1
|
Lemons JMS, Narrowe AB, Firrman J, Mahalak KK, Liu L, Higgins S, Moustafa AM, Baudot A, Deyaert S, Van den Abbeele P. The food additive butylated hydroxyanisole minimally affects the human gut microbiome ex vivo. Food Chem 2025; 473:143037. [PMID: 39919360 DOI: 10.1016/j.foodchem.2025.143037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Butylated hydroxyanisole (BHA) continues to raise consumer concerns. All previous evaluations of this additive have failed to consider its effect on the gut microbiome, even though it enters the colon. An ex vivo model was used to assess the effect of BHA on microbial communities from 24 donors, aged infants to older adults. A dose of 0.35 g/L BHA elicited no statistically significant changes in the functional outputs or community structure for any age group. Although not large enough to affect community diversity, there were some significant decreases at the phylum level. Among the genes most significantly affected by treatment with BHA across age groups are those involved in lipopolysaccharide synthesis and bacterial electron transport encoded by Bacteroidota, Proteobacteria, and Verrucomicrobiota. Given what is known about the intracellular activity of BHA, these genes may hint at a mechanism behind BHA's evident, but minimally detrimental effect on the gut microbiota.
Collapse
Affiliation(s)
- Johanna M S Lemons
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Adrienne B Narrowe
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Karley K Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Stephanie Higgins
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ahmed M Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aurélien Baudot
- Cryptobiotix, Technologiepark-Zwijnaarde 82, Ghent 9052, Belgium
| | - Stef Deyaert
- Cryptobiotix, Technologiepark-Zwijnaarde 82, Ghent 9052, Belgium
| | | |
Collapse
|
2
|
Nilson R, Penumutchu S, Pagano FS, Belenky P. Metabolic changes associated with polysaccharide utilization reduce susceptibility to some β-lactams in Bacteroides thetaiotaomicron. mSphere 2024; 9:e0010324. [PMID: 39109911 PMCID: PMC11351048 DOI: 10.1128/msphere.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. Bacteroides thetaiotaomicron (Bth) is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that Bth responds to β-lactam treatment differently depending on the metabolic environment both in vitro and in vivo. Studies of other bacteria show that an increase in respiratory metabolism independent of growth rate promotes susceptibility to bactericidal antibiotics. We propose that Bth enters a protected state linked to an increase in polysaccharide utilization and a decrease in the use of simple sugars. Here, we apply antibiotic susceptibility testing, transcriptomic analysis, and genetic manipulation to characterize this polysaccharide-mediated tolerance (PM tolerance) phenotype. We found that a variety of mono- and disaccharides increased the susceptibility of Bth to several different β-lactams compared to polysaccharides. Transcriptomics indicated a metabolic shift from reductive to oxidative branches of the tricarboxylic acid cycle on polysaccharides. Accordingly, supplementation with intermediates of central carbon metabolism had varying effects on PM tolerance. Transcriptional analysis also showed a decrease in the expression of the electron transport chain (ETC) protein NQR and an increase in the ETC protein NUO, when given fiber versus glucose. Deletion of NQR increased Bth susceptibility while deletion of NUO and a third ETC protein NDH2 had no effect. This work confirms that carbon source utilization modulates antibiotic susceptibility in Bth and that anaerobic respiratory metabolism and the ETC play an essential role.IMPORTANCEAntibiotics are indispensable medications that revolutionized modern medicine. However, their effectiveness is challenged by a large array of resistance and tolerance mechanisms. Treatment with antibiotics also disrupts the gut microbiome which can adversely affect health. Bacteroides are prevalent in the gut microbiome and yet are frequently involved in anaerobic infections. Thus, understanding how antibiotics affect these bacteria is necessary to implement proper treatment. Recent work has investigated the role of metabolism in antibiotic susceptibility in distantly related bacteria such as Escherichia coli. Using antibiotic susceptibility testing, transcriptomics, and genetic manipulation, we demonstrate that polysaccharides reduce β-lactam susceptibility when compared to monosaccharides. This finding underscores the profound impact of metabolic adaptation on the therapeutic efficacy of antibiotics. In the long term, this work indicates that modulation of metabolism could make Bacteroides more susceptible during infections or protect them in the context of the microbiome.
Collapse
Affiliation(s)
- Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Francesco S. Pagano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Gough AM, Parker AC, O'Bryan PJ, Whitehead TR, Roy S, Garcia BL, Hoffman PS, Jeffrey Smith C, Rocha ER. New functions of pirin proteins and a 2-ketoglutarate: Ferredoxin oxidoreductase ortholog in Bacteroides fragilis metabolism and their impact on antimicrobial susceptibility to metronidazole and amixicile. Microbiologyopen 2024; 13:e1429. [PMID: 39109824 PMCID: PMC11304471 DOI: 10.1002/mbo3.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2. The mRNA expression of these genes increases when exposed to oxygen and during growth in iron-limiting conditions. These proteins, Pir1 and Pir2, influence the production of short-chain fatty acids and modify the susceptibility to metronidazole and amixicile, a new inhibitor of pyruvate: ferredoxin oxidoreductase in anaerobes. We have demonstrated that Pir1 and Pir2 interact directly with this oxidoreductase, as confirmed by two-hybrid system assays. Furthermore, structural analysis using AlphaFold2 predicts that Pir1 and Pir2 interact stably with several central metabolism enzymes, including the 2-ketoglutarate:ferredoxin oxidoreductases Kor1AB and Kor2CDAEBG. We used a series of metabolic mutants and electron transport chain inhibitors to demonstrate the extensive impact of bacterial metabolism on metronidazole and amixicile susceptibility. We also show that amixicile is an effective antimicrobial against B. fragilis in an experimental model of intra-abdominal infection. Our investigation led to the discovery that the kor2AEBG genes are essential for growth and have dual functions, including the formation of 2-ketoglutarate via the reverse TCA cycle. However, the metabolic activity that bypasses the function of Kor2AEBG following the addition of phospholipids or fatty acids remains undefined. Overall, our study provides new insights into the central metabolism of B. fragilis and its regulation by pirin proteins, which could be exploited for the development of new narrow-spectrum antimicrobials in the future.
