lineages are discussed. Finally, we review the most important mechanisms of resistance to the antibiotics that are used to treat vancomycin-resistant enterococci.
Collapse
|
46
|
Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 2012; 78:2337-44. [PMID: 22247175 DOI: 10.1128/aem.07047-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193-17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacilli.
Collapse
|
47
|
Imam S, Chen Z, Roos DS, Pohlschröder M. Identification of surprisingly diverse type IV pili, across a broad range of gram-positive bacteria. PLoS One 2011; 6:e28919. [PMID: 22216142 PMCID: PMC3244431 DOI: 10.1371/journal.pone.0028919] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/17/2011] [Indexed: 01/19/2023] Open
Abstract
Background In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available. Results To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes. Conclusions We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Saheed Imam
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhongqiang Chen
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mechthild Pohlschröder
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Paganelli FL, Willems RJ, Leavis HL. Optimizing future treatment of enterococcal infections: attacking the biofilm? Trends Microbiol 2011; 20:40-9. [PMID: 22169461 DOI: 10.1016/j.tim.2011.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/19/2011] [Accepted: 11/02/2011] [Indexed: 11/16/2022]
Abstract
Enterococcus faecalis and Enterococcus faecium are among the leading causative agents of nosocomial infections and are infamous for their resistance to many antibiotics. They cause difficult-to-treat infections, often originating from biofilm-mediated infections associated with implanted medical devices or endocarditis. Biofilms protect bacteria against antibiotics and phagocytosis, and physical removal of devices or infected tissue is often needed but is frequently not possible. Currently there are no clinically available compounds that disassemble biofilms. In this review we discuss all known structural and regulatory genes involved in enterococcal biofilm formation, the compounds directed against biofilm formation that have been studied, and potentially useful targets for future drugs to treat enterococcal biofilm-associated infections.
Collapse
Affiliation(s)
- Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
49
|
Heikens E, Singh KV, Jacques-Palaz KD, van Luit-Asbroek M, Oostdijk EAN, Bonten MJM, Murray BE, Willems RJL. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect 2011; 13:1185-90. [PMID: 21911077 DOI: 10.1016/j.micinf.2011.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 12/15/2022]
Abstract
The enterococcal surface protein Esp, specifically linked to nosocomial Enterococcus faecium, is involved in biofilm formation. To assess the role of Esp in endocarditis, a biofilm-associated infection, an Esp-expressing E. faecium strain (E1162) or its Esp-deficient mutant (E1162Δesp) were inoculated through a catheter into the left ventricle of rats. After 24 h, less E1162Δesp than E1162 were recovered from heart valve vegetations. In addition, anti-Esp antibodies were detected in Esp-positive E. faecium bacteremia and endocarditis patient sera. In conclusion, Esp contributes to colonization of E. faecium at the heart valves. Furthermore, systemic infection elicits an Esp-specific antibody response in humans.
Collapse
Affiliation(s)
- Esther Heikens
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Choudhury T, Singh KV, Sillanpää J, Nallapareddy SR, Murray BE. Importance of two Enterococcus faecium loci encoding Gls-like proteins for in vitro bile salts stress response and virulence. J Infect Dis 2011; 203:1147-54. [PMID: 21451003 DOI: 10.1093/infdis/jiq160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
General stress proteins, Gls24 and GlsB, were previously shown to be involved in bile salts resistance of Enterococcus faecalis and in virulence. Here, we identified 2 gene clusters in Enterococcus faecium each encoding a homolog of Gls24 (Gls33 and Gls20; designated on the basis of their predicted sizes) and of GlsB (GlsB and GlsB1). The sequences of the gls33 and gls20 gene clusters from available genomes indicate distinct lineages, with those of hospital-associated CC17 isolates differing from non-CC17 by ∼7% and ∼3.5%, respectively. Deletion of an individual locus did not have a significant effect on virulence in a mouse peritonitis model, whereas a double-deletion mutant was highly attenuated (P<.004) versus wild-type. However, mutants lacking either gls33-glsB, gls20-glsB1, or both all exhibited increased sensitivity to bile salts. These results suggest that gls-encoded loci may be important for adaptation to the intestinal environment, in addition to being important for virulence functions.
Collapse
Affiliation(s)
- Tina Choudhury
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|