1
|
Canela-Pérez I, Azuara-Liceaga E, Cuéllar P, Saucedo-Cárdenas O, Valdés J. Multiple types of nuclear localization signals in Entamoeba histolytica. Biochem Biophys Rep 2024; 39:101770. [PMID: 39055170 PMCID: PMC11269297 DOI: 10.1016/j.bbrep.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Entamoeba histolytica is a protozoan parasite that belongs to the Amoebozoa supergroup whose study related to the nucleocytoplasmic transport of proteins through the nucleus is poorly studied. In this work, we have performed in silico predictions of the potential nuclear localization signals (NLS) corresponding to the proteome of 8201 proteins from Entamoeba histolytica annotated in the AmoebaDB database. We have found the presence of monopartite nuclear localization signals (MNLSs), bipartite nuclear localization signals (BNLSs), and non-canonical monopartite NLSs with lengths exceeding 20 amino acid residues. Additionally, we detected a new type of NLS consisting of multiple juxtaposed bipartite NLSs (JNLSs) that have not been described in any eukaryotic organism. Also, we have generated consensus sequences for the nuclear import of proteins with the NLSs obtained. Docking experiments between EhImportin α and an MNLS, BNLS, and JNLS outlined the interacting residues between the Importin and cargo proteins, emphasizing their putative roles in nuclear import. By transfecting HA-tagged protein constructs, we assessed the nuclear localization of MNLS (U1A and U2AF1), JMNLS (U2AF2), and non-canonical NLS (N-terminus of Pol ll) in vivo. Our data provide the basis for understanding the nuclear transport process in E. histolytica.
Collapse
Affiliation(s)
- Israel Canela-Pérez
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Patricia Cuéllar
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 67700, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| |
Collapse
|
2
|
Galán-Vásquez E, Gómez-García MDC, Pérez-Rueda E. A landscape of gene regulation in the parasitic amoebozoa Entamoeba spp. PLoS One 2022; 17:e0271640. [PMID: 35913975 PMCID: PMC9342746 DOI: 10.1371/journal.pone.0271640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Entamoeba are amoeboid extracellular parasites that represent an important group of organisms for which the regulatory networks must be examined to better understand how genes and functional processes are interrelated. In this work, we inferred the gene regulatory networks (GRNs) in four Entamoeba species, E. histolytica, E. dispar, E. nuttalli, and E. invadens, and the GRN topological properties and the corresponding biological functions were evaluated. From these analyses, we determined that transcription factors (TFs) of E. histolytica, E. dispar, and E. nuttalli are associated mainly with the LIM family, while the TFs in E. invadens are associated with the RRM_1 family. In addition, we identified that EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E. dispar, ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257 genes in E. invadens. Finally, we identified that three types of processes, Macromolecule metabolic process, Cellular macromolecule metabolic process, and Cellular nitrogen compound metabolic process, are the main biological processes for each network. The results described in this work can be used as a basis for the study of gene regulation in these organisms.
Collapse
Affiliation(s)
- Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- * E-mail: (EG-V); (EP-R)
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
- * E-mail: (EG-V); (EP-R)
| |
Collapse
|
3
|
Niculescu VF. aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene 2020; 726:144174. [DOI: 10.1016/j.gene.2019.144174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
|
4
|
Bartas M, Brázda V, Červeň J, Pečinka P. Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa. Int J Mol Sci 2019; 21:ijms21010006. [PMID: 31861340 PMCID: PMC6981761 DOI: 10.3390/ijms21010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The p53 family of transcription factors plays key roles in development, genome stability, senescence and tumor development, and p53 is the most important tumor suppressor protein in humans. Although intensively investigated for many years, its initial evolutionary history is not yet fully elucidated. Using bioinformatic and structure prediction methods on current databases containing newly-sequenced genomes and transcriptomes, we present a detailed characterization of p53 family homologs in remote members of the Holozoa group, in the unicellular clades Filasterea, Ichthyosporea and Corallochytrea. Moreover, we show that these newly characterized homologous sequences contain domains that can form structures with high similarity to the human p53 family DNA-binding domain, and some also show similarities to the oligomerization and SAM domains. The presence of these remote homologs demonstrates an ancient origin of the p53 protein family.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
- Correspondence: ; Tel.: +420-553-46-2318
| |
Collapse
|
5
|
Biscotti MA, Barucca M, Carducci F, Forconi M, Canapa A. The p53 gene family in vertebrates: Evolutionary considerations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:171-178. [PMID: 31046194 DOI: 10.1002/jez.b.22856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/07/2018] [Accepted: 04/01/2019] [Indexed: 01/20/2023]
Abstract
The origin of the p53 gene family predates multicellular life since TP53 members of this gene family have been found in unicellular eukaryotes. In invertebrates one or two genes attributable to a TP53-like or TP63/73-like gene are present. The radiation into three genes, TP53, TP63, and TP73, has been reported as a vertebrate invention. TP53 is considered the "guardian of the genome" given its role in protecting cells against the DNA damage and cellular stressors. TP63 and TP73 play a role in epithelial development and neurogenesis, respectively. The evolution of the p53 gene family has been the subject of considerable analyses even if several questions remain still open. In this study we addressed the evolutionary history of the p53 gene family in vertebrates performing an extended microsyntenic investigation coupled with a phylogenetic analysis, together with protein domain organization and structure assessment. On the basis of our results we discussed a possible evolutionary scenario according to which a TP53/63/73 ancestor form gave rise to the current TP53 and a TP63/73 form, which in turn independently duplicated into two genes in agnathe and gnathostome lineages.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Niculescu VF. The reproductive life cycle of cancer: Hypotheses of cell of origin, TP53 drivers and stem cell conversions in the light of the atavistic cancer cell theory. Med Hypotheses 2018; 123:19-23. [PMID: 30696584 DOI: 10.1016/j.mehy.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Polyploid giant cancer cells (PGCCs) found in different solid cancers are reproductive cyst-like structures surrounded by an actin envelop. They give rise by hyper-polyploidisation to numerous progeny (microcells, neotic cells) that start a primitive multi-lined lineage and generate subsequent PGCCs by asymmetric cell division and cyclic differentiation. This cancer cell life cycle has multiple similarities with the life cycle of lower eukaryotes (protists) substantiating the atavistic theory of cancer. The primitive cancer life cycle contains several cell types including primary cancer stem cells, somatic cells, as well as reproductive cells, that differentiate new atavistic cyst like structures (aCLSs, PGCCs). Accordingly, cancer stem cells are not transformed normal stem cells (hSCs). Similarities between CSCs and normal hSCs arise from the evolutionary common origin of primitive eukaryotes and more highly evolved eukaryotic cells (stemness evolution). The cell of origin of cancer, as postulated here is a deregulated human cell that has lost, not only relevant control mechanisms and mitotic capacity, but also its normal human p53 network becoming useless for the atavistic life cycle. We believe that this protoprecursor of cancer reactivates an ancient primitive TP53 network originating from the common eukaryotic ancestor. This atavistic p53 helpes to repair genotoxic DNA damages of reproductive cancer cells including CSCs but not DNA damages of somatic cancer cells exposed to genotoxic stress.
