1
|
Gaines MC, Isupov MN, McLaren M, Mollat CL, Haque RU, Stephenson JK, Sivabalasarma S, Hanus C, Kattnig D, Gold VAM, Albers S, Daum B. Towards a molecular picture of the archaeal cell surface. Nat Commun 2024; 15:10401. [PMID: 39614099 PMCID: PMC11607397 DOI: 10.1038/s41467-024-53986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
Archaea produce various protein filaments with specialised functions. While some archaea produce only one type of filament, the archaeal model species Sulfolobus acidocaldarius generates four. These include rotary swimming propellers analogous to bacterial flagella (archaella), pili for twitching motility (Aap), adhesive fibres (threads), and filaments facilitating homologous recombination upon UV stress (UV pili). Here, we use cryo-electron microscopy to describe the structure of the S. acidocaldarius archaellum at 2.0 Å resolution, and update the structures of the thread and the Aap pilus at 2.7 Å and 2.6 Å resolution, respectively. We define features unique to archaella of the order Sulfolobales and compare their structure to those of Aap and threads in the context of the S-layer. We define distinct N-glycan patterns in the three filaments and identify a putative O-glycosylation site in the thread. Finally, we ascertain whether N-glycan truncation leads to structural changes in archaella and Aap.
Collapse
Affiliation(s)
- Matthew C Gaines
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Clara L Mollat
- Institute of Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| | - Risat Ul Haque
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jake K Stephenson
- Living Systems Institute, University of Exeter, Exeter, UK
- School of Natural Sciences, Faculty of Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Shamphavi Sivabalasarma
- Institute of Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266 -Université Paris Cité, Paris, France
| | - Daniel Kattnig
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sonja Albers
- Institute of Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, Krupovic M, Wu H, Wang F. Structural diversity and clustering of bacterial flagellar outer domains. Nat Commun 2024; 15:9500. [PMID: 39489766 PMCID: PMC11532411 DOI: 10.1038/s41467-024-53923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Supercoiled flagellar filaments function as mechanical propellers within the bacterial flagellum complex, playing a crucial role in motility. Flagellin, the building block of the filament, features a conserved inner D0/D1 core domain across different bacterial species. In contrast, approximately half of the flagellins possess additional, highly divergent outer domain(s), suggesting varied functional potential. In this study, we report atomic structures of flagellar filaments from three distinct bacterial species: Cupriavidus gilardii, Stenotrophomonas maltophilia, and Geovibrio thiophilus. Our findings reveal that the flagella from the facultative anaerobic G. thiophilus possesses a significantly more negatively charged surface, potentially enabling adhesion to positively charged minerals. Furthermore, we analyze all AlphaFold predicted structures for annotated bacterial flagellins, categorizing the flagellin outer domains into 682 structural clusters. This classification provides insights into the prevalence and experimental verification of these outer domains. Remarkably, two of the flagellar structures reported herein belong to a distinct cluster, indicating additional opportunities on the study of the functional diversity of flagellar outer domains. Our findings underscore the complexity of bacterial flagellins and open up possibilities for future studies into their varied roles beyond motility.
Collapse
Affiliation(s)
- Jessie Lynda Fields
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Hua Zhang
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nathan F Bellis
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Holly A Petersen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sajal K Halder
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shane T Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, 75015, France
| | - Hui Wu
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Hernández-Sánchez A, Páez-Pérez ED, Alfaro-Saldaña E, Olivares-Illana V, García-Meza JV. Understanding a Core Pilin of the Type IVa Pili of Acidithiobacillus thiooxidans, PilV. J Microbiol Biotechnol 2024; 34:527-537. [PMID: 38346803 PMCID: PMC11016768 DOI: 10.4014/jmb.2310.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.
Collapse
Affiliation(s)
- Araceli Hernández-Sánchez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Edgar D. Páez-Pérez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer. Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, 78210, SLP, México
| | - J. Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| |
Collapse
|
4
|
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, Wu H, Wang F. Structural diversity and clustering of bacterial flagellar outer domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585621. [PMID: 38562817 PMCID: PMC10983879 DOI: 10.1101/2024.03.18.585621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Supercoiled flagellar filaments function as mechanical propellers within the bacterial flagellum complex, playing a crucial role in motility. Flagellin, the building block of the filament, features a conserved inner D0/D1 core domain across different bacterial species. In contrast, approximately half of the flagellins possess additional, highly divergent outer domain(s), suggesting varied functional potential. In this study, we elucidate atomic structures of flagellar filaments from three distinct bacterial species: Cupriavidus gilardii , Stenotrophomonas maltophilia , and Geovibrio thiophilus . Our findings reveal that the flagella from the facultative anaerobic G. thiophilus possesses a significantly more negatively charged surface, potentially enabling adhesion to positively charged minerals. Furthermore, we analyzed all AlphaFold predicted structures for annotated bacterial flagellins, categorizing the flagellin outer domains into 682 structural clusters. This classification provides insights into the prevalence and experimental verification of these outer domains. Remarkably, two of the flagellar structures reported herein belong to a previously unexplored cluster, indicating new opportunities on the study of the functional diversity of flagellar outer domains. Our findings underscore the complexity of bacterial flagellins and open up possibilities for future studies into their varied roles beyond motility.
Collapse
|
5
|
Bacterial Motility and Its Role in Skin and Wound Infections. Int J Mol Sci 2023; 24:ijms24021707. [PMID: 36675220 PMCID: PMC9864740 DOI: 10.3390/ijms24021707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Skin and wound infections are serious medical problems, and the diversity of bacteria makes such infections difficult to treat. Bacteria possess many virulence factors, among which motility plays a key role in skin infections. This feature allows for movement over the skin surface and relocation into the wound. The aim of this paper is to review the type of bacterial movement and to indicate the underlying mechanisms than can serve as a target for developing or modifying antibacterial therapies applied in wound infection treatment. Five types of bacterial movement are distinguished: appendage-dependent (swimming, swarming, and twitching) and appendage-independent (gliding and sliding). All of them allow bacteria to relocate and aid bacteria during infection. Swimming motility allows bacteria to spread from 'persister cells' in biofilm microcolonies and colonise other tissues. Twitching motility enables bacteria to press through the tissues during infection, whereas sliding motility allows cocci (defined as non-motile) to migrate over surfaces. Bacteria during swarming display greater resistance to antimicrobials. Molecular motors generating the focal adhesion complexes in the bacterial cell leaflet generate a 'wave', which pushes bacterial cells lacking appendages, thereby enabling movement. Here, we present the five main types of bacterial motility, their molecular mechanisms, and examples of bacteria that utilise them. Bacterial migration mechanisms can be considered not only as a virulence factor but also as a target for antibacterial therapy.
Collapse
|
6
|
Wang X, Blumenfeld R, Feng XQ, Weitz DA. 'Phase transitions' in bacteria - From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Phys Life Rev 2022; 43:98-138. [PMID: 36252408 DOI: 10.1016/j.plrev.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Phase transitions are common in inanimate systems and have been studied extensively in natural sciences. Less explored are the rich transitions that take place at the micro- and nano-scales in biological systems. In conventional phase transitions, large-scale properties of the media change discontinuously in response to continuous changes in external conditions. Such changes play a significant role in the dynamic behaviours of organisms. In this review, we focus on some transitions in both free-living and biofilms of bacteria. Particular attention is paid to the transitions in the flagellar motors and filaments of free-living bacteria, in cellular gene expression during the biofilm growth, in the biofilm morphology transitions during biofilm expansion, and in the cell motion pattern transitions during the biofilm formation. We analyse the dynamic characteristics and biophysical mechanisms of these phase transition phenomena and point out the parallels between these transitions and conventional phase transitions. We also discuss the applications of some theoretical and numerical methods, established for conventional phase transitions in inanimate systems, in bacterial biofilms.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA.