Collapse
Affiliation(s)
- Andrea M. Gough
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Anita C. Parker
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | | | - Sourav Roy
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Brandon L. Garcia
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Paul S. Hoffman
- Department of Medicine, Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - C. Jeffrey Smith
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Edson R. Rocha
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
4
|
Mahmood B, Paunkov A, Kupc M, Burián K, Nagy E, Leitsch D, Sóki J. Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis. Antibiotics (Basel) 2024; 13:207. [PMID: 38534642 DOI: 10.3390/antibiotics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Previously, we reported that metronidazole MICs are not dependent on the expression levels of nim genes in B. fragilis strains and we compared the proteomes of metronidazole-resistant laboratory B. fragilis strains to those of their susceptible parent strains. Here, we used RT-qPCR to correlate the expression levels of 18 candidate genes in a panel of selected, clinical nim gene-positive and -negative B. fragilis strains to their metronidazole MICs. Metronidazole MICs were correlated with the expression of certain tested genes. Specifically, lactate dehydrogenase expression correlated positively, whereas cytochrome fumarate reductase/succinate dehydrogenase, malate dehydrogenase, phosphoglycerate kinase redox and gat (GCN5-like acetyltransferase), and relA (stringent response) regulatory gene expressions correlated negatively with metronidazole MICs. This result provides evidence for the involvement of carbohydrate catabolic enzymes in metronidazole resistance in B. fragilis. This result was supported by direct substrate utilization tests. However, the exact roles of these genes/proteins should be determined in deletion-complementation tests. Moreover, the exact redox cofactor(s) participating in metronidazole activation need to be identified.
Collapse
Affiliation(s)
- Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- Department of Biology, University of Garmian, Kalar 2562, Kurdistan Region, Iraq
| | - Ana Paunkov
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Malgorzata Kupc
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
5
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Meslé MM, Gray CR, Dlakić M, DuBois JL. Bacteroides thetaiotaomicron, a Model Gastrointestinal Tract Species, Prefers Heme as an Iron Source, Yields Protoporphyrin IX as a Product, and Acts as a Heme Reservoir. Microbiol Spectr 2023; 11:e0481522. [PMID: 36862015 PMCID: PMC10100974 DOI: 10.1128/spectrum.04815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Members of the phylum Bacteroidetes are abundant in healthy gastrointestinal (GI) tract flora. Bacteroides thetaiotaomicron is a commensal heme auxotroph and representative of this group. Bacteroidetes are sensitive to host dietary iron restriction but proliferate in heme-rich environments that are also associated with colon cancer. We hypothesized that B. thetaiotaomicron may act as a host reservoir for iron and/or heme. In this study, we defined growth-promoting quantities of iron for B. thetaiotaomicron. B. thetaiotaomicron preferentially consumed and hyperaccumulated iron in the form of heme when presented both heme and nonheme iron sources in excess of its growth needs, leading to an estimated 3.6 to 8.4 mg iron in a model GI tract microbiome consisting solely of B. thetaiotaomicron. Protoporphyrin IX was identified as an organic coproduct of heme metabolism, consistent with anaerobic removal of iron from the heme leaving the intact tetrapyrrole as the observed product. Notably, no predicted or discernible pathway for protoporphyrin IX generation exists in B. thetaiotaomicron. Heme metabolism in congeners of B. thetaiotaomicron has previously been associated with the 6-gene hmu operon, based on genetic studies. A bioinformatics survey demonstrated that the intact operon is widespread in but confined to members of the Bacteroidetes phylum and ubiquitous in healthy human GI tract flora. Anaerobic heme metabolism by commensal Bacteroidetes via hmu is likely a major contributor to human host metabolism of the heme from dietary red meat and a driver for the selective growth of these species in the GI tract consortium. IMPORTANCE Research on bacterial iron metabolism has historically focused on the host-pathogen relationship, where the host suppresses pathogen growth by cutting off access to iron. Less is known about how host iron is shared with bacterial species that live commensally in the anaerobic human GI tract, typified by members of phylum Bacteroidetes. While many facultative pathogens avidly produce and consume heme iron, most GI tract anaerobes are heme auxotrophs whose metabolic preferences we aimed to describe. Understanding iron metabolism by model microbiome species like Bacteroides thetaiotaomicron is essential for modeling the ecology of the GI tract, which serves the long-term biomedical goals of manipulating the microbiome to facilitate host metabolism of iron and remediate dysbiosis and associated pathologies (e.g., inflammation and cancer).