Collapse
|
7
|
Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, Valdés J, Herrera-Aguirre ME, Orozco E. The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors 2018. [PMID: 29514716 PMCID: PMC5842622 DOI: 10.1186/s13071-018-2698-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entamoeba histolytica is the protozoan parasite responsible for human amebiasis. It causes up to 100,000 deaths worldwide each year. This parasite has two closely related basal transcription factors, the TATA-box binding protein (EhTBP) and the TBP-related factor 1 (EhTRF1). TBP binds to the canonical TATTTAAA-box, as well as to different TATA variants. TRF1 also binds to the TATTTAAA-box. However, their binding capacity to diverse core promoter elements, including the GAAC-element, and their role in gene regulation in this parasite remains unknown. METHODS EMSA experiments were performed to determine the binding capacity of recombinant TBP and TRF1 to TATA variants, GAAC and GAAC-like boxes. For the functional analysis under different stress stimuli (e.g. growth curve, serum depletion, heat-shock, and UV-irradiation) and during the interaction with mammalian cells (erythrocytes, MDCK cell monolayers, and hepatocytes of hamsters), RT-qPCR, and gene knockdown were performed. RESULTS Both transcription factors bound to the different TATA variants tested, as well as to the GAAC-boxes, suggesting that they are GAAC-box-binding proteins. The K D values determined for TBP and TRF1 for the different TATA variants and GAAC-box were in the range of 10-12 M to 10-11 M. During the death phase of growth or in serum depletion, Ehtbp mRNA levels significantly increased, whereas the mRNA level of Ehtrf1 did not change under these conditions. Ehtrf1 gene expression was negatively regulated by UV-irradiation and heat-shock stress, with no changes in Ehtbp gene expression. Moreover, Ehtrf1 gene also showed a negative regulation during erythrophagocytosis, liver abscess formation, and a transient expression level increase at the initial phase of MDCK cell destruction. Finally, the Ehtbp gene knockdown displayed a drastic decrease in the efficiency of erythrophagocytosis in G3 trophozoites. CONCLUSIONS To our knowledge, this study reveals that these basal transcription factors are able to bind multiple core promoter elements. However, their immediate change in gene expression level in response to different stimuli, as well as during the interaction with mammalian cells, and the diminishing of erythrophagocytosis by silencing the Ehtbp gene indicate the different physiological roles of these transcription factors in E. histolytica.
Collapse
Affiliation(s)
- Ravi Kumar Narayanasamy
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sanchez
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional (ENMH-IPN), Guillermo Massieu Helguera 239, Col. La Escalera, C.P, 07320, Ciudad de México, Mexico.,Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, C.P, 71256, Oaxaca, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico.