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Krutyakov YA, Khina AG. Bacterial Resistance to Nanosilver: Molecular Mechanisms and Possible Ways to Overcome them. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lin M, Wu K, Zhan Z, Mi D, Xia Y, Niu X, Feng S, Chen Y, He C, Tao J, Li C. The RavA/VemR two-component system plays vital regulatory roles in the motility and virulence of Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2022; 23:355-369. [PMID: 34837306 PMCID: PMC8828458 DOI: 10.1111/mpp.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/08/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) can cause black rot in cruciferous plants worldwide. Two-component systems (TCSs) are key for bacterial adaptation to various environments, including hosts. VemR is a TCS response regulator and crucial for Xcc motility and virulence. Here, we report that RavA is the cognate histidine kinase (HK) of VemR and elucidate the signalling pathway by which VemR regulates Xcc motility and virulence. Genetic analysis showed that VemR is epistatic to RavA. Using bacterial two-hybrid experiments and pull-down and phosphorylation assays, we found that RavA can interact with and phosphorylate VemR, suggesting that RavA is the cognate HK of VemR. In addition, we found that RpoN2 and FleQ are epistatic to VemR in regulating bacterial motility and virulence. In vivo and in vitro experiments demonstrated that VemR interacts with FleQ but not with RpoN2. RavA/VemR regulates the expression of the flagellin-encoding gene fliC by activating the transcription of the rpoN2-vemR-fleQ and flhF-fleN-fliA operons. In summary, our data show that the RavA/VemR TCS regulates FleQ activity and thus influences the expression of motility-related genes, thereby affecting Xcc motility and virulence. The identification of this novel signalling pathway will deepen our understanding of Xcc-plant interactions.
Collapse
Affiliation(s)
- Maojuan Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Kejian Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Zhaohong Zhan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Duo Mi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Yingying Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Shipeng Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| | - Chunxia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouHainanChina
| |
Collapse
|
9
|
Milana E, Van Raemdonck B, Casla AS, De Volder M, Reynaerts D, Gorissen B. Morphological Control of Cilia-Inspired Asymmetric Movements Using Nonlinear Soft Inflatable Actuators. Front Robot AI 2022; 8:788067. [PMID: 35047567 PMCID: PMC8762291 DOI: 10.3389/frobt.2021.788067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Soft robotic systems typically follow conventional control schemes, where actuators are supplied with dedicated inputs that are regulated through software. However, in recent years an alternative trend is being explored, where the control architecture can be simplified by harnessing the passive mechanical characteristics of the soft robotic system. This approach is named “morphological control”, and it can be used to decrease the number of components (tubing, valves and regulators) required by the controller. In this paper, we demonstrate morphological control of bio-inspired asymmetric motions for systems of soft bending actuators that are interconnected with passive flow restrictors. We introduce bending actuators consisting out of a cylindrical latex balloon in a flexible PVC shell. By tuning the radii of the tube and the shell, we obtain a nonlinear relation between internal pressure and volume in the actuator with a peak and valley in pressure. Because of the nonlinear characteristics of the actuators, they can be assembled in a system with a single pressure input where they bend in a discrete, preprogrammed sequence. We design and analyze two such systems inspired by the asymmetric movements of biological cilia. The first replicates the swept area of individual cilia, having a different forward and backward stroke, and the second generates a travelling wave across an array of cilia.
Collapse
Affiliation(s)
- Edoardo Milana
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Bert Van Raemdonck
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Andrea Serrano Casla
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Michael De Volder
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium.,Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge, United Kingdom
| | - Dominiek Reynaerts
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Benjamin Gorissen
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| |
Collapse
|
10
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
11
|
Zeng Y, Liu B. Self-propelling and rolling of a sessile-motile aggregate of the bacterium Caulobacter crescentus. Commun Biol 2020; 3:587. [PMID: 33067555 PMCID: PMC7568532 DOI: 10.1038/s42003-020-01300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Active dispersal of microorganisms is often attributed to the cells' motile organelles. However, much less is known about whether sessile cells can access such motility through aggregation with motile counterparts. Here, we show that the rosette aggregates of the bacterium Caulobacter crescentus, although predominantly sessile, can actively disperse through the flagellar motors of motile members. Comparisons in kinematics between the motile rosettes and solitary swimming cells indicate that the rosettes can be powered by as few as a single motor. We further reconstructed the 3D movements of the rosettes to reveal that their proximity to a solid-liquid interface promotes a wheel-like rolling, as powered by the flagellar torque. This rolling movement also features a sequence of sharp turns, a reorientation mechanism distinct from that of swimming cells. Overall, our study elucidates an unexplored regime of aggregation-based motility that can be widely applied to sessile-motile composites.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Bin Liu
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA.
| |
Collapse
|
12
|
Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. Quorum sensing regulates 'swim-or-stick' lifestyle in the phycosphere. Environ Microbiol 2020; 22:4761-4778. [PMID: 32896070 PMCID: PMC7693213 DOI: 10.1111/1462-2920.15228] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Interactions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell–cell signalling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC–MS/MS, we identified three QS molecules produced by both bacteria of which only 3‐oxo‐C16:1‐HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.
Collapse
Affiliation(s)
- Cong Fei
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed A Shibl
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen, Germany
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Shady A Amin
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Vijaya Kumar S, Abraham PE, Hurst GB, Chourey K, Bible AN, Hettich RL, Doktycz MJ, Morrell-Falvey JL. A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Sci Rep 2020; 10:14985. [PMID: 32917935 PMCID: PMC7486946 DOI: 10.1038/s41598-020-71672-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Membrane organization plays an important role in signaling, transport, and defense. In eukaryotes, the stability, organization, and function of membrane proteins are influenced by certain lipids and sterols, such as cholesterol. Bacteria lack cholesterol, but carotenoids and hopanoids are predicted to play a similar role in modulating membrane properties. We have previously shown that the loss of carotenoids in the plant-associated bacteria Pantoea sp. YR343 results in changes to membrane biophysical properties and leads to physiological changes, including increased sensitivity to reactive oxygen species, reduced indole-3-acetic acid secretion, reduced biofilm and pellicle formation, and reduced plant colonization. Here, using whole cell and membrane proteomics, we show that the deletion of carotenoid production in Pantoea sp. YR343 results in altered membrane protein distribution and abundance. Moreover, we observe significant differences in the protein composition of detergent-resistant membrane fractions from wildtype and mutant cells, consistent with the prediction that carotenoids play a role in organizing membrane microdomains. These data provide new insights into the function of carotenoids in bacterial membrane organization and identify cellular functions that are affected by the loss of carotenoids.