Collapse
Affiliation(s)
- Margaux M. Meslé
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Chase R. Gray
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Butler NL, Ito T, Foreman S, Morgan JE, Zagorevsky D, Malamy MH, Comstock LE, Barquera B. Bacteroides fragilis Maintains Concurrent Capability for Anaerobic and Nanaerobic Respiration. J Bacteriol 2023; 205:e0038922. [PMID: 36475831 PMCID: PMC9879120 DOI: 10.1128/jb.00389-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteroides species can use fumarate and oxygen as terminal electron acceptors during cellular respiration. In the human gut, oxygen diffuses from intestinal epithelial cells supplying "nanaerobic" oxygen levels. Many components of the anaerobic respiratory pathway have been determined, but such analyses have not been performed for nanaerobic respiration. Here, we present genetic, biochemical, enzymatic, and mass spectrometry analyses to elucidate the nanaerobic respiratory pathway in Bacteroides fragilis. Under anaerobic conditions, the transfer of electrons from NADH to the quinone pool has been shown to be contributed by two enzymes, NQR and NDH2. We find that the activity contributed by each under nanaerobic conditions is 77 and 23%, respectively, similar to the activity levels under anaerobic conditions. Using mass spectrometry, we show that the quinone pool also does not differ under these two conditions and consists of a mixture of menaquinone-8 to menaquinone-11, with menaquinone-10 predominant under both conditions. Analysis of fumarate reductase showed that it is synthesized and active under anaerobic and nanaerobic conditions. Previous RNA sequencing data and new transcription reporter assays show that expression of the cytochrome bd oxidase gene does not change under these conditions. Under nanaerobic conditions, we find both increased CydA protein and increased cytochrome bd activity. Reduced-minus-oxidized spectra of membranes showed the presence of heme d when the bacteria were grown in the presence of protoporphyrin IX and iron under both anaerobic and nanaerobic conditions, suggesting that the active oxidase can be assembled with or without oxygen. IMPORTANCE By performing a comprehensive analysis of nanaerobic respiration in Bacteroides fragilis, we show that this organism maintains capabilities for anaerobic respiration on fumarate and nanaerobic respiration on oxygen simultaneously. The contribution of the two NADH:quinone oxidoreductases and the composition of the quinone pool are the same under both conditions. Fumarate reductase and cytochrome bd are both present, and which of these terminal enzymes is active in electron transfer depends on the availability of the final electron acceptor: fumarate or oxygen. The synthesis of cytochrome bd and fumarate reductase under both conditions serves as an adaptation to an environment with low oxygen concentrations so that the bacteria can maximize energy conservation during fluctuating environmental conditions or occupation of different spatial niches.
Collapse
Affiliation(s)
- Nicole L. Butler
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sara Foreman
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Joel E. Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Dmitry Zagorevsky
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Michael H. Malamy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Laurie E. Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Blanca Barquera
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
8
|
Karavaeva V, Sousa FL. Modular structure of complex II: An evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148916. [PMID: 36084748 DOI: 10.1016/j.bbabio.2022.148916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.
Collapse
Affiliation(s)
- Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| |
Collapse
|
9
|
Paunkov A, Sóki J, Leitsch D. Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Front Microbiol 2022; 13:898453. [PMID: 35756037 PMCID: PMC9218692 DOI: 10.3389/fmicb.2022.898453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - József Sóki
- Faculty of Medicine, Institute of Medical Microbiology, University of Szeged, Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Lin L, Zou M, Lu Z. The aerobic electron flux is deficient in fumarate respiration of a strict anaerobe Bacteroides thetaiotaomicron. Biochem Biophys Res Commun 2022; 614:213-218. [PMID: 35623108 DOI: 10.1016/j.bbrc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Why oxygen ceases the growth of strictly anaerobic bacteria is a longstanding question, yet the answer remains unclear. Studies have confirmed that the dehydratase-fumarase containing an iron-sulfur cluster ([4Fe-4S]) is inactivated upon exposure to oxygen in the intestinal obligate anaerobe, Bacteroides thetaiotaomicron (B. thetaiotaomicron); this blocks fumarate respiration, which is the essential energy-producing pathway in anaerobes. Here, we substituted the [4Fe-4S]-dependent fumarase in B. thetaiotaomicron with an iron-free isozyme from E. coli (Ec-FumC). Results show that Ec-FumC successfully performed the catalytic function of fumarase in B. thetaiotaomicron, as the fum-mutant strain that expressed Ec-FumC exhibited succinate-producing ability under anaerobic growth conditions. Ec-FumC is oxygen-resistant and remains active to produce fumarate upon aeration; however, B. thetaiotaomicron mutant that expressed Ec-FumC did not convert fumarate to succinate during air exposure. Biochemical assays of inverted membrane vesicles from wild-type B. thetaiotaomicron confirmed that the electron flux from NADH to fumarate was less efficient in the presence of air as compared to that without oxygen. Our findings suggest that the anaerobic fumarate respiration might be paralyzed due to electron dissipations upon aeration of the obligate anaerobe.