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| |
Collapse
|
8
|
Wylie A, Lu WJ, D'Brot A, Buszczak M, Abrams JM. p53 activity is selectively licensed in the Drosophila stem cell compartment. eLife 2014; 3:e01530. [PMID: 24618896 PMCID: PMC3949305 DOI: 10.7554/elife.01530] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oncogenic stress provokes tumor suppression by p53 but the extent to which this regulatory axis is conserved remains unknown. Using a biosensor to visualize p53 action, we find that Drosophila p53 is selectively active in gonadal stem cells after exposure to stressors that destabilize the genome. Similar p53 activity occurred in hyperplastic growths that were triggered either by the RasV12 oncoprotein or by failed differentiation programs. In a model of transient sterility, p53 was required for the recovery of fertility after stress, and entry into the cell cycle was delayed in p53- stem cells. Together, these observations establish that the stem cell compartment of the Drosophila germline is selectively licensed for stress-induced activation of the p53 regulatory network. Furthermore, the findings uncover ancestral links between p53 and aberrant proliferation that are independent of DNA breaks and predate evolution of the ARF/Mdm2 axis. DOI:http://dx.doi.org/10.7554/eLife.01530.001 The most common genetic change seen in cancer patients produces a faulty version of the p53 protein, which normally restricts tissue growth. This change promotes cancer because cells can now divide faster and fail to die when they should. Much remains to be learned about how p53 functions to restrain growth. As p53 is found in primitive organisms, and cancer is unlikely to have significantly influenced evolution, suppressing tumor formation was almost certainly not the original function of this gene. Furthermore, p53 works in a different way compared to many other tumour suppressors. Therefore, prevention of cancer is likely to have evolved as a side effect derived from more ancient functions. Recently, a link between p53 and stem cells has been uncovered. Stem cells are special because they can develop into many different types of cells, and they are crucial for the growth and repair of tissues. To form a particular type of cell, the stem cell divides to create two daughter cells. Commonly, one daughter cell stays in the stem state, whereas the other becomes a particular type of cell, such as a nerve cell or muscle cell. Because of this special property, scientists hypothesize that stem cells have special mechanisms to protect them from DNA damage that might partially depend on p53. This would prevent the spread of damaged genomes that would otherwise occur among daughter cells. To learn more about how p53 influences stem cells, Wylie, Lu et al. monitored its activity in the gonads of fruit flies, which are a powerful genetic model. They found that damaging DNA activates p53 in stem cells and their daughter cells, but not in other types of cells that have been damaged. In addition, p53 is activated by the uncontrolled growth and division of stem cells in the gonad, even when DNA is not damaged. This is unexpected since molecules linking inappropriate growth to p53 were thought to be present only in mammals. Therefore, it appears that the tumor-suppressing behavior of p53 in mammals was adapted from its more ancient ability to regulate stem cell growth—an ability that evolved before organisms divided into vertebrates and invertebrates. DOI:http://dx.doi.org/10.7554/eLife.01530.002
Collapse
Affiliation(s)
- Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | | | | |
Collapse
|
9
|
Xue B, Brown CJ, Dunker AK, Uversky VN. Intrinsically disordered regions of p53 family are highly diversified in evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:725-38. [PMID: 23352836 DOI: 10.1016/j.bbapap.2013.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/28/2012] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Proteins of the p53 family are expressed in vertebrates and in some invertebrate species. The main function of these proteins is to control and regulate cell cycle in response to various cellular signals, and therefore to control the organism's development. The regulatory functions of the p53 family members originate mostly from their highly-conserved and well-structured DNA-binding domains. Many human diseases (including various types of cancer) are related to the missense mutations within this domain. The ordered DNA-binding domains of the p53 family members are surrounded by functionally important intrinsically disordered regions. In this study, substitution rates and propensities in different regions of p53 were analyzed. The analyses revealed that the ordered DNA-binding domain is conserved, whereas disordered regions are characterized by high sequence diversity. This diversity was reflected both in the number of substitutions and in the types of substitutions to which each amino acid was prone. These results support the existence of a positive correlation between protein intrinsic disorder and sequence divergence during the evolutionary process. This higher sequence divergence provides strong support for the existence of disordered regions in p53 in vivo for if they were structured, they would evolve at similar rates as the rest of the protein.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
10
|
Jolliffe AK, Derry WB. The TP53 signaling network in mammals and worms. Brief Funct Genomics 2012; 12:129-41. [PMID: 23165352 DOI: 10.1093/bfgp/els047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has been an invaluable model organism for studying the molecular mechanisms that govern cell fate, from fundamental aspects of multicellular development to programmed cell death (apoptosis). The transparency of this organism permits visualization of cells in living animals at high resolution. The powerful genetics and functional genomics tools available in C. elegans allow for detailed analysis of gene function, including genes that are frequently deregulated in human diseases such as cancer. The TP53 protein is a critical suppressor of tumor formation in vertebrates, and the TP53 gene is mutated in over 50% of human cancers. TP53 suppresses malignancy by integrating a variety of cellular stresses that direct it to activate transcription of genes that help to repair the damage or trigger apoptotic death if the damage is beyond repair. The TP53 paralogs, TP63 and TP73, have distinct roles in development as well as overlapping functions with TP53 in apoptosis and repair, which complicates their analysis in vertebrates. C. elegans contains a single TP53 family member, cep-1, that shares properties of all three vertebrate genes and thus offers a simple system in which to study the biological functions of this important gene family. This review summarizes major advances in our understanding of the TP53 family using C. elegans as a model organism.
Collapse
|
11
|
Frezza C, Martins CP. From tumor prevention to therapy: Empowering p53 to fight back. Drug Resist Updat 2012; 15:258-67. [DOI: 10.1016/j.drup.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/06/2012] [Accepted: 10/06/2012] [Indexed: 12/20/2022]
|
12
|
A functional study of nucleocytoplasmic transport signals of the EhNCABP166 protein from Entamoeba histolytica. Parasitology 2012; 139:1697-710. [PMID: 22906852 DOI: 10.1017/s0031182012001199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
EhNCABP166 is an Entamoeba histolytica actin-binding protein that localizes to the nucleus and cytoplasm. Bioinformatic analysis of the EhNCABP166 amino acid sequence shows the presence of 3 bipartite nuclear localization signals (NLS) and a nuclear export signal (NES). The present study aimed to investigate the functionality of these signals in 3 ways. First, we fused each potential NLS to a cytoplasmic domain of ehFLN to determine whether the localization of this domain could be altered by the presence of the NLSs. Furthermore, the localization of each domain of EhNCABP166 was determined. Similarly, we generated mutations in the first block of bipartite signals from the domains that contained these signals. Additionally, we added an NES to 2 constructs that were then evaluated. We confirmed the intranuclear localization of EhNCABP166 using transmission electron microscopy. Fusion of each NLS resulted in shuttling of the cytoplasmic domain to the nucleus. With the exception of 2 domains, all of the evaluated domains localized within the nucleus. A mutation in the first block of bipartite signals affected the localization of the domains containing an NLS. The addition of an NES shifted the localization of these domains to the cytoplasm. The results presented here establish EhNCABP166 as a protein containing functional nuclear localization signals and a nuclear export signal.