Collapse
Affiliation(s)
- Sushmitha Vijaya Kumar
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Amber N Bible
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jennifer L Morrell-Falvey
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA. .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
14
|
Song WS, Hong HJ, Yoon SI. Structural study of the flagellar junction protein FlgL from Legionella pneumophila. Biochem Biophys Res Commun 2020; 529:513-518. [PMID: 32703460 DOI: 10.1016/j.bbrc.2020.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila is a flagellated pathogenic bacterium that causes atypical pneumonia called Legionnaires' disease. The flagellum plays a key role in the pathogenesis of L. pneumophila in the host. The protein FlgL forms a junction between the flagellar hook and filament and has been reported to elicit the host humoral immune response. To provide structural insights into FlgL-mediated junction assembly and FlgL-based vaccine design, we performed structural and serological studies on L. pneumophila FlgL (lpFlgL). The crystal structure of a truncated lpFlgL protein that consists of the D1 and D2 domains was determined at 3.06 Å resolution. The D1 domain of lpFlgL adopts a primarily helical, rod-shaped structure, and the D2 domain folds into a β-sandwich structure that is affixed to the upper region of the D1 domain. The D1 domain of lpFlgL exhibits structural similarity to the flagellar filament protein flagellin, allowing us to propose a structural model of the lpFlgL junction based on the polymeric structure of flagellin. Furthermore, the D1 domain of lpFlgL exhibited substantially higher protein stability than the D2 domain and was responsible for most of the antigenicity of lpFlgL, suggesting that the D1 domain of lpFlgL would be a suitable target for the development of an anti-L. pneumophila vaccine.
Collapse
Affiliation(s)
- Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ho Jeong Hong
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Xu L, Sun C, Fang C, Oren A, Xu XW. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470-4495. [PMID: 32726199 PMCID: PMC7660246 DOI: 10.1099/ijsem.0.004293] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
The family Erythrobacteraceae, belonging to the order Sphingomonadales, class Alphaproteobacteria, is globally distributed in various environments. Currently, this family consist of seven genera: Altererythrobacter, Croceibacterium, Croceicoccus, Erythrobacter, Erythromicrobium, Porphyrobacter and Qipengyuania. As more species are identified, the taxonomic status of the family Erythrobacteraceae should be revised at the genomic level because of its polyphyletic nature evident from 16S rRNA gene sequence analysis. Phylogenomic reconstruction based on 288 single-copy orthologous clusters led to the identification of three separate clades. Pairwise comparisons of average nucleotide identity, average amino acid identity (AAI), percentage of conserved protein and evolutionary distance indicated that AAI and evolutionary distance had the highest correlation. Thresholds for genera boundaries were proposed as 70 % and 0.4 for AAI and evolutionary distance, respectively. Based on the phylo-genomic and genomic similarity analysis, the three clades were classified into 16 genera, including 11 novel ones, for which the names Alteraurantiacibacter, Altericroceibacterium, Alteriqipengyuania, Alteripontixanthobacter, Aurantiacibacter, Paraurantiacibacter, Parerythrobacter, Parapontixanthobacter, Pelagerythrobacter, Tsuneonella and Pontixanthobacter are proposed. We reclassified all species of Erythromicrobium and Porphyrobacter as species of Erythrobacter. This study is the first genomic-based study of the family Erythrobacteraceae, and will contribute to further insights into the evolution of this family.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Cong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chen Fang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Oceanography, Hohai University, Nanjing 210000, PR China
| | - Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| |
Collapse
|
16
|
Wakimoto T, Nakagishi S, Matsukawa N, Tani S, Kai K. A Unique Combination of Two Different Quorum Sensing Systems in the β-Rhizobium Cupriavidus taiwanensis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1876-1884. [PMID: 32484353 DOI: 10.1021/acs.jnatprod.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cupriavidus taiwanensis LMG19424, a β-rhizobial symbiont of Mimosa pudica, harbors phc and tqs quorum sensing (QS), which are the homologous cell-cell communication systems previously identified from the plant pathogen Ralstonia solanacearum and the human pathogen Vibrio cholerae, respectively. However, there has been no experimental evidence reported that these QS systems function in C. taiwanensis LMG19424. We identified (R)-methyl 3-hydroxymyristate (3-OH MAME) and (S)-3-hydroxypentadecan-4-one (C15-AHK) as phc and tqs QS signals, respectively, and characterized these QS systems. The expression of the signal synthase gene phcB and tqsA in E. coli BL21(DE3) resulted in the high production of 3-OH MAME and C15-AHK, respectively. Their structures were elucidated by comparison of EI-MS data and GC/chiral LC retention times with synthetic standards. The deletion of phcB reduced cell motility and increased biofilm formation, and the double deletion of phcB/tqsA caused the accumulation of the metal chelator coproporphyrin III in its mutant culture. Although the deletion of phcB and tqsA slightly reduced its ability to nodulate on aseptically grown seedlings of M. pudica, there was no significant difference in nodule formation between LMG19424 and its QS mutants when commercial soils were used. Taken together, this is the first example of the simultaneous production of 3-OH MAME/C15-AHK as QS signals in a bacterial species, and the importance of the phc/tqs QS systems in the saprophytic stage of C. taiwanensis LMG19424 is suggested.
Collapse
Affiliation(s)
- Takayuki Wakimoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiori Nakagishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Nao Matsukawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
17
|
Randolph PS, Stagg SM. Reconstruction of Average Subtracted Tubular Regions (RASTR) enables structure determination of tubular filaments by cryo-EM. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100023. [PMID: 32647826 PMCID: PMC7337063 DOI: 10.1016/j.yjsbx.2020.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 01/17/2023]
Abstract
Tubules (filaments, membrane tubules, etc) that stray from perfect symmetry or have decorations can be difficult to process. New method Reconstruction of Average Subtracted Tubular Regions (RASTR), provides a way to isolate small areas of tubular architecture. Upweighted and masked areas can be treated as single particles and the structure can be resolved using conventional refinement. Successfully reconstructed protein filaments and membrane tubule decorations.
As the field of electron microscopy advances, the increasing complexity of samples being produced demand more involved processing methods. In this study, we have developed a new processing method for generating 3D reconstructions of tubular structures. Tubular biomolecules are common throughout many cellular processes and are appealing targets for biophysical research. Processing of tubules with helical symmetry is relatively straightforward for electron microscopy if the helical parameters are known, but tubular structures that deviate from helical symmetry (asymmetrical components, local but no global order, etc) present myriad issues. Here we present a new processing technique called Reconstruction of Average Subtracted Tubular Regions (RASTR), which was developed to reconstruct tubular structures without applying symmetry. We explain the RASTR approach and quantify its performance using three examples: a simulated symmetrical tubular filament, a symmetrical tubular filament from cryo-EM data, and a membrane tubule coated with locally ordered but not globally ordered proteins.
Collapse
Affiliation(s)
- Peter S Randolph
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
De Maayer P, Pillay T, Coutinho TA. Comparative genomic analysis of the secondary flagellar (flag-2) system in the order Enterobacterales. BMC Genomics 2020; 21:100. [PMID: 32000682 PMCID: PMC6993521 DOI: 10.1186/s12864-020-6529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Background The order Enterobacterales encompasses a broad range of metabolically and ecologically versatile bacterial taxa, most of which are motile by means of peritrichous flagella. Flagellar biosynthesis has been linked to a primary flagella locus, flag-1, encompassing ~ 50 genes. A discrete locus, flag-2, encoding a distinct flagellar system, has been observed in a limited number of enterobacterial taxa, but its function remains largely uncharacterized. Results Comparative genomic analyses showed that orthologous flag-2 loci are present in 592/4028 taxa belonging to 5/8 and 31/76 families and genera, respectively, in the order Enterobacterales. Furthermore, the presence of only the outermost flag-2 genes in many taxa suggests that this locus was far more prevalent and has subsequently been lost through gene deletion events. The flag-2 loci range in size from ~ 3.4 to 81.1 kilobases and code for between five and 102 distinct proteins. The discrepancy in size and protein number can be attributed to the presence of cargo gene islands within the loci. Evolutionary analyses revealed a complex evolutionary history for the flag-2 loci, representing ancestral elements in some taxa, while showing evidence of recent horizontal acquisition in other enterobacteria. Conclusions The flag-2 flagellar system is a fairly common, but highly variable feature among members of the Enterobacterales. Given the energetic burden of flagellar biosynthesis and functioning, the prevalence of a second flagellar system suggests it plays important biological roles in the enterobacteria and we postulate on its potential role as locomotory organ or as secretion system.
