1
|
Lu J, Abdelhamed H, Al-Janabi N, Eissa N, Lawrence M, Karsi A. Identification of stable reference genes in Edwardsiella ictaluri for accurate gene expression analysis. PLoS One 2025; 20:e0309585. [PMID: 40315268 PMCID: PMC12047842 DOI: 10.1371/journal.pone.0309585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/19/2025] [Indexed: 05/04/2025] Open
Abstract
Edwardsiella ictaluri is a Gram-negative bacterium causing enteric septicemia of catfish (ESC), leading to significant economic losses in the catfish farming industry. RT-PCR analysis is a powerful technique for quantifying gene expression, but normalization of expression data is critical to control experimental errors. Using stable reference genes, also known as housekeeping genes, is a common strategy for normalization, yet reference gene selection often lacks proper validation. In this work, our goal was to determine the most stable reference genes in E. ictaluri during catfish serum exposure and various growth phases. To this goal, we evaluated the expression of 27 classical reference genes (16S rRNA, abcZ, adk, arc, aroE, aspA, atpA, cyaA, dnaG, fumC, g6pd, gdhA, glnA, gltA, glyA, grpE, gyrB, mdh, mutS, pgi, pgm, pntA, recA, recP, rpoS, tkt, and tpi) using five analytical programs (GeNorm, BestKeeper, NormFinder, Comparative ΔCT, and Comprehensive Ranking). Results showed that aspA, atpA, dnaG, glyA, gyrB, mutS, recP, rpoS, tkt, and tpi were the most stable reference genes during serum exposure, whereas fumC, g6pd, gdhA, glnA, and mdh were the least stable. During various growth phases, aspA, g6pd, glyA, gyrB, mdh, mutS, pgm, recA, recP, and tkt were the most stable, while 16S rRNA, atpA, grpE, and tpi were the least stable. At least four analysis methods confirmed the stability of aspA, glyA, gyrB, mutS, recP, and tkt during serum exposure and different growth stages. However, no consensus was found among the programs for unstable reference genes under both conditions.
Collapse
Affiliation(s)
- Jingjun Lu
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, United States of America
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, United States of America
| | - Nawar Al-Janabi
- Department of Medical Biotechnology, College of Biotechnology, Al-Qasim Green University, Babylon, Iraq
| | - Nour Eissa
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, United States of America
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, United States of America
| |
Collapse
|
2
|
Jiang B, Qiu H, Lu C, Lu M, Li Y, Dai W. Uncovering the GacS-mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa. Nucleic Acids Res 2024; 52:3856-3869. [PMID: 38477346 DOI: 10.1093/nar/gkae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.
Collapse
Affiliation(s)
- Bo Jiang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chenghui Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqi Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Huang Y, Rana AP, Wenzler E, Ozer EA, Krapp F, Bulitta JB, Hauser AR, Bulman ZP. Aminoglycoside-resistance gene signatures are predictive of aminoglycoside MICs for carbapenem-resistant Klebsiella pneumoniae. J Antimicrob Chemother 2021; 77:356-363. [PMID: 34668007 DOI: 10.1093/jac/dkab381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aminoglycoside-containing regimens may be an effective treatment option for infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp), but aminoglycoside-resistance genes are common in these strains. The relationship between the aminoglycoside-resistance genes and aminoglycoside MICs remains poorly defined. OBJECTIVES To identify genotypic signatures capable of predicting aminoglycoside MICs for CR-Kp. METHODS Clinical CR-Kp isolates (n = 158) underwent WGS to detect aminoglycoside-resistance genes. MICs of amikacin, gentamicin, plazomicin and tobramycin were determined by broth microdilution (BMD). Principal component analysis was used to initially separate isolates based on genotype. Multiple linear regression was then used to generate models that predict aminoglycoside MICs based on the aminoglycoside-resistance genes. Last, the performance of the predictive models was tested against a validation cohort of 29 CR-Kp isolates. RESULTS Among the original 158 CR-Kp isolates, 91.77% (145/158) had at least one clinically relevant aminoglycoside-resistance gene. As a group, 99.37%, 84.81%, 82.28% and 10.76% of the CR-Kp isolates were susceptible to plazomicin, amikacin, gentamicin and tobramycin, respectively. The first two principal components explained 72.23% of the total variance in aminoglycoside MICs and separated isolates into four groups with aac(6')-Ib, aac(6')-Ib', aac(6')-Ib+aac(6')-Ib' or no clinically relevant aminoglycoside-resistance genes. Regression models predicted aminoglycoside MICs with adjusted R2 values of 56%-99%. Within the validation cohort, the categorical agreement when comparing the observed BMD MICs with the predicated MICs was 96.55%, 89.66%, 86.21% and 82.76% for plazomicin, gentamicin, amikacin and tobramycin, respectively. CONCLUSIONS Susceptibility to each aminoglycoside varies in CR-Kp. Detection of aminoglycoside-resistance genes may be useful to predict aminoglycoside MICs for CR-Kp.