Collapse
Affiliation(s)
- Luyou Lin
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Meng Zou
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
11
|
Kim K, Choe D, Song Y, Kang M, Lee SG, Lee DH, Cho BK. Engineering Bacteroides thetaiotaomicron to produce non-native butyrate based on a genome-scale metabolic model-guided design. Metab Eng 2021; 68:174-186. [PMID: 34655791 DOI: 10.1016/j.ymben.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022]
Abstract
Bacteroides thetaiotaomicron represents a major symbiont of the human gut microbiome that is increasingly viewed as a promising candidate strain for microbial therapeutics. Here, we engineer B. thetaiotaomicron for heterologous production of non-native butyrate as a proof-of-concept biochemical at therapeutically relevant concentrations. Since B. thetaiotaomicron is not a natural producer of butyrate, we heterologously expressed a butyrate biosynthetic pathway in the strain, which led to the production of butyrate at the final concentration of 12 mg/L in a rich medium. Further optimization of butyrate production was achieved by a round of metabolic engineering guided by an expanded genome-scale metabolic model (GEM) of B. thetaiotaomicron. The in silico knock-out simulation of the expanded model showed that pta and ldhD were the potent knock-out targets to enhance butyrate production. The maximum titer and specific productivity of butyrate in the pta-ldhD double knockout mutant increased by nearly 3.4 and 4.8 folds, respectively. To our knowledge, this is the first engineering attempt that enabled butyrate production from a non-butyrate producing commensal B. thetaiotaomicron. The study also highlights that B. thetaiotaomicron can serve as an effective strain for live microbial therapeutics in human.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Lactoferrin and lactoferricin B reduce adhesion and biofilm formation in the intestinal symbionts Bacteroides fragilis and Bacteroides thetaiotaomicron. Anaerobe 2020; 64:102232. [DOI: 10.1016/j.anaerobe.2020.102232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
|
14
|
Ito T, Gallegos R, Matano LM, Butler NL, Hantman N, Kaili M, Coyne MJ, Comstock LE, Malamy MH, Barquera B. Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance In Vivo. mBio 2020; 11:e03238-19. [PMID: 32019804 PMCID: PMC7002350 DOI: 10.1128/mbio.03238-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H+ or Na+). We know little about the respiratory pathways in Bacteroides species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut Bacteroides species, Bacteroides fragilis, has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na+-pumping NADH:quinone oxidoreductase (NQR) and NADH dehydrogenase II (NDH2), have NADH dehydrogenase activity, whereas H+-pumping NADH:ubiquinone oxidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δnqr Δndh2 mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered in vitro growth, the single nqr deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in B. fragilis and the overall importance of respiration to this abundant gut symbiont.IMPORTANCEBacteroides species are abundant in the human intestine and provide numerous beneficial properties to their hosts. The ability of Bacteroides species to convert host and dietary glycans and polysaccharides to energy is paramount to their success in the human gut. We know a great deal about the molecules that these bacteria extract from the human gut but much less about how they convert those molecules into energy. Here, we show that B. fragilis has a complex respiratory pathway with two different enzymes that transfer electrons from NADH to quinone and a third enzyme complex that may use an electron donor other than NADH. Although fermentation has generally been believed to be the main mechanism of energy generation in Bacteroides, we found that a mutant lacking one of the NADH:quinone oxidoreductases was unable to compete with the wild type in the mammalian gut, revealing the importance of respiration to these abundant gut symbionts.
Collapse
Affiliation(s)
- Takeshi Ito
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Rene Gallegos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Leigh M Matano
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole L Butler
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Noam Hantman
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew Kaili
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael H Malamy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
15
|
Maynard A, Butler NL, Ito T, da Silva AJ, Murai M, Chen T, Koffas MAG, Miyoshi H, Barquera B. Antibiotic Korormicin A Kills Bacteria by Producing Reactive Oxygen Species. J Bacteriol 2019; 201:e00718-18. [PMID: 30858300 PMCID: PMC6509656 DOI: 10.1128/jb.00718-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
Abstract
Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.
Collapse
Affiliation(s)
- Adam Maynard
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Nicole L Butler
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Adilson José da Silva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Chemical Engineering Department, Federal University of Sao Carlos, Sao Paulo, Brazil
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts, USA
- School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Mattheos A G Koffas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
16
|
Rocha ER, Bergonia HA, Gerdes S, Jeffrey Smith C. Bacteroides fragilis requires the ferrous-iron transporter FeoAB and the CobN-like proteins BtuS1 and BtuS2 for assimilation of iron released from heme. Microbiologyopen 2019; 8:e00669. [PMID: 29931811 PMCID: PMC6460266 DOI: 10.1002/mbo3.669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022] Open
Abstract
The intestinal commensal and opportunistic anaerobic pathogen Bacteroides fragilis has an essential requirement for both heme and free iron to support growth in extraintestinal infections. In the absence of free iron, B. fragilis can utilize heme as the sole source of iron. However, the mechanisms to remove iron from heme are not completely understood. In this study, we show that the inner membrane ferrous iron transporter ∆feoAB mutant strain is no longer able to grow with heme as the sole source of iron. Genetic complementation with the feoAB gene operon completely restored growth. Our data indicate that iron is removed from heme in the periplasmic space, and the released iron is transported by the FeoAB system. Interestingly, when B. fragilis utilizes iron from heme, it releases heme-derived porphyrins by a dechelatase activity which is upregulated under low iron conditions. This is supported by the findings showing that formation of heme-derived porphyrins in the ∆feoAB mutant and the parent strain increased 30-fold and fivefold (respectively) under low iron conditions compared to iron replete conditions. Moreover, the btuS1 btuS2 double-mutant strain (lacking the predicted periplasmic, membrane anchored CobN-like proteins) also showed growth defect with heme as the sole source of iron, suggesting that BtuS1 and BtuS2 are involved in heme-iron assimilation. Though the dechelatase mechanism remains uncharacterized, assays performed in bacterial crude extracts show that BtuS1 and BtuS2 affect the regulation of the dechelatase-specific activities in an iron-dependent manner. These findings suggest that the mechanism to extract iron from heme in Bacteroides requires a group of proteins, which spans the periplasmic space to make iron available for cellular functions.