Collapse
Affiliation(s)
- Pieter De Maayer
- School of Molecular & Cell Biology, University of the Witwatersrand, 2050 Wits, Johannesburg, South Africa.
| | - Talia Pillay
- School of Molecular & Cell Biology, University of the Witwatersrand, 2050 Wits, Johannesburg, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, University of Pretoria 0002, Pretoria, South Africa
| |
Collapse
|
19
|
Chen S, Zhou Q, Tan X, Li Y, Ren G, Wang X. The Global Response of Cronobacter sakazakii Cells to Amino Acid Deficiency. Front Microbiol 2018; 9:1875. [PMID: 30154778 PMCID: PMC6102319 DOI: 10.3389/fmicb.2018.01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
Cronobacter species can cause necrotizing enterocolitis and meningitis in neonates and infants, their infection is closely relevant to their responses to extreme growth conditions. In this study, the response of Cronobacter species to amino acid deficiency has been investigated. Four Cronobacter species formed smooth colonies when grown on the solid LB medium, but formed mucoid colonies when grown on the amino acid deficient M9 medium. When the mucoid colonies were stained with tannin mordant, exopolysaccharide around the cells could be discerned. The exopolysaccharide was isolated, analyzed, and identified as colanic acid. When genes wcaD and wcaE relevant to colanic acid biosynthesis were deleted in Cronobacter sakazakii BAA-894, no exopolysaccharide could be produced, confirming the exopolysaccharide formed in C. sakazakii grown in M9 is colanic acid. On the other hand, when genes rcsA, rcsB, rcsC, rcsD, or rcsF relevant to Rcs phosphorelay system was deleted in C. sakazakii BAA-894, colanic acid could not be produced, suggesting that the production of colanic acid in C. sakazakii is regulated by Rcs phosphorelay system. Furthermore, C. sakazakii BAA-894 grown in M9 supplemented with amino acids could not produce exopolysaccharide. Transcriptomes of C. sakazakii BAA-894 grown in M9 or LB were analyzed. A total of 3956 genes were differentially expressed in M9, of which 2339 were up-regulated and 1617 were down-regulated. When C. sakazakii BAA-894 was grown in M9, the genes relevant to the biosynthesis of exopolysaccharide were significantly up-regulated; on the other hand, the genes relevant to the flagellum formation and chemotaxis were significantly down-regulated; in addition, most genes relevant to various amino acid biosynthesis were also significantly regulated. The results demonstrate that amino acid deficiency has a global impact on C. sakazakii cells.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ge Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Rath CB, Schirmeister F, Figl R, Seeberger PH, Schäffer C, Kolarich D. Flagellin Glycoproteomics of the Periodontitis Associated Pathogen Selenomonas sputigena Reveals Previously Not Described O-glycans and Rhamnose Fragment Rearrangement Occurring on the Glycopeptides. Mol Cell Proteomics 2018; 17:721-736. [PMID: 29339411 PMCID: PMC5880101 DOI: 10.1074/mcp.ra117.000394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
Flagellated, Gram-negative, anaerobic, crescent-shaped Selenomonas species are colonizers of the digestive system, where they act at the interface between health and disease. Selenomonas sputigena is also considered a potential human periodontal pathogen, but information on its virulence factors and underlying pathogenicity mechanisms is scarce. Here we provide the first report of a Selenomonas glycoprotein, showing that S. sputigena produces a diversely and heavily O-glycosylated flagellin C9LY14 as a major cellular protein, which carries various hitherto undescribed rhamnose- and N-acetylglucosamine linked O-glycans in the range from mono- to hexasaccharides. A comprehensive glycomic and glycoproteomic assessment revealed extensive glycan macro- and microheterogeneity identified from 22 unique glycopeptide species. From the multiple sites of glycosylation, five were unambiguously identified on the 437-amino acid C9LY14 protein (Thr149, Ser182, Thr199, Thr259, and Ser334), the only flagellin protein identified. The O-glycans additionally showed modifications by methylation and putative acetylation. Some O-glycans carried hitherto undescribed residues/modifications as determined by their respective m/z values, reflecting the high diversity of native S. sputigena flagellin. We also found that monosaccharide rearrangement occurred during collision-induced dissociation (CID) of protonated glycopeptide ions. This effect resulted in pseudo Y1-glycopeptide fragment ions that indicated the presence of additional glycosylation sites on a single glycopeptide. CID oxonium ions and electron transfer dissociation, however, confirmed that just a single site was glycosylated, showing that glycan-to-peptide rearrangement can occur on glycopeptides and that this effect is influenced by the molecular nature of the glycan moiety. This effect was most pronounced with disaccharides. This study is the first report on O-linked flagellin glycosylation in a Selenomonas species, revealing that C9LY14 is one of the most heavily glycosylated flagellins described to date. This study contributes to our understanding of the largely under-investigated surface properties of oral bacteria. The data have been deposited to the ProteomeXchange with identifier PXD005859.
Collapse
Affiliation(s)
- Cornelia B. Rath
- From the ‡Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, 1190 Vienna, Austria
| | - Falko Schirmeister
- §Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; ,¶Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rudolf Figl
- ‖Department of Chemistry, Division of Biochemistry, Universität für Bodenkultur Wien, 1190 Vienna, Austria
| | - Peter H. Seeberger
- §Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; ,¶Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christina Schäffer
- From the ‡Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, 1190 Vienna, Austria;
| | - Daniel Kolarich
- §Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; .,**Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
21
|
Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. NATURE NANOTECHNOLOGY 2018; 13:65-71. [PMID: 29203912 DOI: 10.1038/s41565-017-0013-y] [Citation(s) in RCA: 522] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/04/2017] [Indexed: 05/20/2023]
Abstract
Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.
Collapse
Affiliation(s)
- Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Libor Kvítek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Monika Smékalová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Magdalena Röderová
- Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Filip Dyčka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
22
|
Radomska KA, Wösten MMSM, Ordoñez SR, Wagenaar JA, van Putten JPM. Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion. Front Microbiol 2017; 8:1060. [PMID: 28659885 PMCID: PMC5466977 DOI: 10.3389/fmicb.2017.01060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB) that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC). This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.
Collapse
Affiliation(s)
- Katarzyna A Radomska
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Soledad R Ordoñez
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands.,Wageningen Bioveterinary ResearchLelystad, Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for CampylobacteriosisUtrecht, Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for CampylobacteriosisUtrecht, Netherlands
| |
Collapse
|
23
|
Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One 2017; 12:e0178008. [PMID: 28542527 PMCID: PMC5438186 DOI: 10.1371/journal.pone.0178008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/06/2017] [Indexed: 01/10/2023] Open
Abstract
Acidithiobacillus ferrivorans is an acidophile that often occurs in low temperature acid mine drainage, e.g., that located at high altitude. Being able to inhabit the extreme environment, the bacterium must possess strategies to copy with the survival stress. Nonetheless, information on the strategies is in demand. Here, genomic and transcriptomic assays were performed to illuminate the adaptation mechanisms of an A. ferrivorans strain YL15, to the alpine acid mine drainage environment in Yulong copper mine in southwest China. Genomic analysis revealed that strain has a gene repertoire for metal-resistance, e.g., genes coding for the mer operon and a variety of transporters/efflux proteins, and for low pH adaptation, such as genes for hopanoid-synthesis and the sodium:proton antiporter. Genes for various DNA repair enzymes and synthesis of UV-absorbing mycosporine-like amino acids precursor indicated hypothetical UV radiation—resistance mechanisms in strain YL15. In addition, it has two types of the acquired immune system–type III-B and type I-F CRISPR/Cas modules against invasion of foreign genetic elements. RNA-seq based analysis uncovered that strain YL15 uses a set of mechanisms to adapt to low temperature. Genes involved in protein synthesis, transmembrane transport, energy metabolism and chemotaxis showed increased levels of RNA transcripts. Furthermore, a bacterioferritin Dps gene had higher RNA transcript counts at 6°C, possibly implicated in protecting DNA against oxidative stress at low temperature. The study represents the first to comprehensively unveil the adaptation mechanisms of an acidophilic bacterium to the acid mine drainage in alpine regions.