Collapse
Affiliation(s)
- Yanqin Huang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Amisha P Rana
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Egon A Ozer
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fiorella Krapp
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Alan R Hauser
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
4
|
Overexpression of RamA, Which Regulates Production of the Multidrug Resistance Efflux Pump AcrAB-TolC, Increases Mutation Rate and Influences Drug Resistance Phenotype. Antimicrob Agents Chemother 2020; 64:AAC.02460-19. [PMID: 31988103 DOI: 10.1128/aac.02460-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 01/29/2023] Open
Abstract
In Enterobacteriales, the AcrAB-TolC efflux pump exports substrates, including antimicrobials, from the cell. Overexpression of AcrAB-TolC can occur after exposure to fluoroquinolones, leading to multidrug resistance. The expression of AcrAB-TolC in Salmonella is primarily regulated by the transcriptional activator RamA. However, other transcriptional activators, such as MarA, SoxRS, and Rob, can influence AcrAB-TolC expression. This study determined whether the overproduction or absence of RamA influences the mutation rate or the phenotype of mutants selected in Salmonella enterica serovar Typhimurium SL1344 after ciprofloxacin exposure. The absence of RamA (SL1344 ramA::aph) resulted in mutation frequencies/rates similar to those of wild-type Salmonella Typhimurium SL1344. However, the overproduction of RamA (SL1344 ramR::aph) and, consequently, AcrB resulted in a significantly higher mutation frequency and rate than for wild-type Salmonella Typhimurium SL1344. Whole-genome sequencing revealed that in addition to selecting gyrA mutants resistant to quinolones, SL1344 and SL1344 ramA::aph also produced multidrug-resistant (MDR) mutants, associated with mutations in soxR Conversely, mutations in SL1344 ramR::aph occurred in gyrA only. Although transcriptional regulators such as SoxRS are believed to play a minor role in AcrAB-TolC regulation under antibiotic selective pressure, we show that soxR mutants can be selected after exposure to ciprofloxacin, including when RamA is absent. This demonstrates that under selective pressure, Salmonella can respond to increased efflux pump expression by mutating other AcrAB-TolC regulatory genes, allowing for the evolution of MDR. Understanding how Salmonella responds to antibiotic pressure in the absence/overproduction of RamA is important if targeting transcriptional regulators to alter efflux is to be considered an avenue for future drug discovery.
Collapse
|
5
|
Chevallereau A, Meaden S, van Houte S, Westra ER, Rollie C. The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180094. [PMID: 30905293 PMCID: PMC6452272 DOI: 10.1098/rstb.2018.0094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
CRISPR-Cas immune systems are present in around half of bacterial genomes. Given the specificity and adaptability of this immune mechanism, it is perhaps surprising that they are not more widespread. Recent insights into the requirement for specific host factors for the function of some CRISPR-Cas subtypes, as well as the negative epistasis between CRISPR-Cas and other host genes, have shed light on potential reasons for the partial distribution of this immune strategy in bacteria. In this study, we examined how mutations in the bacterial mismatch repair system, which are frequently observed in natural and clinical isolates and cause elevated host mutation rates, influence the evolution of CRISPR-Cas-mediated immunity. We found that hosts with a high mutation rate very rarely evolved CRISPR-based immunity to phage compared to wild-type hosts. We explored the reason for this effect and found that the higher frequency at which surface mutants pre-exist in the mutator host background causes them to rapidly become the dominant phenotype under phage infection. These findings suggest that natural variation in bacterial mutation rates may, therefore, influence the distribution of CRISPR-Cas adaptive immune systems. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | | | | | - Edze R. Westra
- ESI and CEC, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Clare Rollie
- ESI and CEC, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
6
|
Mei GY, Tang J, Bach S, Kostrzynska M. Changes in Gene Transcription Induced by Hydrogen Peroxide Treatment of Verotoxin-Producing Escherichia coli O157:H7 and Non-O157 Serotypes on Romaine Lettuce. Front Microbiol 2017; 8:477. [PMID: 28377761 PMCID: PMC5359304 DOI: 10.3389/fmicb.2017.00477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Disease outbreaks of verotoxin-producing Escherichia coli (VTEC) O157:H7 and non-O157 serotypes associated with leafy green vegetables are becoming a growing concern. A better understanding of the behavior of VTEC, particularly non-O157 serotypes, on lettuce under stress conditions is necessary for designing more effective control strategies. Hydrogen peroxide (H2O2) can be used as a sanitizer to reduce the microbial load in leafy green vegetables, particularly in fresh produce destined for the organic market. In this study, we tested the hypothesis that H2O2 treatment of contaminated lettuce affects in the same manner transcription of stress-associated and virulence genes in VTEC strains representing O157 and non-O157 serotypes. Six VTEC isolates representing serotypes O26:H11, O103:H2, O104:H4, O111:NM, O145:NM, and O157:H7 were included in this study. The results indicate that 50 mM H2O2 caused a population reduction of 2.4-2.8 log10 (compared to non-treated control samples) in all six VTEC strains present on romaine lettuce. Following the treatment, the transcription of genes related to oxidative stress (oxyR and sodA), general stress (uspA and rpoS), starvation (phoA), acid stress (gadA, gadB, and gadW), and virulence (stx1A, stx2A, and fliC) were dramatically downregulated in all six VTEC serotypes (P ≤ 0.05) compared to not treated control samples. Therefore, VTEC O157:H7 and non-O157 serotypes on lettuce showed similar survival rates and gene transcription profiles in response to 50 mM H2O2 treatment. Thus, the results derived from this study provide a basic understanding of the influence of H2O2 treatment on the survival and virulence of VTEC O157:H7 and non-O157 serotypes on lettuce.
