1
|
Kim H, Maigoro AY, Lee JH, Frunze O, Kwon HW. The Improving Effects of Probiotic-Added Pollen Substitute Diets on the Gut Microbiota and Individual Health of Honey Bee ( Apis mellifera L.). Microorganisms 2024; 12:1567. [PMID: 39203409 PMCID: PMC11356693 DOI: 10.3390/microorganisms12081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Honey bee (Apis mellifera L.) health is crucial for honey bee products and effective pollination, and it is closely associated with gut bacteria. Various factors such as reduced habitat, temperature, disease, and diet affect the health of honey bees by disturbing the homeostasis of the gut microbiota. In this study, high-throughput 16S rRNA gene sequencing was used to analyze the gut microbiota of honey bees subjected to seven diets over 5 days. Lactobacillus dominated the microbiota in all diets. Cage experiments (consumption, head protein content, and vitellogenin gene expression level) were conducted to verify the effect of the diet. Through a heatmap, the Diet2 (probiotic-supplemented) group was clustered together with the Beebread and honey group, showing high consumption (177.50 ± 26.16 mg/bee), moderately higher survival duration (29.00 ± 2.83 days), protein content in the head (312.62 ± 28.71 µg/mL), and diet digestibility (48.41 ± 1.90%). Additionally, we analyzed the correlation between gut microbiota and health-related indicators in honey bees fed each diet. Based on the overall results, we identified that probiotic-supplemented diets increased gut microbiota diversity and positively affected the overall health of individual honey bees.
Collapse
Affiliation(s)
- Hyunjee Kim
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Jeong-Hyeon Lee
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Division of Research and Development, Insensory Inc., 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Yang Q, Zheng Z, Wang P, Wang L, Wang H, Zhang M, Zhao G. Insights into Regulating Mechanism of Mutagenesis Strains of Elizabethkingia meningoseptica sp. F2 by Omics Analysis. Curr Microbiol 2023; 80:183. [PMID: 37055590 DOI: 10.1007/s00284-023-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Vitamin K2 plays an important role in electron transport, blood coagulation, and calcium homeostasis, and researchers have been trying to use microbes to produce it. Although our previous studies have shown that gradient radiation, breeding, and culture acclimation can improve vitamin K2 production in Elizabethkingia meningoseptica, the mechanism is still unclear. This study is the first which performs genome sequencing of E. meningoseptica sp. F2 as a basis for subsequent experiments and further comparative analyses with other strains. Comparative metabolic pathway analysis of E. meningoseptica sp. F2, E. coli, Bacillus subtilis, and other vitamin K2 product strains revealed that the mevalonate pathway of E. meningoseptica sp. F2 is different in bacteria at the system level. The expressions of menA, menD, menH, and menI in the menaquinone pathway and idi, hmgR, and ggpps in the mevalonate pathway were higher than those in the original strain. A total of 67 differentially expressed proteins involved in the oxidative phosphorylation metabolic pathway and citric acid cycle (TCA cycle) were identified. Our results reveal that combined gradient radiation breeding and culture acclimation can promote vitamin K2 accumulation probably by regulating the vitamin K2 pathway, oxidative phosphorylation metabolism pathway, and the citrate cycle (TCA cycle).
Collapse
Affiliation(s)
- Qiang Yang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Mengxue Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
3
|
Nishu SD, No JH, Lee TK. Transcriptional Response and Plant Growth Promoting Activity of Pseudomonas fluorescens DR397 under Drought Stress Conditions. Microbiol Spectr 2022; 10:e0097922. [PMID: 35863006 PMCID: PMC9430913 DOI: 10.1128/spectrum.00979-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Drought is one of the most vulnerable factors that affect crop productivity. Little is known about plant-associated microbiomes and their functional roles in assisting plant growth under drought. We investigated the genetic and transcriptomic characteristics of opportunistic beneficial microorganisms that selectively alleviate stress through plant-bacteria interactions under drought. Pseudomonas fluorescens DR397 was isolated from the drought-prone rhizospheric soil of soybean and showed high metabolic activity at -1.25 Mpa. The genome of DR397 possesses several genes related to the synthesis of compatible solutes (choline and glycine-betaine), exopolysaccharides (alginate and cellulose), and secretion systems (type II, III, IV, and VI), as well as genes related to plant growth promotion (indole-3-acetic acid, transketolase, and thiamine phosphate synthesis). The expression of these genes was significantly upregulated (8- to 263-fold change) only under drought conditions with plant root exudate treatment, whereas subtle transcriptomic changes were observed under solely root exudate treatment. When DR397 was placed on both legume cultivars (Pisum sativum and Phaseolus vulgaris), growth was hardly affected under well-watered conditions, but the shoot and root growths were increased by up from 62.0% to 149.1% compared with the control group under drought conditions. These results provide fundamental insight on the plant-bacterial interactions that alleviate plant stress as an important ecological strategy for improving drought tolerance. IMPORTANCE Drought is a serious abiotic stress on plants as wells as the microbes that coexist with plants, which significantly lowers their fitness. The plant-bacterial interaction is an important strategy to enhance their fitness under drought. However, many knowledge gaps still exist in our understanding of transcriptomic features of bacteria interacting with plant under drought. Here, by investigating the transcriptomic profiles and pot cultivation with legume, we show that the interactions of Pseudomonas fluorescens DR397 with plants change with drought. We, therefore, provide a fundamental evidence of a hidden hero in the soil that promote plant fitness from external stress.