Collapse
|
24
|
Abstract
Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. Directional cell motility is enabled by chemoattractant gradient and symmetry-breaking. This Primer argues that the recent observation of cells generating a gradient in a uniformly distributed nutrient reveals the multilayered nature of symmetry-breaking in cell locomotion.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Systems Biology, Seattle, Washington
- * E-mail:
| |
Collapse
|
25
|
Coburger I, Schaub Y, Roeser D, Hardes K, Maeder P, Klee N, Steinmetzer T, Imhof D, Diederich WE, Than ME. Identification of inhibitors of the transmembrane protease FlaK of Methanococcus maripaludis. Microbiologyopen 2016; 5:637-46. [PMID: 27038342 PMCID: PMC4985597 DOI: 10.1002/mbo3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
GxGD‐type intramembrane cleaving proteases (I‐CLiPs) form a family of proteolytic enzymes that feature an aspartate‐based catalytic mechanism. Yet, they structurally and functionally largely differ from the classical pepsin‐like aspartic proteases. Among them are the archaeal enzyme FlaK, processing its substrate FlaB2 during the formation of flagella and γ‐secretase, which is centrally involved in the etiology of the neurodegenerative Alzheimer's disease. We developed an optimized activity assay for FlaK and based on screening of a small in‐house library and chemical synthesis, we identified compound 9 as the first inhibitor of this enzyme. Our results show that this intramembrane protease differs from classical pepsin‐like aspartic proteases and give insights into the substrate recognition of this enzyme. By providing the needed tools to further study the enzymatic cycle of FlaK, our results also enable further studies towards a functional understanding of other GxGD‐type I‐CLiPs.
Collapse
Affiliation(s)
- Ina Coburger
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Yvonne Schaub
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Dirk Roeser
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Patrick Maeder
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Nina Klee
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Diana Imhof
- Institute of Pharmacy, Pharmaceutical Chemistry I, University of Bonn, Brühler Str. 7, Bonn, 53119, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Manuel E Than
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| |
Collapse
|
26
|
Barta ML, Battaile KP, Lovell S, Hefty PS. Hypothetical protein CT398 (CdsZ) interacts with σ(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis. Protein Sci 2015; 24:1617-32. [PMID: 26173998 DOI: 10.1002/pro.2746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
A significant challenge to bacteriology is the relatively large proportion of proteins that lack sufficient sequence similarity to support functional annotation (i.e. hypothetical proteins). The aim of this study was to apply protein structural homology to gain insights into a candidate protein of unknown function (CT398) within the medically important, obligate intracellular bacterium Chlamydia trachomatis. C. trachomatis is a major human pathogen responsible for numerous infections throughout the world that can lead to blindness and infertility. A 2.12 Å crystal structure of hypothetical protein CT398 was determined that was comprised of N-terminal coiled-coil and C-terminal Zn-ribbon domains. The structure of CT398 displayed a high degree of structural similarity to FlgZ (Flagellar-associated zinc-ribbon domain protein) from Helicobacter pylori. This observation directed analyses of candidate protein partners of CT398, revealing interactions with two paralogous type III secretion system (T3SS) ATPase-regulators (CdsL and FliH) and the alternative sigma factor RpoN (σ(54) ). Furthermore, genetic introduction of a conditional expression, affinity-tagged construct into C. trachomatis enabled the purification of a CT398-RpoN-holoenzyme complex, suggesting a potential role for CT398 in modulating transcriptional activity during infection. The interactions reported here, in tandem with previous FlgZ studies in H. pylori, indicate that CT398 functions as a regulator of several key areas of chlamydial biology throughout the developmental cycle. Accordingly, we propose that CT398 be named CdsZ (Contact-dependent secretion-associated zinc-ribbon domain protein).
Collapse
Affiliation(s)
- Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66045
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| |
Collapse
|
27
|
An D, Su J, Weber JK, Gao X, Zhou R, Li J. A Peptide-Coated Gold Nanocluster Exhibits Unique Behavior in Protein Activity Inhibition. J Am Chem Soc 2015; 137:8412-8. [DOI: 10.1021/jacs.5b00888] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Deyi An
- CAS Key Lab for
Biomedical Effects of Nanomaterials and Nanosafety, Institute of High
Energy Physics, Chinese Academy of Science, Beijing 100049, PR China
- College of Science, Yanshan University, Qinhuangdao 066004, PR China
| | - Jiguo Su
- College of Science, Yanshan University, Qinhuangdao 066004, PR China
| | - Jeffrey K. Weber
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Xueyun Gao
- CAS Key Lab for
Biomedical Effects of Nanomaterials and Nanosafety, Institute of High
Energy Physics, Chinese Academy of Science, Beijing 100049, PR China
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Institute
of Quantitative Biology and Medicine, SRMP and RAD-X, Soochow University, Suzhou 215123, PR China
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jingyuan Li
- CAS Key Lab for
Biomedical Effects of Nanomaterials and Nanosafety, Institute of High
Energy Physics, Chinese Academy of Science, Beijing 100049, PR China
| |
Collapse
|
28
|
Li Z, Zhang C, Wang S, Cao J, Zhang W, Lu X. A new locus in Cytophaga hutchinsonii involved in colony spreading on agar surfaces and individual cell gliding. FEMS Microbiol Lett 2015; 362:fnv095. [PMID: 26066317 DOI: 10.1093/femsle/fnv095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 11/14/2022] Open
Abstract
Cytophaga hutchinsonii glides rapidly over surfaces by an unknown mechanism without flagella and type IV pili and it can degrade crystalline cellulose efficiently by a novel mechanism. Tn4351 transposon mutagenesis was used to identify a new gene, CHU_1798, essential for colony spreading on agar surfaces. Further study showed that disruption of CHU_1798 caused non-spreading colonies on both soft and hard agar surfaces and individual cells were partially deficient in gliding on glass surfaces. The CHU_1798 mutant could digest cellulose as long as the cells were in direct contact with the cellulose, but it could not degrade cellulose powder buried in the agar plate. Scanning electron microscopy showed that individual mutant cells arranged irregularly on the cellulose fiber surface at an early stage of incubation, but later showed a regular parallel arrangement when there were plenty of cells and could spread along the cellulose fibers. These results suggest that CHU_1798 plays an important role in the motility of C. hutchinsonii and provide insight into the relation between cell motility and cellulose degradation.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Cong Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jing Cao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
29
|
Bailey SF, Rodrigue N, Kassen R. The effect of selection environment on the probability of parallel evolution. Mol Biol Evol 2015; 32:1436-48. [PMID: 25761765 DOI: 10.1093/molbev/msv033] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Across the great diversity of life, there are many compelling examples of parallel and convergent evolution-similar evolutionary changes arising in independently evolving populations. Parallel evolution is often taken to be strong evidence of adaptation occurring in populations that are highly constrained in their genetic variation. Theoretical models suggest a few potential factors driving the probability of parallel evolution, but experimental tests are needed. In this study, we quantify the degree of parallel evolution in 15 replicate populations of Pseudomonas fluorescens evolved in five different environments that varied in resource type and arrangement. We identified repeat changes across multiple levels of biological organization from phenotype, to gene, to nucleotide, and tested the impact of 1) selection environment, 2) the degree of adaptation, and 3) the degree of heterogeneity in the environment on the degree of parallel evolution at the gene-level. We saw, as expected, that parallel evolution occurred more often between populations evolved in the same environment; however, the extent of parallel evolution varied widely. The degree of adaptation did not significantly explain variation in the extent of parallelism in our system but number of available beneficial mutations correlated negatively with parallel evolution. In addition, degree of parallel evolution was significantly higher in populations evolved in a spatially structured, multiresource environment, suggesting that environmental heterogeneity may be an important factor constraining adaptation. Overall, our results stress the importance of environment in driving parallel evolutionary changes and point to a number of avenues for future work for understanding when evolution is predictable.