Collapse
|
13
|
Huang N, Clem RJ, Rohrmann GF. Characterization of cDNAs encoding p53 of Bombyx mori and Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:613-619. [PMID: 21497653 DOI: 10.1016/j.ibmb.2011.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/14/2011] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
Complementary DNAs encoding homologs of the tumor suppressor gene, p53, were characterized from two lepidopteran insects, Bombyx mori (Bm) and Spodoptera frugiperda (Sf). They encoded predicted proteins of 368 (41.2 kDa) (Bm) and 374 (42.5 kDa) (Sf) amino acids. The sequences shared 44% amino acid and 60% nucleotide sequence identity with each other, but exhibited less than 20% amino acid and 46% nucleotide sequence identity to Drosophila melanogaster p53. Despite the sequence diversity, conserved amino acids involved in DNA and zinc binding were present in the lepidopteran sequences. Expression of Sfp53-induced apoptosis in S. frugiperda cells, and antiserum made against recombinant Sfp53 recognized a protein whose abundance increased after treatment with DNA damaging agents.
Collapse
Affiliation(s)
- Ning Huang
- Division of Biology, Kansas State University, Manhattan, KS 66503, USA
| | | | | |
Collapse
|
14
|
Identification of a polypeptide containing Tudor and staphyloccocal nuclease-like domains as the sequence-specific binding protein to the upstream regulatory element 1 of Entamoeba histolytica. Int J Parasitol 2011; 41:775-82. [DOI: 10.1016/j.ijpara.2011.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/21/2022]
|
15
|
Pearson RJ, Singh U. Approaches to characterizing Entamoeba histolytica transcriptional regulation. Cell Microbiol 2010; 12:1681-90. [DOI: 10.1111/j.1462-5822.2010.01524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution 2010; 65:3-20. [PMID: 20722725 DOI: 10.1111/j.1558-5646.2010.01103.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- University of New Brunswick, Department of Biology, Fredericton, NB, Canada.
| | | | | | | | | |
Collapse
|
17
|
Rutkowski R, Hofmann K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2010; 2:a001131. [PMID: 20595397 DOI: 10.1101/cshperspect.a001131] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53 superfamily members mainly act in apoptosis regulation in response to genotoxic agents and do not have overt developmental functions. We summarize the literature on cnidarian and mollusc p53 superfamily members and focus on the function and regulation of Drosophila melanogaster and Caenorhabditis elegans p53 superfamily members in triggering apoptosis. Furthermore, we examine the emerging evidence showing that invertebrate p53 superfamily proteins also have functions unrelated to apoptosis, such as DNA repair, cell cycle checkpoint responses, compensatory proliferation, aging, autophagy, and innate immunity.
Collapse
Affiliation(s)
- Rachael Rutkowski
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
18
|
Meneses E, Cárdenas H, Zárate S, Brieba LG, Orozco E, López-Camarillo C, Azuara-Liceaga E. The R2R3 Myb protein family in Entamoeba histolytica. Gene 2010; 455:32-42. [PMID: 20156532 DOI: 10.1016/j.gene.2010.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/16/2022]
Abstract
The MYB DNA-binding domain is conserved in vertebrates, plants, and fungi. This domain mediates the DNA-binding activity of proteins (that have transcription factor activity) in a sequence-specific manner and is also used for the protection of telomeric regions. The MYB DNA-binding domain contains three imperfect conserved repeats of 52 amino acids (R1, R2, and R3). Within each repeat, there are three tryptophans that are separated by 18 or 19 amino acids. In order to understand the role of Myb transcription factors in Entamoeba histolytica, we searched for MYB DNA-binding domain containing proteins using the amino acid sequence of human c-Myb as the query. We found 34 putative MYB DNA-binding domain containing proteins, which clustered into three monophyletic groups. Family I members conserve only the R2 and R3 repeats in their MYB DNA-binding domain and were dubbed in this report as EhMybR2R3. Family II includes single-repeat proteins related to human telomeric binding proteins. Family III is predicted to comprise proteins with one single repeat where the region corresponding to the conserved tryptophan of the third alpha helix is replaced by a (S)/(T)HAQK(Y)/(F)F motif; this family was named EhMybSHAQKYF. In this work, we focused on proteins that belong to the EhMybR2R3 family. RT-PCR analysis showed that EhMybR2R3 genes were differentially expressed in trophozoites grown in basal culture conditions. Purified rEhMyb10 protein, belonging to the EhMybR2R3 family, was able to bind a consensus Myb recognition element in vitro. In addition, using nuclear extracts from trophozoites of E. histolytica, we were able to detect Myb DNA-binding activity to this sequence. Our in silico surveys demonstrated that this consensus sequence is present in E. histolytica gene promoters. Interestingly, these promoters include different families of genes that are related to signal transduction, vesicular transport, heat shock response, and virulence. Thus, Myb putative transcription factors in E. histolytica could be involved in the transcriptional regulation of genes participating in several different pathways.