Collapse
Affiliation(s)
- Susmita Das Nishu
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jee Hyun No
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
4
|
Nurliana N, Siregar BH, Sari WE, Helmi TZ, Sugito S. Identification of cellulolytic lactic acid bacteria from the intestines of laying hens given AKBISprob based on 16S ribosomal ribonucleic acid gene analysis. Vet World 2022; 15:1650-1656. [PMID: 36185519 PMCID: PMC9394149 DOI: 10.14202/vetworld.2022.1650-1656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Aim: Supplementation of AKBISprob (developed in a previous study) in feed can improve production efficiency and poultry health, especially laying hens. In addition, it can also increase cellulolytic lactic acid bacteria (LAB) in chicken intestines, but these bacteria are still unknown; thus, they need to be identified. This study aimed to identify cellulolytic LAB in the intestines of laying hens administered AKBISprob based on 16S ribosomal ribonucleic acid (16S rRNA) gene analysis. Materials and Methods: The samples used in this study were 13 LAB isolates from the intestines of laying hens that were given AKBISprob 4%. Cellulolytic LAB DNA was isolated and 16S rRNA gene was amplified by polymerase chain reaction, followed by sequencing, bioinformatics analysis, and phylogenetic tree construction. Results: From 10 cellulolytic LAB isolates with a clear zone of >6 mm, four were selected and their DNA was amplified with BaCF and UniB primers ~1500 bp DNA fragments. Of these, the P31H62 isolate was genetically close to Enterococcus hirae strain 1-1X-16 with 92.90% maximum identity, the P33S52 isolate had homology with Enterococcus mundtii strain ZU 26 with 96.76% maximum identity, and the P33S62 isolate was closely related to E. hirae strain SJ3 with 72.96% maximum identity. The phylogenetic tree revealed that the cellulolytic LAB isolates P31H62 and P33S52 were in one cluster closely related to the genus Enterococcus. Conclusion: This study suggests that the isolates P31H62, P33S62, and P33S52 from the intestines of laying hens administered 4% AKBISprob are cellulolytic LAB belonging to the genus Enterococcus.
Collapse
Affiliation(s)
- Nurliana Nurliana
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Baharuddin Halim Siregar
- Study Program of Veterinary Education, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Wahyu Eka Sari
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia; Laboratory of Research, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Teuku Zahrial Helmi
- Laboratory of Biochemical, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Sugito Sugito
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
5
|
Sharma A, Lee S, Park YS. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 2020; 29:1301-1318. [PMID: 32995049 PMCID: PMC7492335 DOI: 10.1007/s10068-020-00802-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Identification and classification of beneficial microbes is of the highest significance in food science and related industries. Conventional phenotypic approaches pose many challenges, and they may misidentify a target, limiting their use. Genotyping tools show comparatively better prospects, and they are widely used for distinguishing microorganisms. The techniques already employed in genotyping of lactic acid bacteria (LAB) are slightly different from one another, and each tool has its own advantages and disadvantages. This review paper compiles the comprehensive details of several fingerprinting tools that have been used for identifying and characterizing LAB at the species, sub-species, and strain levels. Notably, most of these approaches are based on restriction digestion, amplification using polymerase chain reaction, and sequencing. Nowadays, DNA sequencing technologies have made considerable progress in terms of cost, throughput, and methodology. A research journey to develop improved versions of generally applicable and economically viable tools for fingerprinting analysis is ongoing globally.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, Gachon University, Seongnam, 13120 Republic of Korea.,Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229 India
| | - Sulhee Lee
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
6
|