Collapse
Affiliation(s)
- Edson R. Rocha
- Department of Microbiology and ImmunologyBrody School of MedicineGreenvilleNorth Carolina
| | - Hector A. Bergonia
- Iron and Heme CoreDivision of HematologyUniversity of Utah School of MedicineSalt Lake CityUtah
| | | | - Charles Jeffrey Smith
- Department of Microbiology and ImmunologyBrody School of MedicineGreenvilleNorth Carolina
| |
Collapse
|
17
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
18
|
Franke T, Deppenmeier U. Physiology and central carbon metabolism of the gut bacterium Prevotella copri. Mol Microbiol 2018; 109:528-540. [PMID: 29995973 DOI: 10.1111/mmi.14058] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
The human gut microbiota is a crucial factor for the host's physiology with respect to health and disease. Metagenomic shotgun sequencing of microbial gut communities revealed that Prevotella copri is one of the most important players in the gastrointestinal tract of many individuals. Because of the importance of this bacterium we analyzed the growth behavior and the central metabolic pathways of P. copri. Bioinformatic data, transcriptome profiling and enzyme activity measurements indicated that the major pathways are based on glycolysis and succinate production from fumarate. In addition, pyruvate can be degraded to acetate and formate. Electron transport phosphorylation depends on fumarate respiration with NADH and reduced ferredoxin as electron donors. In contrast to Bacteroides vulgatus, P. copri showed a more pronounced dependency on the addition of CO2 or bicarbonate for biomass formation, which is a remarkable difference between P. copri and Bacteroides spp. with important implication in the context of gut microbial competition. The analysis of substrate consumption and product concentrations from many P. copri cultures with different optical densities allowed a prediction of the carbon and electron flow in the central metabolism and a detailed calculation of growth yields as well as carbon and redox balances.
Collapse
Affiliation(s)
- Thomas Franke
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, Bonn, 53115, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, Bonn, 53115, Germany
| |
Collapse
|
19
|
Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe. Proc Natl Acad Sci U S A 2018; 115:E3266-E3275. [PMID: 29559534 DOI: 10.1073/pnas.1800120115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron, a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron, they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.
Collapse
|
20
|
The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species. mBio 2017; 8:mBio.01873-16. [PMID: 28049145 PMCID: PMC5210497 DOI: 10.1128/mbio.01873-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. IMPORTANCE Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed inside it. This study supports that idea, as an obligate anaerobe was confirmed to generate ROS very rapidly upon aeration. However, the suspected source of the ROS was disproven, as the fumarate reductase of the anaerobe did not display the high oxidation rate of its E. coli homologue. Evidently, adjustments in its electronic structure can suppress the tendency of an enzyme to generate ROS. Importantly, this outcome suggests that evolutionary pressure may succeed in modifying redox enzymes and thereby diminishing the stress that an organism experiences in oxic environments. The actual source of ROS in the anaerobe remains to be discovered.
Collapse
|
21
|
Halpern D, Gruss A. A sensitive bacterial-growth-based test reveals how intestinal Bacteroides meet their porphyrin requirement. BMC Microbiol 2015; 15:282. [PMID: 26715069 PMCID: PMC4696147 DOI: 10.1186/s12866-015-0616-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Background Bacteroides sp. are dominant constituents of the human and animal intestinal microbiota require porphyrins (i.e., protoporphyrin IX or iron-charged heme) for normal growth. The highly stimulatory effect of porphyrins on Bacteroides growth lead us to propose their use as a potential determinant of bacterial colonization. However, showing a role for porphryins would require sensitive detection methods that work in complex samples such as feces. Results We devised a highly sensitive semi-quantitative porphyrin detection method (detection limit 1-4 ng heme or PPIX) that can be used to assay pure or complex biological samples, based on Bacteroides growth stimulation. The test revealed that healthy colonized or non-colonized murine and human hosts provide porphyrins in feces, which stimulate Bacteroides growth. In addition, a common microbiota constituent, Escherichia coli, is shown to be a porphyrin donor, suggesting a novel basis for intestinal bacterial interactions. Conclusions A highly sensitive method to detect porphyrins based on bacterial growth is devised and is functional in complex biological samples. Host feces, independently of their microbiota, and E. coli, which are present in the intestine, are shown to be porphryin donors. The role of porphyrins as key bioactive molecules can now be assessed for their impact on Bacteroides and other bacterial populations in the gut. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0616-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Halpern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France, Jouy en Josas, 78352, France.
| | - Alexandra Gruss
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France, Jouy en Josas, 78352, France.
| |
Collapse
|
22
|
Leclerc J, Rosenfeld E, Trainini M, Martin B, Meuric V, Bonnaure-Mallet M, Baysse C. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance. PLoS One 2015; 10:e0143808. [PMID: 26629705 PMCID: PMC4668044 DOI: 10.1371/journal.pone.0143808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.