Collapse
Affiliation(s)
- Eric Meneses
- Universidad Autónoma de la Ciudad de México, Posgrado en Ciencias Genómicas, San Lorenzo 290, México DF, México
| | | | | | | | | | | | | |
Collapse
|
19
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|
20
|
Identification of four Entamoeba histolytica organellar DNA polymerases of the family B and cellular localization of the Ehodp1 gene and EhODP1 protein. J Biomed Biotechnol 2010; 2010:734898. [PMID: 20300437 PMCID: PMC2840583 DOI: 10.1155/2010/734898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/15/2009] [Indexed: 11/20/2022] Open
Abstract
We report the identification of a family of four active genes (Ehodp1, Ehodp2, Ehodp3, and Ehodp4) encoding putative DNA polymerases in Entamoeba histolytica, the protozoan parasite responsible of human amoebiasis. The four Ehodp genes show similarity to DNA polymerases encoded in fungi and plant mitochondrial plasmids. EhODP polypeptides conserve the 3′-5′ exonuclease II and 5′-3′ polymerization domains, and they have the I, II, and III conserved boxes that characterize them as DNA polymerases of family B. Furthermore, we found in EhODP polymerases two novel A and B boxes, present also in DNA polymerases encoded in fungi mitochondrial plasmids. By in situ PCR, Ehodp1 gene was located in nuclei and in DNA-containing cytoplasmic structures. Additionally, using polyclonal antibodies against a recombinant rEhODP1-168 polypeptide, and confocal microscopy, EhODP1 was located in cytoplasmic DNA-containing structures.
Collapse
|
21
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
22
|
Castañon-Sanchez CA, Luna-Arias JP, de Dios-Bravo MG, Herrera-Aguirre ME, Olivares-Trejo JJ, Orozco E, Hernandez JM. Entamoeba histolytica: A unicellular organism containing two active genes encoding for members of the TBP family. Protein Expr Purif 2010; 70:48-59. [DOI: 10.1016/j.pep.2009.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/06/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
|
23
|
Middelbeek J, Clark K, Venselaar H, Huynen MA, van Leeuwen FN. The alpha-kinase family: an exceptional branch on the protein kinase tree. Cell Mol Life Sci 2010; 67:875-90. [PMID: 20012461 PMCID: PMC2827801 DOI: 10.1007/s00018-009-0215-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 01/19/2023]
Abstract
The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg(2+) homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kristopher Clark
- MRC Protein Phosphorylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland UK
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank N. van Leeuwen
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
24
|
Abstract
Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?
Collapse
Affiliation(s)
- Wan-Jin Lu
- Wan-Jin Lu and John M. Abrams are at the Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
25
|
Suman S, Khaitan D, Pati U, Seth RK, Chandna S. Stress response of a p53 homologue in the radioresistant Sf9 insect cells. Int J Radiat Biol 2009; 85:238-49. [DOI: 10.1080/09553000902748591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Nedelcu AM. Comparative Genomics of Phylogenetically Diverse Unicellular Eukaryotes Provide New Insights into the Genetic Basis for the Evolution of the Programmed Cell Death Machinery. J Mol Evol 2009; 68:256-68. [DOI: 10.1007/s00239-009-9201-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/21/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
|
27
|
Meléndez-Hernández MG, Barrios MLL, Orozco E, Luna-Arias JP. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein. BMC Microbiol 2008; 8:235. [PMID: 19108705 PMCID: PMC2629482 DOI: 10.1186/1471-2180-8-235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
Collapse
|
28
|
Characterization of an Entamoeba histolytica high-mobility-group box protein induced during intestinal infection. EUKARYOTIC CELL 2008; 7:1565-72. [PMID: 18658254 DOI: 10.1128/ec.00123-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine.
Collapse
|
29
|
Fernandes AD, Atchley WR. Biochemical and functional evidence of p53 homology is inconsistent with molecular phylogenetics for distant sequences. J Mol Evol 2008; 67:51-67. [PMID: 18560747 DOI: 10.1007/s00239-008-9124-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/11/2008] [Accepted: 05/12/2008] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is mutated in approximately 50% of all human cancer cases worldwide. It is commonly assumed that the phylogenetic history of this important tumor suppressor has been thoroughly studied; however, few detailed studies of the entire extended p53 protein family have been reported, and none comprehensively and simultaneously consider functional, molecular, and phylogenetic data. Herein we examine a diverse collection of reported p53-like protein sequences, including representatives from the arthropods, nematodes, and protists, with the goal of answering several important questions. First, what evidence supports these highly divergent proteins being true homologues to the p53 family? Second, is the inferred overall family phylogeny concordant with known structures and functions? Third, does the extended p53 family possess recognizable conserved sites outside of the within-chordate, highly-conserved DNA-binding domain? Our study shows that the biochemical and functional evidence of p53 homology for nematodes, arthropods, and protists is inconsistent with their implied phylogenetic relationship within the overall family. Although these divergent sequences are always reported as functionally similar to human p53, our results confirm and extend the hypothesis that p63 is a far more appropriate protein for comparison. Within these divergent sequences, we find minimal conservation within the DNA-binding domain, and no conservation elsewhere. Taken together, our findings suggest that these sequences are not bona fide homologues of the extended p53 family and provide baseline criteria for the future identification and characterization of distant p53-family homologues.