Collapse
Affiliation(s)
- Susan F Bailey
- Biology Department and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Rodrigue
- Biology Department and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rees Kassen
- Biology Department and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
30
|
Wesseling W. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in <em>Pseudomonas aeruginosa</em> and <em>Pseudoalteromonas</em> species. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Lipfert J, van Oene MM, Lee M, Pedaci F, Dekker NH. Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 2014; 115:1449-74. [PMID: 25541648 DOI: 10.1021/cr500119k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience (CeNS), Ludwig-Maximilian-University Munich , Amalienstrasse 54, 80799 Munich, Germany
| | | | | | | | | |
Collapse
|
32
|
Smith JM, Leslie ME, Robinson SJ, Korasick DA, Zhang T, Backues SK, Cornish PV, Koo AJ, Bednarek SY, Heese A. Loss of Arabidopsis thaliana Dynamin-Related Protein 2B reveals separation of innate immune signaling pathways. PLoS Pathog 2014; 10:e1004578. [PMID: 25521759 PMCID: PMC4270792 DOI: 10.1371/journal.ppat.1004578] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/13/2014] [Indexed: 01/13/2023] Open
Abstract
Vesicular trafficking has emerged as an important means by which eukaryotes modulate responses to microbial pathogens, likely by contributing to the correct localization and levels of host components necessary for effective immunity. However, considering the complexity of membrane trafficking in plants, relatively few vesicular trafficking components with functions in plant immunity are known. Here we demonstrate that Arabidopsis thaliana Dynamin-Related Protein 2B (DRP2B), which has been previously implicated in constitutive clathrin-mediated endocytosis (CME), functions in responses to flg22 (the active peptide derivative of bacterial flagellin) and immunity against flagellated bacteria Pseudomonas syringae pv. tomato (Pto) DC3000. Consistent with a role of DRP2B in Pattern-Triggered Immunity (PTI), drp2b null mutant plants also showed increased susceptibility to Pto DC3000 hrcC-, which lacks a functional Type 3 Secretion System, thus is unable to deliver effectors into host cells to suppress PTI. Importantly, analysis of drp2b mutant plants revealed three distinct branches of the flg22-signaling network that differed in their requirement for RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD), the NADPH oxidase responsible for flg22-induced apoplastic reactive oxygen species production. Furthermore, in drp2b, normal MAPK signaling and increased immune responses via the RbohD/Ca2+-branch were not sufficient for promoting robust PR1 mRNA expression nor immunity against Pto DC3000 and Pto DC3000 hrcC-. Based on live-cell imaging studies, flg22-elicited internalization of the plant flagellin-receptor, FLAGELLIN SENSING 2 (FLS2), was found to be partially dependent on DRP2B, but not the closely related protein DRP2A, thus providing genetic evidence for a component, implicated in CME, in ligand-induced endocytosis of FLS2. Reduced trafficking of FLS2 in response to flg22 may contribute in part to the non-canonical combination of immune signaling defects observed in drp2b. In conclusion, this study adds DRP2B to the relatively short list of known vesicular trafficking proteins with roles in flg22-signaling and PTI in plants.
Collapse
Affiliation(s)
- John M. Smith
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Michelle E. Leslie
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Samuel J. Robinson
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - David A. Korasick
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Tong Zhang
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Steven K. Backues
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter V. Cornish
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Abraham J. Koo
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antje Heese
- Division of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
33
|
Dehalococcoides mccartyi strain DCMB5 Respires a broad spectrum of chlorinated aromatic compounds. Appl Environ Microbiol 2014; 81:587-96. [PMID: 25381236 DOI: 10.1128/aem.02597-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhalogenated aromatic compounds are harmful environmental contaminants and tend to persist in anoxic soils and sediments. Dehalococcoides mccartyi strain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds. Strain DCMB5 used hexachlorobenzenes, pentachlorobenzenes, all three tetrachlorobenzenes, and 1,2,3-trichlorobenzene as well as 1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin as electron acceptors for organohalide respiration. In addition, 1,2,3-trichlorodibenzo-p-dioxin and 1,3-, 1,2-, and 1,4-dichlorodibenzo-p-dioxin were dechlorinated, the latter to the nonchlorinated congener with a remarkably short lag phase of 1 to 4 days following transfer. Strain DCMB5 also dechlorinated pentachlorophenol and almost all tetra- and trichlorophenols. Tetrachloroethene was dechlorinated to trichloroethene and served as an electron acceptor for growth. To relate selected dechlorination activities to the expression of specific reductive dehalogenase genes, the proteomes of 1,2,3-trichlorobenzene-, pentachlorobenzene-, and tetrachloroethene-dechlorinating cultures were analyzed. Dcmb_86, an ortholog of the chlorobenzene reductive dehalogenase CbrA, was the most abundant reductive dehalogenase during growth with each electron acceptor, suggesting its pivotal role in organohalide respiration of strain DCMB5. Dcmb_1041 was specifically induced, however, by both chlorobenzenes, whereas 3 putative reductive dehalogenases, Dcmb_1434, Dcmb_1339, and Dcmb_1383, were detected only in tetrachloroethene-grown cells. The proteomes also harbored a type IV pilus protein and the components for its assembly, disassembly, and secretion. In addition, transmission electron microscopy of DCMB5 revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature of D. mccartyi during organohalide respiration.
Collapse
|
34
|
The Iho670 fibers of Ignicoccus hospitalis are anchored in the cell by a spherical structure located beneath the inner membrane. J Bacteriol 2014; 196:3807-15. [PMID: 25157085 DOI: 10.1128/jb.01861-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Iho670 fibers of the hyperthermophilic crenarchaeon of Ignicoccus hospitalis were shown to contain several features that indicate them as type IV pilus-like structures. The application of different visualization methods, including electron tomography and the reconstruction of a three-dimensional model, enabled a detailed description of a hitherto undescribed anchoring structure of the cell appendages. It could be identified as a spherical structure beneath the inner membrane. Furthermore, pools of the fiber protein Iho670 could be localized in the inner as well as the outer cellular membrane of I. hospitalis cells and in the tubes/vesicles in the intermembrane compartment by immunological methods.