Collapse
Affiliation(s)
- Julia Leclerc
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
| | - Eric Rosenfeld
- UMR CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
| | - Mathieu Trainini
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
| | - Bénédicte Martin
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
| | - Vincent Meuric
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
- UMR CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
- CHU Rennes, Rennes, France
| | - Martine Bonnaure-Mallet
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
- UMR CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
- CHU Rennes, Rennes, France
| | - Christine Baysse
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
- * E-mail:
| |
Collapse
|
23
|
Pardesi B, Tompkins GR. Colony polymerase chain reaction of heme-accumulating bacteria. Anaerobe 2015; 32:49-50. [DOI: 10.1016/j.anaerobe.2014.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 11/26/2022]
|
24
|
Anaya-Bergman C, Rosato A, Lewis JP. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis. Mol Oral Microbiol 2014; 30:39-61. [PMID: 25043610 DOI: 10.1111/omi.12066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Although iron under anaerobic conditions is more accessible and highly reactive because of its reduced form, iron-dependent regulation is not well known in anaerobic bacteria. Here, we investigated iron- and hemin-dependent gene regulation in Porphyromonas gingivalis, an established periodontopathogen that primarily inhabits anaerobic pockets. Whole-genome microarrays of P. gingivalis genes were used to compare the levels of gene expression under iron-replete and iron-depleted conditions as well as under hemin-replete and hemin-depleted conditions. Under iron-depleted conditions, the expression of genes encoding proteins that participate in iron uptake and adhesion/invasion of host cells was increased, while that of genes encoding proteins involved in iron storage, energy metabolism, and electron transport was decreased. Interestingly, many of the genes with altered expression had no known function. Limiting the amount of hemin also resulted in a reduced expression of the genes encoding proteins involved in energy metabolism and electron transport. However, hemin also had a significant effect on many other biological processes such as oxidative stress protection and lipopolysaccharide synthesis. Overall, comparison of the data from iron-depleted conditions to those from hemin-depleted ones showed that although some regulation is through the iron derived from hemin, there also is significant distinct regulation through hemin only. Furthermore, our data showed that the molecular mechanisms of iron-dependent regulation are novel as the deletion of the putative Fur protein had no effect on the expression of iron-regulated genes. Finally, our functional studies demonstrated greater survivability of host cells in the presence of the iron-stressed bacterium than the iron-replete P. gingivalis cells. The major iron-regulated proteins encoded by PG1019-20 may play a role in this process as deletion of these sequences also resulted in reduced survival of the bacterium when grown with eukaryotic cells. Taken together, the results of this study demonstrated the utility of whole-genome microarray analysis for the identification of genes with altered expression profiles during varying growth conditions and provided a framework for the detailed analysis of the molecular mechanisms of iron and hemin acquisition, metabolism and virulence of P. gingivalis.
Collapse
Affiliation(s)
- C Anaya-Bergman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | |
Collapse
|
25
|
Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, Hackett M. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics 2013; 9:311-23. [PMID: 22809209 DOI: 10.1586/epr.12.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers developments in the study of polymicrobial communities, biofilms and selected areas of host response relevant to dental plaque and related areas of oral biology. The emphasis is on recent studies in which proteomic methods, particularly those using mass spectrometry as a readout, have played a major role in the investigation. The last 5-10 years have seen a transition of such methods from the periphery of oral biology to the mainstream, as in other areas of biomedical science. For reasons of focus and space, the authors do not discuss biomarker studies relevant to improved diagnostics for oral health, as this literature is rather substantial in its own right and deserves a separate treatment. Here, global gene regulation studies of plaque-component organisms, biofilm formation, multispecies interactions and host-microbe interactions are discussed. Several aspects of proteomics methodology that are relevant to the studies of multispecies systems are commented upon.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Meehan BM, Malamy MH. Fumarate reductase is a major contributor to the generation of reactive oxygen species in the anaerobe Bacteroides fragilis. MICROBIOLOGY-SGM 2011; 158:539-546. [PMID: 22075026 DOI: 10.1099/mic.0.054403-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite the detrimental role that endogenously generated reactive oxygen species (ROS) may play in bacteria exposed to aerobic environments, very few sources of ROS have been identified in vivo. Such studies are often precluded by the presence of efficient ROS-scavenging pathways, like those found in the aerotolerant anaerobe Bacteroides fragilis. Here we demonstrate that deletion of the genes encoding catalase (Kat), alkylhydroperoxide reductase (AhpC) and thioredoxin-dependent peroxidase (Tpx) strongly inhibits H(2)O(2) detoxification in B. fragilis, thereby allowing for the quantification of ROS production. Exogenous fumarate significantly reduced H(2)O(2) production in a ΔahpCΔkatΔtpx B. fragilis strain, as did deletion of fumarate reductase subunit c (frdC). Deletion of frdC also increased the aerotolerance of a strain lacking superoxide dismutase, indicating that fumarate reductase is a major contributor to ROS formation in B. fragilis exposed to oxygen.