Collapse
Affiliation(s)
- Gui-Ying Mei
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Susan Bach
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada Summerland, BC, Canada
| | - Magdalena Kostrzynska
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| |
Collapse
|
7
|
Abstract
Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. DNA mutations are a double-edged sword. Most mutations are harmful; they can scramble precise genetic sequences honed over thousands of generations. But in rare cases, mutations also produce beneficial new traits that allow populations to adapt to changing environments. Recent evidence suggests that some bacteria balance this trade-off by altering their mutation rates to suit their environment. To date, however, we know of few mechanisms that allow bacteria to change their mutation rates. We describe one such mechanism, driven by the action of a mobile element, in the marine bacterium Vibrio splendidus 12B01. We also found similar mobile genetic sequences in the mutS genes of many different bacteria, including clinical and agricultural pathogens. These mobile elements might play an as yet unknown role in the evolution of these important bacteria.
Collapse
|
8
|
Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:2870-80. [PMID: 26926641 DOI: 10.1128/aac.02377-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
Abstract
Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are -8.81 log10 for the wild type, -4.71 for the mutS mutant, and -7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains.
Collapse
|
9
|
Wielgoss S, Bergmiller T, Bischofberger AM, Hall AR. Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria. Mol Biol Evol 2016; 33:770-82. [PMID: 26609077 PMCID: PMC4760081 DOI: 10.1093/molbev/msv270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.
Collapse
Affiliation(s)
| | | | | | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
Wang Y, Liu C, Zhang Z, Hu Y, Cao C, Wang X, Xi M, Xia X, Yang B, Meng J. Distribution and Molecular Characterization of Salmonella enterica Hypermutators in Retail Food in China. J Food Prot 2015; 78:1481-7. [PMID: 26219361 DOI: 10.4315/0362-028x.jfp-14-462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypermutable pathogens can easily acquire mutation opportunities, as well as antimicrobial resistance, and are tremendous hazards to food safety and public health. In this study, a total of 96 (7.6%) hypermutators were identified from 1,264 Salmonella isolates recovered from retail foods. Pulsed-field gel electrophoresis analysis indicated that hypermutators were genetically diverse. Amino acid substitution of Val421Phe was detected in MutS in one hypermutator and Val246Ala in 56 other hypermutators, while no mutation in MutS was found among the remaining 39 hypermutators. Hypermutators in Salmonella isolates recovered in 2010 (9.3%) and 2008 (7.7%) were significantly more prevalent than those in 2007 (1.4%). The rate of hypermutators in mutton (22.2%) was significantly higher than that in chicken (7.9%) and pork (4.7%). In Salmonella Leimo isolates (60.0%), hypermutators were most frequently detected, followed by Salmonella Essen (50.0%), Salmonella Indiana (36.6%), Salmonella Kallo (25.0%), Salmonella Heidelberg (23.8%), Salmonella Typhimurium (14.0%), Salmonella Shubra (13.0%), Salmonella Albany (11.1%), Salmonella Agona (7.0%), Salmonella Gueuletapee (6.3%), and Salmonella Enteritidis (1.7%). Salmonella hypermutators in isolates recovered from retail food stored at ambient temperature (15.7%) were significantly more prevalent than those stored in chilled (3.1%) and frozen (5.4%) condition. The overall distributions of mutation frequencies of the 96 hypermutators (selected by rifampin) were from 2.16 × 10(-5) to 4.25 × 10(-1). Mutation frequencies of hypermutators of Salmonella Leimo, Salmonella Essen, Salmonella Kallo, and Salmonella Agona were relative low, while those of Salmonella Typhimurium, Salmonella Indiana, and Salmonella Shubra were extremely high. No significant correlation was found between mutation frequency and antimicrobial resistance of the hypermutators.
Collapse
Affiliation(s)
- Yin Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Chongyang Liu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Zengfeng Zhang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Yuanyuan Hu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China, 710062
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Meili Xi
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100.
| | - Jianghong Meng
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| |
Collapse
|
11
|
Tazzyman SJ, Hall AR. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli. ISME JOURNAL 2015; 9:809-20. [PMID: 25268496 DOI: 10.1038/ismej.2014.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome. Sci Rep 2014; 4:7346. [PMID: 25475788 PMCID: PMC5376664 DOI: 10.1038/srep07346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome.