Collapse
|
35
|
Asadishad B, Olsson ALJ, Dusane DH, Ghoshal S, Tufenkji N. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw. WATER RESEARCH 2014; 58:239-247. [PMID: 24768703 DOI: 10.1016/j.watres.2014.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport.
Collapse
Affiliation(s)
- Bahareh Asadishad
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Adam L J Olsson
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Devendra H Dusane
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada.
| |
Collapse
|
36
|
Jain R, Kazmierczak BI. A conservative amino acid mutation in the master regulator FleQ renders Pseudomonas aeruginosa aflagellate. PLoS One 2014; 9:e97439. [PMID: 24827992 PMCID: PMC4020848 DOI: 10.1371/journal.pone.0097439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 11/21/2022] Open
Abstract
Flagellar-based motility plays a critical role in Pseudomonas aeruginosa pathogenesis, influencing both the establishment of bacterial infection and the host's response to the pathogen. Nonetheless, aflagellate clinical strains are often isolated from acutely and chronically infected patients and include the virulent laboratory strain PA103. We determined that PA103's aflagellate phenotype is the result of a single amino acid change (G240V) in the master flagellar regulator, FleQ. This mutation, which lies just outside the Walker B box of FleQ, abrogates the ability of FleQ to positively regulate flagellar gene expression. Reversal of this seemingly conservative amino acid substitution is sufficient to restore swimming motility to PA103, despite the presence of mutations in other flagellar genes of PA103. We also investigated the consequences of restoring flagellar assembly on PA103 virulence. Although a negative correlation between flagellar assembly and Type 3 secretion system (T3SS) expression has been reported previously, we did not observe downregulation of T3SS expression or function in Fla+ PA103. Restoration of flagellar assembly did, however, amplify IL-1 signals measured during murine pulmonary infection and was associated with increased bacterial clearance. These experiments suggest that loss of flagellar motility may primarily benefit PA103 by attenuating pathogen recognition and clearance during acute infection.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Internal Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Internal Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
37
|
|
38
|
|
39
|
Shi X, Gao W, Wang J, Chao SH, Zhang W, Meldrum DR. Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices. Crit Rev Biotechnol 2014; 35:448-60. [DOI: 10.3109/07388551.2014.899556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Geerts N, McGrath J, Stronk J, Vanderlick T, Huszar G. Spermatozoa as a transport system of large unilamellar lipid vesicles into the oocyte. Reprod Biomed Online 2014; 28:451-61. [DOI: 10.1016/j.rbmo.2013.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/29/2022]
|
41
|
Smith JM, Heese A. Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. PLANT METHODS 2014; 10:6. [PMID: 24571722 PMCID: PMC3941562 DOI: 10.1186/1746-4811-10-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/18/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Arabidopsis thaliana and Pseudomonas syringae pathovar tomato (Pto) provide an excellent plant-bacteria model system to study innate immunity. During pattern-triggered immunity (PTI), cognate host receptors perceive pathogen-associated molecular patterns (PAMPs) as non-self molecules. Pto harbors many PAMPs; thus for experimental ease, many studies utilize single synthesized PAMPs such as flg22, a short protein peptide derived from Pseudomonas flagellin. Flg22 recognition by Arabidopsis Flagellin Sensing 2 (FLS2) initiates a plethora of signaling responses including rapid production of apoplastic reactive oxygen species (ROS). Assessing flg22-ROS has been instrumental in identifying novel PAMP-signaling components; but comparably little is known whether in Arabidopsis, ROS is produced in response to intact live Pto and whether this response can be used to dissect genetic requirements of the plant host and live bacterial pathogens in planta. RESULTS Here, we report of a fast and robust bioassay to quantitatively assess early ROS in Arabidopsis leaves, a tissue commonly used for pathogen infection assays, in response to living bacterial Pto strains. We establish that live Pto elicits a transient and dose-dependent ROS that differed in timing of initiation, amplitude and duration compared to flg22-induced ROS. Our control experiments confirmed that the detected ROS was dependent on the presence of the bacterial cells. Utilizing Arabidopsis mutants previously shown to be defective in flg22-induced ROS, we demonstrate that ROS elicited by live Pto was fully or in part dependent on RbohD and BAK1, respectively. Because fls2 mutants did not produce any ROS, flagellin perception by FLS2 is the predominant recognition event in live Pto-elicited ROS in Arabidopsis leaves. Furthermore using different Pto strains, our in planta results indicate that early ROS production appeared to be independent of the Type III Secretion System. CONCLUSIONS We provide evidence and necessary control experiments demonstrating that in planta, this ROS bioassay can be utilized to rapidly screen different Arabidopsis mutant lines and ecotypes in combination with different bacterial strains to investigate the genetic requirements of a plant host and its pathogen. For future experiments, this robust bioassay can be easily extended beyond Arabidopsis-Pto to diverse plant-pathosystems including crop species and their respective microbial pathogens.
Collapse
Affiliation(s)
- John M Smith
- Division of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO 65211, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Antje Heese
- Division of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO 65211, USA
- Interdisciplinary Plant Group (IPG), University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
42
|
Erriu M, Blus C, Szmukler-Moncler S, Buogo S, Levi R, Barbato G, Madonnaripa D, Denotti G, Piras V, Orrù G. Microbial biofilm modulation by ultrasound: current concepts and controversies. ULTRASONICS SONOCHEMISTRY 2014; 21:15-22. [PMID: 23751458 DOI: 10.1016/j.ultsonch.2013.05.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 05/08/2013] [Accepted: 05/18/2013] [Indexed: 05/05/2023]
Abstract
Biofilm elimination is often necessary during antimicrobial therapy or industrial medical manufacturing decontamination. In this context, ultrasound treatment has been frequently described in the literature for its antibiofilm effectiveness, but at the same time, various authors have described ultrasound as a formidable enhancer of bacterial viability. This discrepancy has found no solution in the current literature for around 9 years; some works have shown that every time bacteria are exposed to an ultrasonic field, both destruction and stimulation phenomena co-exist. This co-existence proves to have different final effects based on various factors such as: ultrasound frequency and intensity, the bacterial species involved, the material used for ultrasound diffusion, the presence of cavitation effects and the forms of bacterial planktonic or biofilm. The aim of this work is to analyze current concepts regarding ultrasound effect on prokaryotic cells, and in particular ultrasound activity on bacterial biofilm.
Collapse
Affiliation(s)
- Matteo Erriu
- Oral Biotechnology Laboratory (OBL), Università degli Studi di Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Asadishad B, Ghoshal S, Tufenkji N. Role of cold climate and freeze-thaw on the survival, transport, and virulence of Yersinia enterocolitica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14169-14177. [PMID: 24283700 DOI: 10.1021/es403726u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface and near-surface soils in cold climate regions experience low temperature and freeze-thaw (FT) conditions in the winter. Microorganisms that are of concern to groundwater quality may have the potential to survive low temperature and FT in the soil and aqueous environments. Although there is a body of literature on the survival of pathogenic bacteria at different environmental conditions, little is known about their transport behavior in aquatic environments at low temperatures and after FT. Herein, we studied the survival, transport, and virulence of a Gram-negative bacterial pathogen, Yersinia enterocolitica, when subjected to low temperature and several FT cycles at two solution ionic strengths (10 and 100 mM) in the absence of nutrients. Our findings demonstrate that this bacterium exhibited higher retention on sand after exposure to FT. Increasing the number of FT cycles resulted in higher bacterial cell surface hydrophobicity and impaired the swimming motility and viability of the bacterium. Moreover, the transcription of flhD and fliA, the flagellin-encoding genes, and lpxR, the lipid A 3'-O-deacylase gene, was reduced in low temperature and after FT treatment while the transcription of virulence factors such as ystA, responsible for enterotoxin production, ail, attachment invasion locus gene, and rfbC, O-antigen gene, was increased. Y. enterocolitica tends to persist in soil for long periods and may become more virulent at low temperature in higher ionic strength waters in cold regions.