Collapse
Affiliation(s)
- Brian M Meehan
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Michael H Malamy
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
27
|
Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 2011; 10:336-47. [PMID: 22018234 PMCID: PMC3225337 DOI: 10.1016/j.chom.2011.10.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In bacterial communities, "tight economic times" are the norm. Of the many challenges bacteria face in making a living, perhaps none are more important than generating energy, maintaining redox balance, and acquiring carbon and nitrogen to synthesize primary metabolites. The ability of bacteria to meet these challenges depends heavily on the rest of their community. Indeed, the most fundamental way in which bacteria communicate is by importing the substrates for metabolism and exporting metabolic end products. As an illustration of this principle, we will travel down a carbohydrate catabolic pathway common to many species of Bacteroides, highlighting the interspecies interactions established (often inevitably) at its key steps. We also discuss the metabolic considerations in maintaining the stability of host-associated microbial communities.
Collapse
Affiliation(s)
- Michael A Fischbach
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
28
|
Meuric V, Rouillon A, Chandad F, Bonnaure-Mallet M. Putative respiratory chain of Porphyromonas gingivalis. Future Microbiol 2010; 5:717-34. [PMID: 20441545 DOI: 10.2217/fmb.10.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electron transfer chain in Porphyromonas gingivalis, or periodontopathogens, has not yet been characterized. P. gingivalis, a strict anaerobic bacteria and the second colonizer of the oral cavity, is considered to be a major causal agent involved in periodontal diseases. Primary colonizers create a favorable environment for P. gingivalis growth by decreasing oxygen pressure. Oxygen does not appear to be the final electron acceptor of the respiratory chain. Fumarate and cytochrome b have been implicated as major components of the respiratory activity. However, the P. gingivalis genome shows many other enzymes that could be implicated in aerobic or nitrite respiration. Using bioinformatic tools and literature studies of respiratory pathways, the ATP synthesis mechanism from the sodium cycle and nutrients metabolism, the putative respirasome of P. gingivalis has been proposed.
Collapse
Affiliation(s)
- Vincent Meuric
- Equipe de Microbiologie, UPRES-EA 1254, Université Européenne de Bretagne, Université de Rennes I, UFR Odontologie, Bâtiment 15, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | |
Collapse
|
29
|
Abstract
Porphyromonas gingivalis is a major pathogen of chronic periodontitis and exists in a biofilm on the surface of the tooth root. Oxantel, a cholinergic anthelmintic and fumarate reductase inhibitor, significantly inhibited biofilm formation by P. gingivalis and disrupted established biofilms at concentrations below its MIC against planktonic cells. Oxantel was more effective against P. gingivalis in biofilm than metronidazole, a commonly used antibiotic for periodontitis.
Collapse
|
30
|
Paiva JB, Penha Filho RAC, Pereira EA, Lemos MVF, Barrow PA, Lovell MA, Berchieri A. The contribution of genes required for anaerobic respiration to the virulence of Salmonella enterica serovar Gallinarum for chickens. Braz J Microbiol 2009; 40:994-1001. [PMID: 24031452 PMCID: PMC3768590 DOI: 10.1590/s1517-838220090004000035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/24/2009] [Accepted: 05/15/2009] [Indexed: 12/02/2022] Open
Abstract
Salmonella enterica serovar Gallinarum (SG) is an intracellular pathogen of chickens. To survive, to invade and to multiply in the intestinal tract and intracellularly it depends on its ability to produce energy in anaerobic conditions. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. In this study mortality rates of chickens challenged with mutants of Salmonella Gallinarum, which were defective in utilising anaerobic electron acceptors, were assessed in comparison to group of bird challenged with wild strain. The greatest degree of attenuation was observed with mutations affecting nitrate reductase (napA, narG) with additional attenuations induced by a mutation affecting fumarate reductase (frdA) and a double mutant (dmsA torC) affecting DMSO and TMAO reductase.
Collapse
Affiliation(s)
- J B Paiva
- Faculdade de Ciências Agrárias e Veterinárias , Universidade Estadual Paulista, Jaboticabal, SP , Brasil
| | | | | | | | | | | | | |
Collapse
|
31
|
Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol 2008; 191:1044-55. [PMID: 19028886 DOI: 10.1128/jb.01270-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porphyromonas gingivalis is an anaerobic, asaccharolytic, gram-negative bacterium that has essential requirements for both iron and protoporphyrin IX, which it preferentially obtains as heme. A combination of large-scale quantitative proteomic analysis using stable isotope labeling strategies and mass spectrometry, together with transcriptomic analysis using custom-made DNA microarrays, was used to identify changes in P. gingivalis W50 protein and transcript abundances on changing from heme-excess to heme-limited continuous culture. This approach identified 160 genes and 70 proteins that were differentially regulated by heme availability, with broad agreement between the transcriptomic and proteomic data. A change in abundance of the enzymes of the aspartate and glutamate catabolic pathways was observed with heme limitation, which was reflected in organic acid end product levels of the culture fluid. These results demonstrate a shift from an energy-efficient anaerobic respiration to a less efficient process upon heme limitation. Heme limitation also resulted in an increase in abundance of a protein, PG1374, which we have demonstrated, by insertional inactivation, to have a role in epithelial cell invasion. The greater abundance of a number of transcripts/proteins linked to invasion of host cells, the oxidative stress response, iron/heme transport, and virulence of the bacterium indicates that there is a broad response of P. gingivalis to heme availability.