Collapse
|
13
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 2014; 9:e99627. [PMID: 24926786 PMCID: PMC4057180 DOI: 10.1371/journal.pone.0099627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses.
Collapse
Affiliation(s)
- Thea King
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
- * E-mail:
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Jolivet-Gougeon A, Kovacs B, Le Gall-David S, Le Bars H, Bousarghin L, Bonnaure-Mallet M, Lobel B, Guillé F, Soussy CJ, Tenke P. Bacterial hypermutation: clinical implications. J Med Microbiol 2011; 60:563-573. [PMID: 21349992 DOI: 10.1099/jmm.0.024083-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Heritable hypermutation in bacteria is mainly due to alterations in the methyl-directed mismatch repair (MMR) system. MMR-deficient strains have been described from several bacterial species, and all of the strains exhibit increased mutation frequency and recombination, which are important mechanisms for acquired drug resistance in bacteria. Antibiotics select for drug-resistant strains and refine resistance determinants on plasmids, thus stimulating DNA recombination via the MMR system. Antibiotics can also act as indirect promoters of antibiotic resistance by inducing the SOS system and certain error-prone DNA polymerases. These alterations have clinical consequences in that efficacious treatment of bacterial infections requires high doses of antibiotics and/or a combination of different classes of antimicrobial agents. There are currently few new drugs with low endogenous resistance potential, and the development of such drugs merits further research.
Collapse
Affiliation(s)
- Anne Jolivet-Gougeon
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Bela Kovacs
- Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary
| | - Sandrine Le Gall-David
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Hervé Le Bars
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Latifa Bousarghin
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Martine Bonnaure-Mallet
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Bernard Lobel
- Service d'Urologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - François Guillé
- Service d'Urologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - Claude-James Soussy
- Service de Bactériologie-Virologie-Hygiène, CHU Henri-Mondor, 51 avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil cedex, France
| | - Peter Tenke
- Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary
| |
Collapse
|
15
|
Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response. PLoS Comput Biol 2010; 6:e1000710. [PMID: 20300650 PMCID: PMC2837395 DOI: 10.1371/journal.pcbi.1000710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/08/2010] [Indexed: 11/19/2022] Open
Abstract
Mutators are clones whose mutation rate is about two to three orders of magnitude higher than the rate of wild-type clones and their roles in adaptive evolution of asexual populations have been controversial. Here we address this problem by using an ab initio microscopic model of living cells, which combines population genetics with a physically realistic presentation of protein stability and protein-protein interactions. The genome of model organisms encodes replication controlling genes (RCGs) and genes modeling the mismatch repair (MMR) complexes. The genotype-phenotype relationship posits that the replication rate of an organism is proportional to protein copy numbers of RCGs in their functional form and there is a production cost penalty for protein overexpression. The mutation rate depends linearly on the concentration of homodimers of MMR proteins. By simulating multiple runs of evolution of populations under various environmental stresses—stationary phase, starvation or temperature-jump—we find that adaptation most often occurs through transient fixation of a mutator phenotype, regardless of the nature of stress. By contrast, the fixation mechanism does depend on the nature of stress. In temperature jump stress, mutators take over the population due to loss of stability of MMR complexes. In contrast, in starvation and stationary phase stresses, a small number of mutators are supplied to the population via epigenetic stochastic noise in production of MMR proteins (a pleiotropic effect), and their net supply is higher due to reduced genetic drift in slowly growing populations under stressful environments. Subsequently, mutators in stationary phase or starvation hitchhike to fixation with a beneficial mutation in the RCGs, (second order selection) and finally a mutation stabilizing the MMR complex arrives, returning the population to a non-mutator phenotype. Our results provide microscopic insights into the rise and fall of mutators in adapting finite asexual populations. The dramatic rise of mutators has been found to accompany adaptation of bacteria in response to many kinds of stress. Two views on the evolutionary origin of this phenomenon emerged: the pleiotropic hypothesis positing that it is a byproduct of environmental stress or other specific stress response mechanisms and the second order selection which states that mutators hitchhike to fixation with unrelated beneficial alleles. Conventional population genetics models could not fully resolve this controversy because they are based on certain assumptions about fitness landscape. Here we address this problem using a microscopic multiscale model, which couples physically realistic molecular descriptions of proteins and their interactions with population genetics of carrier organisms without assuming any a priori mutational effect on fitness landscape. We found that both pleiotropy and second order selection play a crucial role at different stages of adaptation: the supply of mutators is provided through destabilization of error correction complexes or, alternatively, fluctuations of production levels of prototypic mismatch repair proteins (pleiotropic effects), while the rise and fixation of mutators occurs when there is a sufficient supply of beneficial mutations in replication-controlling genes. This general mechanism assures a robust and reliable adaptation of organisms to unforeseen challenges. This study highlights physical principles underlying biological mechanisms of stress response and adaptation.