Collapse
Affiliation(s)
- Andrew D Fernandes
- Graduate Program in Biomathematics, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | | |
Collapse
|
30
|
López-Camarillo C, de la Luz García-Hernández M, Marchat LA, Luna-Arias JP, Hernández de la Cruz O, Mendoza L, Orozco E. Entamoeba histolytica EhDEAD1 is a conserved DEAD-box RNA helicase with ATPase and ATP-dependent RNA unwinding activities. Gene 2008; 414:19-31. [PMID: 18374519 DOI: 10.1016/j.gene.2008.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 12/21/2007] [Accepted: 01/30/2008] [Indexed: 01/04/2023]
Abstract
RNA helicases are widely conserved key enzymes that perform multiple functions in RNA metabolism. Here, we present the cloning, expression and functional characterization of the EhDEAD1 RNA helicase in the protozoan parasite Entamoeba histolytica. According to its primary structure, EhDEAD1 is evolutionary related to yeast DED1 and human DDX3X RNA helicases, both involved in translation and cell cycle regulation. The EhDEAD1 predicted amino acid sequence exhibits the nine conserved motifs described for the DEAD-box SFII superfamily members reported in other organisms and it is evolutionary close to protozoan homologues. Purified recombinant EhDEAD1 protein presented ATPase activity and it was able to bind and unwind RNA in an ATPase-dependent manner in vitro. RT-PCR assays showed that EhDead1 gene is overtranscribed in the cell cycle S phase. Moreover, inhibition of EhDead1 gene expression by antisense RNA seemed to facilitate transition from S to G2/M phase. Intriguingly, our results showed that EhDEAD1 was unable to rescue two yeast Ded1 RNA helicase mutants affected in translation, in spite of the high sequence homology with yeast DED1.
Collapse
Affiliation(s)
- César López-Camarillo
- Universidad Autónoma de la Ciudad de México, Posgrado en Ciencias Genómicas, México, DF, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Durand PM, Coetzer TL. Utility of computational methods to identify the apoptosis machinery in unicellular eukaryotes. Bioinform Biol Insights 2008; 2:101-17. [PMID: 19812769 PMCID: PMC2735952 DOI: 10.4137/bbi.s430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is the phenotypic result of an active, regulated process of self-destruction. Following various cellular insults, apoptosis has been demonstrated in numerous unicellular eukaryotes, but very little is known about the genes and proteins that initiate and execute this process in this group of organisms. A bioinformatic approach presents an array of powerful methods to direct investigators in the identification of the apoptosis machinery in protozoans. In this review, we discuss some of the available computational methods and illustrate how they may be applied using the identification of a Plasmodium falciparum metacaspase gene as an example.
Collapse
Affiliation(s)
- Pierre Marcel Durand
- Department of Molecular Medicine and Haematology, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa.
| | | |
Collapse
|
32
|
Nedelcu AM, Tan C. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 2007; 217:801-6. [PMID: 17924139 DOI: 10.1007/s00427-007-0185-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/18/2007] [Indexed: 01/31/2023]
Abstract
The p53 tumor suppressor plays the leading role in malignancy and in maintaining the genome's integrity and stability. p53 belongs to a gene family that in vertebrates includes two additional members, p63 and p73. Although similar in sequence, gene structure, and expression potential, the three p53 members differ in domain organization (in addition to the transactivation, DNA-binding, and tetramerization domains, p63 and p73 encode a sterile alpha motif, SAM, domain) and functional roles (with p63 and p73 assuming additional key roles in development). It is interesting to note that outside vertebrates, p53-like sequences have only been found as single genes, of either the p53 or the p63/p73 type (i.e., without or with a SAM domain, respectively). In this paper, we report that the diversification of this family is not restricted to the vertebrate lineage, as both a p53- and a p63/p73-type sequence are present in the unicellular choanoflagellate, Monosiga brevicollis. Furthermore, multiple independent duplication events involving p53-type sequences took place in several other animal lineages (cnidarians, flat worms, insects). These findings argue that selective factors other than those associated with the evolution of vertebrates are also relevant to the diversification of this family. Understanding the selective pressures associated with the multiple independent duplication events that took place in the p53 family and the roles of p53-like proteins outside vertebrates will provide further insight into the evolution of this very important family. In addition, the presence of both a p53 and a p63/73 copy in the unicellular M. brevicollis argues for its suitability as a model system for elucidating the functions of the p53 members and the mechanisms associated with their functional diversification.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 6E1, Canada.
| | | |
Collapse
|
33
|
Ramos E, Olivos-García A, Nequiz M, Saavedra E, Tello E, Saralegui A, Montfort I, Pérez Tamayo R. Entamoeba histolytica: apoptosis induced in vitro by nitric oxide species. Exp Parasitol 2007; 116:257-65. [PMID: 17336295 DOI: 10.1016/j.exppara.2007.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 11/30/2022]
Abstract
Apoptosis has been described in some parasites like Leishmania, Trypanosoma, and Trichomonas. This phenomenon has not been observed yet in Entamoeba histolytica. This work analyzed the in vitro effect of sodium nitroprusside, sodium nitrite and sodium nitrate (NOs) on E. histolytica apoptosis. Parasites incubated for 1h with NOs revealed apoptosis 6h later (95% viability), demonstrated by YOPRO-1, TUNEL, DNA fragmentation and low ATP levels. The caspase inhibitor Z-VAD-FMK inhibited total intracellular cysteine protease activity (CPA) but had no effect on apoptosis. When treated with NOs some amebic functions like complement resistance and hemolytic activity decreased but CPA and erythrophagocytosis remained unchanged. After treatment in vitro with NOs, parasite death was almost complete at 24h; but when injected into hamster livers they disappeared in less than 6h. These results show that apoptosis is induced in vitro by NOs in E. histolytica and renders them incapable of surviving in hamster's livers.