Collapse
|
32
|
Ang CS, Veith PD, Dashper SG, Reynolds EC. Application of 16O/18O reverse proteolytic labeling to determine the effect of biofilm culture on the cell envelope proteome of Porphyromonas gingivalis W50. Proteomics 2008; 8:1645-60. [PMID: 18409167 DOI: 10.1002/pmic.200700557] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Porphyromonas gingivalis is an oral pathogen linked to chronic periodontitis. The bacterium exists as part of a polymicrobial biofilm accreted onto the tooth surface. An understanding of the changes to the proteome especially of the cell envelope of biofilm cells compared with planktonic cells could provide valuable insight into the molecular processes of biofilm formation. To establish which proteins changed in abundance between the planktonic and biofilm growth states, the cell envelope fractions of two biological replicates of P. gingivalis cultivated in a chemostat were analysed. Proteins were separated by 1-D SDS-PAGE, in-gel digested with trypsin in the presence of H216O or H218O and identified and quantified by LC-MALDI TOF/TOF-MS. Using a reverse labeling strategy we identified and quantified the changes in abundance of 81 P. gingivalis cell envelope proteins. No form of bias between the labels was observed. Twenty four proteins increased in abundance and 18 decreased in abundance in the biofilm state. A group of cell-surface located C-Terminal Domain family proteins including RgpA, HagA, CPG70 and PG99 increased in abundance in the biofilm cells. Other proteins that exhibited significant changes in abundance included transport related proteins (HmuY and IhtB), metabolic enzymes (FrdAB) and immunogenic proteins.
Collapse
Affiliation(s)
- Ching-Seng Ang
- Centre for Oral Health Science, School of Dental Science, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | | | | | | |
Collapse
|
33
|
Lewis JP, Plata K, Yu F, Rosato A, Anaya C. Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. MICROBIOLOGY-SGM 2007; 152:3367-3382. [PMID: 17074906 DOI: 10.1099/mic.0.29011-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, an oral bacterium associated with periodontal disease, requires haemin for growth. Although several multigenic clusters encoding haemin-uptake systems are present on the genome of P. gingivalis, little is known regarding their transcriptional organization and expression. This study identified a 23 kDa iron-regulated haemin-binding protein encoded by a larger than previously reported variant of hmuY. It was shown that the hmu locus is larger than previously reported and is composed of six genes, hmuYRSTUV, encoding a novel hybrid haemin-uptake system. The locus has an operonic organization and the transcriptional start site is located 292 bp upstream of hmuY. The data indicate that the regulation of the operon is iron-dependent. Interestingly, differential regulation within the operon was demonstrated, resulting in excess of the hmuYR message encoding the outer-membrane proteins when compared to the full-length transcript. In addition, the hmuY transcript is more prevalent than the hmuR transcript. Secondary structure analysis of the hmuYRSTUV mRNA predicted the formation of several potential stem-loops in the 5' ends of hmuR- and hmuS-specific mRNAs, consistent with the differential regulation observed. Finally, it was demonstrated that haemin binding and uptake are elevated in iron-depleted conditions and are reduced 45 % and 70 %, respectively, in an hmu-deficient strain when compared to the parental strain, indicating that the hmu locus plays a major role in haemin acquisition in P. gingivalis. Since homologues of the hmu locus were also found in Bacteroides fragilis, Bacteroides thetaiotaomicron and Prevotella intermedia, these findings may have implications for a better understanding of haemin acquisition in those organisms as well.
Collapse
Affiliation(s)
- Janina P Lewis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Konrad Plata
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Fan Yu
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Adriana Rosato
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cecilia Anaya
- University of San Luis, San Luis, Argentina
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
34
|
Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004; 427:441-4. [PMID: 14749831 DOI: 10.1038/nature02285] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 12/12/2003] [Indexed: 01/07/2023]
Abstract
Strict anaerobes cannot grow in the presence of greater than 5 micro M dissolved oxygen. Despite this growth inhibition, many strict anaerobes of the Bacteroides class of eubacteria can survive in oxygenated environments until the partial pressure of O2 (PO2) is sufficiently reduced. For example, the periodontal pathogens Porphyromonas gingivalis and Tannerella forsythensis colonize subgingival plaques of mammals, whereas several other Bacteroides species colonize the gastrointestinal tract of animals. It has been suggested that pre-colonization of these sites by facultative anaerobes is essential for reduction of the PO2 and subsequent colonization by strict anaerobes. However, this model is inconsistent with the observation that Bacteroides fragilis can colonize the colon in the absence of facultative anaerobes. Thus, this strict anaerobe may have a role in reduction of the environmental PO2. Although some strictly anaerobic bacteria can consume oxygen through an integral membrane electron transport system, the physiological role of this system has not been established in these organisms. Here we demonstrate that B. fragilis encodes a cytochrome bd oxidase that is essential for O2 consumption and is required, under some conditions, for the stimulation of growth in the presence of nanomolar concentrations of O2. Furthermore, our data suggest that this property is conserved in many other organisms that have been described as strict anaerobes.
Collapse
Affiliation(s)
- Anthony D Baughn
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|