Collapse
|
16
|
Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE, Høiby N. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 2009; 53:2483-91. [PMID: 19332676 PMCID: PMC2687204 DOI: 10.1128/aac.00428-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/06/2008] [Accepted: 02/19/2009] [Indexed: 12/29/2022] Open
Abstract
The chronic Pseudomonas aeruginosa infection of the lungs of cystic fibrosis (CF) patients is characterized by the biofilm mode of growth and chronic inflammation dominated by polymorphonuclear leukocytes (PMNs). A high percentage of P. aeruginosa strains show high frequencies of mutations (hypermutators [HP]). P. aeruginosa is exposed to oxygen radicals, both those generated by its own metabolism and especially those released by a large number of PMNs in response to the chronic CF lung infection. Our work therefore focused on the role of the DNA oxidative repair system in the development of HP and antibiotic resistance. We have constructed and characterized mutT, mutY, and mutM mutants in P. aeruginosa strain PAO1. The mutT and mutY mutants showed 28- and 7.5-fold increases in mutation frequencies, respectively, over that for PAO1. These mutators had more oxidative DNA damage (higher levels of 7,8-dihydro-8-oxodeoxyguanosine) than PAO1 after exposure to PMNs, and they developed resistance to antibiotics more frequently. The mechanisms of resistance were increased beta-lactamase production and overexpression of the MexCD-OprJ efflux-pump. Mutations in either the mutT or the mutY gene were found in resistant HP clinical isolates from patients with CF, and complementation with wild-type genes reverted the phenotype. In conclusion, oxidative stress might be involved in the development of resistance to antibiotics. We therefore suggest the possible use of antioxidants for CF patients to prevent the development of antibiotic resistance.
Collapse
Affiliation(s)
- L F Mandsberg
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
When challenged with unfavorable conditions, microorganisms can develop a stress response that allows them to adapt to or survive in the new environment. A common feature of the numerous specific stress response pathways that have been described in a wide range of bacteria is that they are energy demanding and therefore often transient. In addition, stress responses may come too late or be insufficient to protect the cell or the population against very sudden or severe stresses. However, it seems that microorganisms can also enhance their chances of survival under stress by increasing the generation of diversity at the population level. This can be achieved either by creating genetic diversity by a variety of mechanisms involving for example constitutive or transient mutators and contingency loci, or by revealing phenotypic diversity that remained dormant due to a mechanism called genetic buffering. This review gives an overview of these emerging diversity-generating mechanisms, which seem to play an important role in the ability of microbial populations to overcome stress challenges.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | |
Collapse
|
18
|
Ferenci T. Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 2007; 53:169-229. [PMID: 17707145 DOI: 10.1016/s0065-2911(07)53003-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemostat was devised over 50 years ago and rapidly adopted for studies of bacterial physiology and mutation. Despite the long history and earlier analyses, the complexity of events in continuous cultures is only now beginning to be resolved. The application of techniques for following regulatory and mutational changes and the identification of mutated genes in chemostat populations has provided new insights into bacterial behaviour. Inoculation of bacteria into a chemostat culture results in a population competing for a limiting amount of a particular resource. Any utilizable carbon source or ion can be a limiting nutrient and bacteria respond to limitation through a regulated nutrient-specific hunger response. In addition to transcriptional responses to nutrient limitation, a second regulatory influence in a chemostat culture is the reduced growth rate fixed by the dilution rate in individual experiments. Sub-maximal growth rates and hunger result in regulation involving sigma factors and alarmones like cAMP and ppGpp. Reduced growth rate also results in increased mutation frequencies. The combination of a strongly selective environment (where mutants able to compete for limiting nutrient have a major fitness advantage) and elevated mutation rates (both endogenous and through the secondary enrichment of mutators) results in a population that changes rapidly and persistently over many generations. Contrary to common belief, the chemostat environment is never in "steady state" with fixed bacterial characteristics usable for clean comparisons of physiological or regulatory states. Adding to the complexity, chemostat populations do not simply exhibit a succession of mutational sweeps leading to a dominant winner clone. Instead, within 100 generations large populations become heterogeneous and evolving bacteria adopt alternative, parallel fitness strategies. Transport physiology, metabolism and respiration, as well as growth yields, are highly diverse in chemostat-evolved bacteria. The rich assortment of changes in an evolving chemostat provides an excellent experimental system for understanding bacterial evolution. The adaptive radiation or divergence of populations into a collection of individuals with alternative solutions to the challenge of chemostat existence provides an ideal model system for testing evolutionary and ecological theories on adaptive radiations and the generation of bacterial diversity.