Collapse
Affiliation(s)
- Espiridión Ramos
- Departamento de Medicina, Experimental, Facultad de Medicina;Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lokshin M, Li Y, Gaiddon C, Prives C. p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res 2006; 35:340-52. [PMID: 17170001 PMCID: PMC1802567 DOI: 10.1093/nar/gkl1047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 12/11/2022] Open
Abstract
Although p53 and p73 share considerable homology in their DNA-binding domains, there have been few studies examining their relative interactions with DNA as purified proteins. Comparing p53 and p73beta proteins, our data show that zinc chelation by EDTA is significantly more detrimental to the ability of p73beta than of p53 to bind DNA, most likely due to the greater effect that the loss of zinc has on the conformation of the DNA-binding domain of p73. Furthermore, prebinding to DNA strongly protects p73beta but not p53 from chelation by EDTA suggesting that DNA renders the core domain of p73 less accessible to its environment. Further exploring these biochemical differences, a five-base sub-sequence was identified in the p53 consensus binding site that confers a greater DNA-binding stability on p73beta than on full-length p53 in vitro. Surprisingly, p53 lacking its C-terminal non-specific DNA-binding domain (p53Delta30) demonstrates the same sequence discrimination as does p73beta. In vivo, both p53 and p73beta exhibit higher transactivation of a reporter with a binding site containing this sub-sequence, suggesting that lower in vitro dissociation translates to higher in vivo transactivation of sub-sequence-containing sites.
Collapse
Affiliation(s)
- Maria Lokshin
- Department of Biological Sciences, Columbia UniversityNew York, NY 10027, USA
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Yingchun Li
- Department of Biological Sciences, Columbia UniversityNew York, NY 10027, USA
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Christian Gaiddon
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Carol Prives
- To whom correspondence should be addressed. Tel: +1 212 854 2557; Fax: +1 212 865 8246;
| |
Collapse
|
35
|
Nedelcu AM. Evidence for p53-like-mediated stress responses in green algae. FEBS Lett 2006; 580:3013-7. [PMID: 16678168 DOI: 10.1016/j.febslet.2006.04.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/21/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
The tumor suppressor protein, p53, plays a major role in cellular responses to stress and DNA damage in animals; despite its critical function, p53 homologs have not been identified in any algal or plant lineage. This study employs a functional and evolutionary approach to test for a p53 functional equivalent in green algae. Specifically, the study: (i) investigated the effect of two synthetic compounds known to interfere with p53 activity; (ii) searched for sequences with similarity to known p53-induced genes; and (iii) analyzed the expression pattern of one such sequence. The findings reported here suggest that a p53 functional equivalent is present and mediates cellular responses to stress in green algae.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Mail Service 45111, Fredericton, NB, Canada E3B 6E1.
| |
Collapse
|
36
|
de Dios-Bravo G, Luna-Arias JP, Riverón AM, Olivares-Trejo JJ, López-Camarillo C, Orozco E. Entamoeba histolytica TATA-box binding protein binds to different TATA variants in vitro. FEBS J 2005; 272:1354-1366. [PMID: 15752353 DOI: 10.1111/j.1742-4658.2005.04566.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of Entamoeba histolytica TATA binding protein (EhTBP) to interact with different TATA boxes in gene promoters may be one of the key factors to perform an efficient transcription in this human parasite. In this paper we used several TATA variants to study the in vitro EhTBP DNA-binding activity and to determine the TATA-EhTBP dissociation constants. The presence of EhTBP in complexes formed by nuclear extracts (NE) and the TATTTAAA oligonucleotide, which corresponds to the canonical TATA box for E. histolytica, was demonstrated by gel-shift assays. In these experiments a single NE-TATTTAAA oligonucleotide complex was detected. Complex was retarded by anti-EhTBP Igs in supershift experiments and antibodies also recognized the cross-linked complex in Western blot assays. Recombinant EhTBP formed specific complexes with TATA variants found in E. histolytica gene promoters and other TATA variants generated by mutation of TATTTAAA sequence. The dissociation constants of recombinant EhTBP for TATA variants ranged between 1.04 (+/-0.39) x 10(-11) and 1.60 (+/-0.37) x 10(-10) m. TATTTAAA and TAT_ _AAA motifs presented the lowest KD values. Intriguingly, the recombinant EhTBP affinity for TATA variants is stronger than other TBPs reported. In addition, EhTBP is more promiscuous than human and yeast TBPs, probably due to modifications in amino acids involved in TBP-DNA binding.
Collapse
Affiliation(s)
- Guadalupe de Dios-Bravo
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico
| | | | | | | | | | | |
Collapse
|
37
|
Huyen Y, Jeffrey PD, Derry WB, Rothman JH, Pavletich NP, Stavridi ES, Halazonetis TD. Structural differences in the DNA binding domains of human p53 and its C. elegans ortholog Cep-1. Structure 2005; 12:1237-43. [PMID: 15242600 DOI: 10.1016/j.str.2004.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/10/2004] [Accepted: 05/10/2004] [Indexed: 11/16/2022]
Abstract
The DNA binding domains of human p53 and Cep-1, its C. elegans ortholog, recognize essentially identical DNA sequences despite poor sequence similarity. We solved the three-dimensional structure of the Cep-1 DNA binding domain in the absence of DNA and compared it to that of human p53. The two domains have similar overall folds. However, three loops, involved in DNA and Zn binding in human p53, contain small alpha helices in Cep-1. The alpha helix in loop L3 of Cep-1 orients the side chains of two conserved arginines toward DNA; in human p53, both arginines are mutation hotspots, but only one contacts DNA. The alpha helix in loop L1 of Cep-1 repositions the entire loop, making it unlikely for residues of this loop to contact bases in the major groove of DNA, as occurs in human p53. Thus, during evolution there have been considerable changes in the structure of the p53 DNA binding domain.