Collapse
Affiliation(s)
- Bahareh Asadishad
- Department of Chemical Engineering, McGill University , Montreal, Quebec H3A 2B2, Canada
| | | | | |
Collapse
|
44
|
Taylor TB, Rodrigues AMM, Gardner A, Buckling A. The social evolution of dispersal with public goods cooperation. J Evol Biol 2013; 26:2644-53. [DOI: 10.1111/jeb.12259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
Affiliation(s)
- T. B. Taylor
- Department of Zoology; University of Oxford; Oxford UK
- School of Biological Sciences; University of Reading; Reading UK
| | | | - A. Gardner
- Department of Zoology; University of Oxford; Oxford UK
- Balliol College, University of Oxford; Oxford UK
- School of Biology; University of St Andrews; St Andrews UK
| | - A. Buckling
- Department of Zoology; University of Oxford; Oxford UK
- Biosciences; University of Exeter; Penryn UK
| |
Collapse
|
45
|
Bullman S, Lucid A, Corcoran D, Sleator RD, Lucey B. Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One 2013; 8:e71515. [PMID: 24023611 PMCID: PMC3758288 DOI: 10.1371/journal.pone.0071515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022] Open
Abstract
The recent detection and isolation of C. ureolyticus from patients with diarrhoeal illness and inflammatory bowel diseases warrants further investigation into its role as an emerging pathogen of the human gastrointestinal tract. Regarding the pathogenic mechanisms employed by this species we provide the first whole genome analysis of two C. ureolyticus isolates including the type strain. Comparative analysis, subtractive hybridisation and gene ontology searches against other Campylobacter species identifies the high degree of heterogenicity between C. ureolyticus isolates, in addition to the identification of 106 putative virulence associated factors, 52 of which are predicted to be secreted. Such factors encompass each of the known virulence tactics of pathogenic Campylobacter spp. including adhesion and colonisation (CadF, PEB1, IcmF and FlpA), invasion (ciaB and 16 virB-virD4 genes) and toxin production (S-layer RTX and ZOT). Herein, we provide the first virulence catalogue for C. ureolyticus, the components of which theoretically provide this emerging species with sufficient arsenal to establish pathology.
Collapse
Affiliation(s)
- Susan Bullman
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Daniel Corcoran
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail:
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| |
Collapse
|
46
|
Hosseinidoust Z, Tufenkji N, van de Ven TGM. Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2862-71. [PMID: 23435883 PMCID: PMC3623153 DOI: 10.1128/aem.03817-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/14/2013] [Indexed: 01/21/2023] Open
Abstract
The rise of bacterial variants in the presence of lytic phages has been one of the basic grounds for evolution studies. However, there are incongruent results among different studies investigating the effect of phage resistance acquisition on bacterial fitness and virulence. We used experimental evolution to generate three classes of Pseudomonas aeruginosa variants under selective pressure from two different homogeneous phage environments and one heterogeneous phage environment. The fitness and virulence determinants of the variants, such as growth, motility, biofilm formation, resistance to oxidative stress, and the production of siderophores and chromophores, changed significantly compared to the control. Variants with similar colony morphology that were developed through different phage treatments have different phenotypic traits. Also, mRNA transcription for genes associated with certain phenotypic traits changed significantly; however, sequencing did not reveal any point mutations in selected gene loci. Furthermore, the appearance of small colony variants and melanogenic variants and the increase in pyocyanin and pyoverdin production for some variants are believed to affect the virulence of the population. The knowledge gained from this study will fundamentally contribute to our understanding of the evolutionary dynamics of bacteria under phage selective pressure which is crucial to the efficient utilization of bacteriophages in medical contexts.
Collapse
Affiliation(s)
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
47
|
Ji X, Bai X, Li Z, Wang S, Guan Z, Lu X. A novel locus essential for spreading of Cytophaga hutchinsonii colonies on agar. Appl Microbiol Biotechnol 2013; 97:7317-24. [PMID: 23579728 DOI: 10.1007/s00253-013-4820-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Cytophaga hutchinsonii is an aerobic cellulolytic gliding bacterium. The mechanism of its cell motility over surfaces without flagella and type IV pili is not known. In this study, mariner-based transposon mutagenesis was used to identify a new locus CHU_1797 essential for colony spreading on both hard and soft agar surfaces through gliding. CHU_1797 encodes a putative outer membrane protein of 348 amino acids with unknown function, and proteins which have high sequence similarity to CHU_1797 were widespread in the members of the phylum Bacteroidetes. The disruption of CHU_1797 suppressed spreading toward glucose on an agar surface, but had no significant effect on cellulose degradation for cells already in contact with cellulose. SEM observation showed that the mutant cells also regularly arranged on the surface of cellulose fiber similar with that of the wild type strain. These results indicated that the colony spreading ability on agar surfaces was not required for cellulose degradation by C. hutchinsonii. This was the first study focused on the relationship between cell motility and cellulose degradation of C. hutchinsonii.
Collapse
Affiliation(s)
- Xiaofei Ji
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
48
|
Hosseinidoust Z, Tufenkji N, van de Ven TGM. Formation of biofilms under phage predation: considerations concerning a biofilm increase. BIOFOULING 2013; 29:457-468. [PMID: 23597188 DOI: 10.1080/08927014.2013.779370] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.
Collapse
|
49
|
A novel dnaJ family gene, sflA, encodes an inhibitor of flagellation in marine Vibrio species. J Bacteriol 2012; 195:816-22. [PMID: 23222726 DOI: 10.1128/jb.01850-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The marine bacterium Vibrio alginolyticus has a single polar flagellum. Formation of that flagellum is regulated positively and negatively by FlhF and by FlhG, respectively. The ΔflhF mutant makes no flagellum, whereas the ΔflhFG double-deletion mutant usually lacks a flagellum. However, the ΔflhFG mutant occasionally reverts to become motile by forming peritrichous flagella. We have isolated a suppressor pseudorevertant from the ΔflhFG strain (ΔflhFG-sup). The suppressor strain forms peritrichous flagella in the majority of cells. We identified candidate suppressor mutations by comparing the genome sequence of the parental strain, VIO5, with the genome sequences of the suppressor strains. Two mutations were mapped to a gene, named sflA (suppressor of ΔflhFG), at the VEA003730 locus of the Vibrio sp. strain EX25 genome. This gene is specific for Vibrio species and is predicted to encode a transmembrane protein with a DnaJ domain. When the wild-type gene was introduced into the suppressor strain, motility was impaired. Introducing a mutant version of the sflA gene into the ΔflhFG strain conferred the suppressor phenotype. Thus, we conclude that loss of the sflA gene is responsible for the suppressor phenotype and that the wild-type SflA protein plays a role in preventing polar-type flagella from forming on the lateral cell wall.
Collapse
|
50
|
Lassak K, Ghosh A, Albers SV. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res Microbiol 2012; 163:630-44. [PMID: 23146836 DOI: 10.1016/j.resmic.2012.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/04/2012] [Indexed: 11/25/2022]
Abstract
Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures.
Collapse
Affiliation(s)
- Kerstin Lassak
- Max Planck Institute for Terrestrial Microbiology, Molecular Biology of Archaea, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | |
Collapse
|