Collapse
Affiliation(s)
- Thomas Ferenci
- School of Molecular and Microbial Biosciences G08, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Saint-Ruf C, Pesut J, Sopta M, Matic I. Causes and consequences of DNA repair activity modulation during stationary phase in Escherichia coli. Crit Rev Biochem Mol Biol 2007; 42:259-70. [PMID: 17687668 DOI: 10.1080/10409230701495599] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Escherichia coli responds to nutrient exhaustion by entering a state commonly referred to as the stationary phase. Cells entering the stationary phase redirect metabolic circuits to scavenge any available nutrients and become resistant to different stresses. However, many DNA repair pathways are downregulated in stationary-phase cells, which results in increased mutation rates. DNA repair activity generally depends on consumption of energy and often requires de novo proteins synthesis. Consequently, unless stringently regulated during stationary phase, DNA repair activities may lead to an irreversible depletion of energy sources and, therefore to cell death. Most stationary phase morphological and physiological modifications are regulated by an alternative RNA polymerase sigma factor RpoS. However, nutrient availability, and the frequency and nature of stresses, are different in distinct environmental niches, which impose conflicting choices that result in selection of the loss or of the modification of RpoS function. Consequently, DNA repair activity, which is partially controlled by RpoS, is differently modulated in different environments. This results in the variable mutation rates among different E. coli ecotypes. Hence, the polymorphism of mutation rates in natural E. coli populations can be viewed as a byproduct of the selection for improved fitness.
Collapse
Affiliation(s)
- Claude Saint-Ruf
- INSERM, U571, Faculté de Médicine, Université Paris 5, Paris, France
| | | | | | | |
Collapse
|
20
|
Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 2007; 189:2540-52. [PMID: 17220222 PMCID: PMC1899367 DOI: 10.1128/jb.01484-06] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec.
Collapse
Affiliation(s)
- M Miragaia
- Laboratório de Genética Molecular, Instituto de Technologia Química e Biológica, Universidade Nova de Lisboa (ITQB/UNL), Portugal
| | | | | | | | | |
Collapse
|
21
|
Abstract
Environmental stresses may lead to selection for hypermutator bacterial cells, which have an increased chance of generating beneficial variants. With stress removal, cost of mutation exceeds the fitness advantage, selecting against hypermutators. Hypermutators arise through several mechanisms, including inactivation of mismatch repair genes (MMR) or induction of error-prone polymerases. Helicobacter pylori may provide an alternative mechanism of stress-induced mutagenesis, since it lacks the MMR genes and error-prone polymerases found in other bacterial species, and possesses an endogenously high mutation frequency. In this study, we expose H. pylori strains to reactive oxygen species and reactive nitrogen species, stressors found in their natural environment. These exposures directly resulted in elevated rates of spontaneous point mutation, deletion between direct repeats, and intergenomic recombination. We demonstrate that these effects are transient and do not involve selection for hypermutator strains. That H. pylori possesses direct repeats in regions where potential gene rearrangements can occur suggests a mechanism for targeted mutation in response to stress that avoids the deleterious fitness costs of fixed hypermutation. These studies provide a new paradigm for adaptation under increased selective pressures that may be present in other prokaryotes.
Collapse
Affiliation(s)
- Josephine M Kang
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | | | |
Collapse
|
22
|
Bai H, Lu AL. Physical and functional interactions between Escherichia coli MutY glycosylase and mismatch repair protein MutS. J Bacteriol 2006; 189:902-10. [PMID: 17114250 PMCID: PMC1797285 DOI: 10.1128/jb.01513-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.
Collapse
Affiliation(s)
- Haibo Bai
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
23
|
Hall LMC, Henderson-Begg SK. Hypermutable bacteria isolated from humans – a critical analysis. Microbiology (Reading) 2006; 152:2505-2514. [PMID: 16946246 DOI: 10.1099/mic.0.29079-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypermutable bacteria of several species have been described among isolates recovered from humans over the last decade. Interpretation of the literature in this area is complicated by diversity in the determination and definition of hypermutability, and this review outlines the different methods used. Inactivation of the mismatch repair genemutSis often implicated in the mutator phenotype; the reported effect ofmutSinactivation on mutation frequency varies widely between species, from under 10-fold to nearly 1000-fold, but also varies among different reports on the same species. Particularly high proportions of mutators have been reported amongPseudomonas aeruginosaand other species in the cystic fibrosis lung, epidemic serogroup ANeisseria meningitidis, andHelicobacter pylori. Aspects of the biology of these infections that could be relevant to hypermutability are discussed, and some future directions that may increase our understanding of mutators among bacteria isolated from humans are considered.
Collapse
Affiliation(s)
- Lucinda M C Hall
- Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie K Henderson-Begg
- Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
24
|
Abstract
Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Erick Denamur
- INSERM U722, Faculté de Médecine, Université Denis Diderot -- Paris 7, 16 rue Henri Huchard, 75018 Paris, France
| | | |
Collapse
|
25
|
Abstract
The traditional view of the stationary phase of the bacterial life cycle, obtained using standard laboratory culture practices, although useful, might not always provide us with the complete picture. Here, the traditional three phases of the bacterial life cycle are expanded to include two additional phases: death phase and long-term stationary phase. In many natural environments, bacteria probably exist in conditions more akin to those of long-term stationary-phase cultures, in which the expression of a wide variety of stress-response genes and alternative metabolic pathways is essential for survival. Furthermore, stressful environments can result in selection for mutants that express the growth advantage in stationary phase (GASP) phenotype.