Collapse
|
38
|
Muttray AF, Cox RL, St-Jean S, van Poppelen P, Reinisch CL, Baldwin SA. Identification and phylogenetic comparison of p53 in two distinct mussel species (Mytilus). Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:237-50. [PMID: 15886062 DOI: 10.1016/j.cca.2005.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 11/25/2022]
Abstract
The extent to which humans and wildlife are exposed to anthropogenic challenges is an important focus of environmental research. Potential use of p53 gene family marker(s) for aquatic environmental effects monitoring is the long-term goal of this research. The p53 gene is a tumor suppressor gene that is fundamental in cell cycle control and apoptosis. It is mutated or differentially expressed in about 50% of all human cancers and p53 family members are differentially expressed in leukemic clams. Here, we report the identification and characterization of the p53 gene in two species of Mytilus, Mytilus edulis and Mytilus trossulus, using RT-PCR with degenerate and specific primers to conserved regions of the gene. The Mytilus p53 proteins are 99.8% identical and closely related to clam (Mya) p53. In particular, the 3' untranslated regions were examined to gain understanding of potential post-transcriptional regulatory pathways of p53 expression. We found nuclear and cytoplasmic polyadenylation elements, adenylate/uridylate-rich elements, and a K-box motif previously identified in other, unrelated genes. We also identified a new motif in the p53 3'UTR which is highly conserved across vertebrate and invertebrate species. Differences between the p53 genes of the two Mytilus species may be part of genetic determinants underlying variation in leukemia prevalence and/or development, but this requires further investigation. In conclusion, the conserved regions in these p53 paralogues may represent potential control points in gene expression. This information provides a critical first step in the evaluation of p53 expression as a potential marker for environmental assessment.
Collapse
Affiliation(s)
- Annette F Muttray
- Department of Chemical and Biological Engineering, University of British Columbia, 2216 Main Mall, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | |
Collapse
|
39
|
Gutiérrez-Castellanos S, Cruz M, Rabelo L, Godínez R, Reyes-Maldonado E, Riebeling-Navarro C. Differences in BCL-X(L) expression and STAT5 phosphorylation in chronic myeloid leukaemia patients. Eur J Haematol 2004; 72:231-8. [PMID: 15089759 DOI: 10.1046/j.0902-4441.2003.00201.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic myelogenous leukaemia (CML) cells show expression of BCL-X(L), an anti-apoptotic oncogene. This expression is induced by BCR-ABL protein kinase through activation of the signal transducer and activator of transcription-5 protein (STAT5). To date, however, the contribution of BCL-X(L) and STAT5 to the transforming phenotype in CML is still unclear. This study was aimed at defining the status of activated STAT5 and BCL-X(L) expression and their relation to BCR-ABL rearrangement in CML cells derived from patients at different clinical stages. Twenty-seven consecutive patients with CML were enrolled in the study. Peripheral blood mononuclear cells were lysed and subjected to immunoprecipitation and Western blotting to analyse phosphorylated STAT5. The p210 BCR-ABL rearrangements were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and BCL-X(L) expression by semi-quantitative RT-PCR. We found that increased transcription of BCL-X(L) gene was associated with phosphorylated STAT5 in the majority of blast crisis patients and in a few accelerated and chronic phase patients. Moreover, BCL-X(L) expression levels were found to be decreased in chronic phase, contrary to a marked increase in blast crisis. We found no difference in expression of BCL-X(L) and phosphorylated STAT5 when related with b3a2 and b2a2 BCR-ABL rearrangements. These results suggest that STAT5 activity and BCL-X(L) overexpression may reflect a stage of differentiation among CML phases, and this could contribute to BCR-ABL-dependent transformation.
Collapse
MESH Headings
- Adult
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Differentiation
- DNA-Binding Proteins/metabolism
- Disease Progression
- Female
- Fusion Proteins, bcr-abl
- Gene Expression Regulation, Leukemic
- Humans
- Jurkat Cells/metabolism
- K562 Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Accelerated Phase/metabolism
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/metabolism
- Male
- Middle Aged
- Milk Proteins
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- STAT5 Transcription Factor
- Trans-Activators/metabolism
- bcl-X Protein
Collapse
Affiliation(s)
- Sergio Gutiérrez-Castellanos
- Laboratorio de Hematología Especial, Servicio de Hematología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, México, D.F., México.
| | | | | | | | | | | |
Collapse
|
40
|
León-Avila G, Tovar J. Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology (Reading) 2004; 150:1245-1250. [PMID: 15133087 DOI: 10.1099/mic.0.26923-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of mitochondrion-related relict organelles (mitosomes) in the amitochondrial human pathogen Entamoeba histolytica and the detection of extranuclear DNA-containing cytoplasmic structures (EhKOs) has led to the suggestion that a remnant genome from the original mitochondrial endosymbiont might have been retained in this organism. This study reports on the mutually exclusive distribution of Cpn60 and extranuclear DNA in E. histolytica and on the distribution of Cpn60-containing mitosomes in this parasite. In situ nick-translation coupled to immunofluorescence microscopy failed to detect the presence of DNA in mitosomes, either in fixed parasite trophozoites or in partially purified organellar fractions. These results indicate that a remnant organellar genome has not been retained in E. histolytica mitosomes and demonstrate unequivocally that EhKOs and mitosomes are distinct and unrelated cellular structures.
Collapse
Affiliation(s)
- Gloria León-Avila
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
41
|
Luna-Arias JP, Sánchez T, Herrera-Aguirre ME, Chavez P, Garrido E, Orozco E. Purification of Entamoeba histolytica DNA Containing Organelles (EkhOs): A Further Characterization. J Eukaryot Microbiol 2003; 50 Suppl:706-8. [PMID: 14736228 DOI: 10.1111/j.1550-7408.2003.tb00696.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Juan Pedro Luna-Arias
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 Mexico, DF
| | | | | | | | | | | |
Collapse
|