Collapse
Affiliation(s)
- Steven E Finkel
- Molecular and Computational Biology Programme, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA.
| |
Collapse
|
26
|
Joseph N, Duppatla V, Rao DN. Prokaryotic DNA Mismatch Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:1-49. [PMID: 16891168 DOI: 10.1016/s0079-6603(06)81001-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
27
|
|
28
|
Li B, Brown EW, D'Agostino C, LeClerc JE, Cebula TA. Structure and distribution of the phosphoprotein phosphatase genes, prpA and prpB, among Shigella subgroups. Microbiology (Reading) 2005; 151:2671-2683. [PMID: 16079345 DOI: 10.1099/mic.0.27990-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoprotein phosphatases encoded by theprpAandprpBgenes function in signal transduction pathways for degradation of misfolded proteins in the extracytoplasmic compartments ofEscherichia coli. In order to trace the evolution ofprpgenes and assess their roles in other enteric pathogens, the structure and distribution of these genes among closely related Shigella subgroups were studied. PCR amplification, probe hybridization studies and DNA sequencing were used to determine theprpgenotypes of 58 strains from the four Shigella subgroups, Dysenteriae, Boydii, Sonnei and Flexneri. It was found that theprpalleles among Shigella subgroups were extremely susceptible to gene inactivation and that the mutations involved inprpallele inactivation were varied. They included IS insertions, gene replacement by an IS element, a small deletion within the gene or large deletion engulfing the entire gene region, and base substitutions that generated premature termination codons. As a result, of 58 strains studied, only eight (14 %) possessed intactprpAandprpBgenes. Of the Shigella strains examined, 76 % (44/58) showed at least one of theprpalleles inactivated by one or more IS elements, including IS1, IS4, IS600and IS629. Phylogenetic analysis revealed that IS elements have been independently acquired in multiple lineages of Shigella, suggesting that loss of functional alleles has been advantageous during Shigella strain evolution.
Collapse
Affiliation(s)
- Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | - Eric W Brown
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | - Christine D'Agostino
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | - J Eugene LeClerc
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | - Thomas A Cebula
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| |
Collapse
|
29
|
Watson ME, Burns JL, Smith AL. Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. MICROBIOLOGY-SGM 2005; 150:2947-2958. [PMID: 15347753 DOI: 10.1099/mic.0.27230-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypermutable bacterial pathogens exist at surprisingly high prevalence and benefit bacterial populations by promoting adaptation to selective environments, including resistance to antibiotics. Five hundred Haemophilus influenzae isolates were screened for an increased frequency of mutation to resistance to rifampicin, nalidixic acid and spectinomycin: of the 14 hypermutable isolates identified, 12 were isolated from cystic fibrosis (CF) sputum. Analysis by enterobacterial repetitive intergenic consensus (ERIC)-PCR and ribotyping identified eight distinct genetic fingerprints. The hypermutable phenotype of seven of the eight unique isolates was associated with polymorphisms in conserved sites of mutS. Four of the mutant mutS alleles were cloned and failed to complement the mutator phenotype of a mutS : : TSTE mutant of H. influenzae strain Rd KW20. Antibiotic susceptibility testing of the hypermutators identified one beta-lactamase-negative ampicillin-resistant (BLNAR) isolate with two isolates producing beta-lactamase. Six isolates from the same patient with CF, with the same genetic fingerprint, were clonal by multilocus sequence typing (MLST). In this clone, there was an evolution to higher MIC values for the antibiotics administered to the patient during the period in which the strains were isolated. Hypermutable H. influenzae with mutations in mutS are prevalent, particularly in the CF lung environment, and may be selected for and maintained by antibiotic pressure.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/physiology
- Ampicillin Resistance
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Cloning, Molecular
- Cystic Fibrosis/microbiology
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Intergenic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drug Resistance, Bacterial/genetics
- Genes, Bacterial
- Genetic Complementation Test
- Haemophilus influenzae/drug effects
- Haemophilus influenzae/genetics
- Haemophilus influenzae/isolation & purification
- Humans
- Molecular Sequence Data
- MutS DNA Mismatch-Binding Protein
- Mutation
- Nalidixic Acid/pharmacology
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid
- Ribotyping
- Rifampin/pharmacology
- Selection, Genetic
- Sequence Analysis, DNA
- Spectinomycin/pharmacology
- Sputum/microbiology
- beta-Lactamases/analysis
Collapse
Affiliation(s)
- Michael E Watson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Jane L Burns
- Division of Infectious Diseases, Children's Hospital and Regional Medical Center, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Arnold L Smith
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
30
|
Meier P, Wackernagel W. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 2005; 187:143-54. [PMID: 15601698 PMCID: PMC538834 DOI: 10.1128/jb.187.1.143-154.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/17/2004] [Indexed: 11/20/2022] Open
Abstract
In prokaryotic mismatch repair the MutS protein and its homologs recognize the mismatches. The mutS gene of naturally transformable Pseudomonas stutzeri ATCC 17587 (genomovar 2) was identified and characterized. The deduced amino acid sequence (859 amino acids; 95.6 kDa) displayed protein domains I to IV and a mismatch-binding motif similar to those in MutS of Escherichia coli. A mutS::aac mutant showed 20- to 163-fold-greater spontaneous mutability. Transformation experiments with DNA fragments of rpoB containing single nucleotide changes (providing rifampin resistance) indicated that mismatches resulting from both transitions and transversions were eliminated with about 90% efficiency in mutS+. The mutS+ gene of strain ATCC 17587 did not complement an E. coli mutant but partially complemented a P. stutzeri JM300 mutant (genomovar 4). The declining heterogamic transformation by DNA with 0.1 to 14.6% sequence divergence was partially alleviated by mutS::aac, indicating that there was a 14 to 16% contribution of mismatch repair to sexual isolation. Expression of mutS+ from a multicopy plasmid eliminated autogamic transformation and greatly decreased heterogamic transformation, suggesting that there is strong limitation of MutS in the wild type for marker rejection. Remarkably, mutS::aac altered foreign DNA acquisition by homology-facilitated illegitimate recombination (HFIR) during transformation, as follows: (i) the mean length of acquired DNA was increased in transformants having a net gain of DNA, (ii) the HFIR events became clustered (hot spots) and less dependent on microhomologies, which may have been due to topoisomerase action, and (iii) a novel type of transformants (14%) had integrated foreign DNA with no loss of resident DNA. We concluded that in P. stutzeri upregulation of MutS could enforce sexual isolation and downregulation could increase foreign DNA acquisition and that MutS affects mechanisms of HFIR.
Collapse
Affiliation(s)
- Petra Meier
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Germany
| | | |
Collapse
|
31
|
Matic I, Taddei F, Radman M. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 2004; 155:337-41. [PMID: 15207865 DOI: 10.1016/j.resmic.2004.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/20/2004] [Indexed: 11/24/2022]
Abstract
Bacteria are constantly facing many different environmental assaults, which may be of such severity that numerous survivors have important alterations in their genetic material. Some genetic systems induced in response to such stresses, for example the SOS system and the sigmaS regulon, actively participate in the generation of genetic alterations. The key priority of those genetic systems during stress is to ensure survival. Therefore, the repair of lethal DNA lesions is an absolute necessity, while perfect restoration of original genetic information is not. Furthermore, the nature of DNA lesions might render error-free repair too costly, or even impossible for stressed bacterial cells. Although the majority of these genetic alterations are deleterious, the rare advantageous alterations may have long-term evolutionary consequences independently of whether the selection of molecular mechanisms involved in their generation is linked to survival strategies or not.
Collapse
Affiliation(s)
- Ivan Matic
- INSERM U571, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 156 rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | |
Collapse
|
32
|
Tenaillon O, Denamur E, Matic I. Evolutionary significance of stress-induced mutagenesis in bacteria. Trends Microbiol 2004; 12:264-70. [PMID: 15165604 DOI: 10.1016/j.tim.2004.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutagenesis is often increased in bacterial populations as a consequence of stress-induced genetic pathways. Analysis of the molecular mechanisms involved suggests that mutagenesis might be increased as a by-product of the stress response of the organism. By contrast, computer simulations and analyses of stress-inducible phenotypes among natural isolates of Escherichia coli suggest that stress-induced mutagenesis (SIM) could be the result of selection because of the beneficial mutations that such a process can potentially generate. Regardless of the nature of the selective pressure acting on SIM, it is possible that the resulting increased genetic variability plays an important role in bacterial evolution.
Collapse
Affiliation(s)
- Olivier Tenaillon
- INSERM E0339 Faculté de Médecine Xavier Bichat, Université Denis Diderot-Paris VII, 16 rue Henri Huchard 75870 Paris cedex 18, France.
| | | | | |
Collapse
|
33
|
Blázquez J. Hypermutation as a Factor Contributing to the Acquisition of Antimicrobial Resistance. Clin Infect Dis 2003; 37:1201-9. [PMID: 14557965 DOI: 10.1086/378810] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/05/2003] [Indexed: 11/03/2022] Open
Abstract
Contrary to what was thought previously, bacteria seem to be, not merely spectators to their own evolution, but, through a variety of mechanisms, able to increase the rate at which mutations occur and, consequently, to increase their chances of becoming resistant to antibiotics. Laboratory studies and mathematical models suggest that, under stressful conditions, such as antibiotic challenge, selective pressure favors mutator strains of bacteria over nonmutator strains. These hypermutable strains have been found in natural bacterial populations at higher frequencies than expected. The presence of mutator strains in the clinical setting may indicate an enhanced risk of acquiring antibiotic resistance through mutational and recombinational events. In addition, some antibiotics are inducers of mechanisms that transiently increase the mutation rate, and thus probably act, not only as mere selectors of antibiotic resistant clones, but also as resistance-promoters.
Collapse
Affiliation(s)
- Jesús Blázquez
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autonoma de Madrid, Spain.
| |
Collapse
|