Wang H, Liu C, Liu Z, Wang Y, Ma L, Xu B. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiol 2020; 20:61. [PMID: 32183692 PMCID: PMC7076957 DOI: 10.1186/s12866-020-01726-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The health of honeybee colonies is critical for bee products and agricultural production, and colony health is closely associated with the bacteria in the guts of honeybees. Although colony loss in winter is now the primary restriction in beekeeping, the effects of different sugars as winter food on the health of honeybee colonies are not well understood. Therefore, in this study, the influence of different sugar diets on honeybee gut bacteria during overwintering was examined. RESULTS The bacterial communities in honeybee midguts and hindguts before winter and after bees were fed honey, sucrose, and high-fructose syrup as winter-food were determined by targeting the V3-V4 region of 16S rDNA using the Illumina MiSeq platform. The dominant microbiota in honeybee guts were the phyla Proteobacteria (63.17%), Firmicutes (17.61%; Lactobacillus, 15.91%), Actinobacteria (4.06%; Bifidobacterium, 3.34%), and Bacteroidetes (1.72%). The dominant taxa were conserved and not affected by season, type of overwintering sugar, or spatial position in the gut. However, the relative abundance of the dominant taxa was affected by those factors. In the midgut, microbial diversity of the sucrose group was higher than that of the honey and high-fructose syrup groups, but in the hindgut, microbial diversity of the honey and high-fructose groups was higher than that in the sucrose group. Sucrose increased the relative abundance of Actinobacteria (Bifidobacteriales Bifidobacteriaceae) and Alphaproteobacteria (Rhizobiales and Mitochondria) of honeybee midgut, and honey enriched the Bacteroidetes and Gammaproteobacteria (Pasteurellales) in honeybee hindgut. High-fructose syrup increased the relative abundance of Betaproteobacteria (Neisseriales: Neisseriaceae) of the midgut. CONCLUSION The type of sugar used as winter food affected the relative abundance of the dominant bacterial communities in honeybee guts, not the taxa, which could affect the health and safety of honeybee colonies during overwintering. The presence of the supernal Alphaproteobacteria, Bifidobacteriales, and Lactobacillaceae in the gut of honeybees fed sucrose and cheaper than honey both indicate that sucrose is very suitable as the overwintering food for honeybees.
Collapse
Affiliation(s)
- Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chunlei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
7
|
Caputo A, Fournier PE, Raoult D. Genome and pan-genome analysis to classify emerging bacteria. Biol Direct 2019; 14:5. [PMID: 30808378 PMCID: PMC6390601 DOI: 10.1186/s13062-019-0234-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background In the recent years, genomic and pan-genomic studies have become increasingly important. Culturomics allows to study human microbiota through the use of different culture conditions, coupled with a method of rapid identification by MALDI-TOF, or 16S rRNA. Bacterial taxonomy is undergoing many changes as a consequence. With the help of pan-genomic analyses, species can be redefined, and new species definitions generated. Results Genomics, coupled with culturomics, has led to the discovery of many novel bacterial species or genera, including Akkermansia muciniphila and Microvirga massiliensis. Using the genome to define species has been applied within the genus Klebsiella. A discontinuity or an abrupt break in the core/pan-genome ratio can uncover novel species. Conclusions Applying genomic and pan-genomic analyses to the reclassification of other bacterial species or genera will be important in the future of medical microbiology. The pan-genome is one of many new innovative tools in bacterial taxonomy. Reviewers This article was reviewed by William Martin, Eric Bapteste and James Mcinerney. Open peer review Reviewed by William Martin, Eric Bapteste and James Mcinerney.
Collapse
Affiliation(s)
- Aurélia Caputo
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
8
|
Chalansonnet V, Mercier C, Orenga S, Gilbert C. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity. BMC Microbiol 2017; 17:126. [PMID: 28545445 PMCID: PMC5445473 DOI: 10.1186/s12866-017-1033-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023] Open
Abstract
Background Nitroreductases, NAD(P)H dependent flavoenzymes, are found in most of bacterial species. Even if Enterococcus faecalis strains seems to present such activity because of their sensitivity to nitrofurans, no enzyme has been described. Nitroreductases were separated of others reductases due to their capacity to reduce nitro compounds. They are further classified based on their preference in cofactor: NADH and/or NADPH. However, recently, azoreductases have been studied for their strong activity on nitro compounds, especially nitro pro-drugs. This result suggests a crossing in azo and nitro reductase activities. For the moment, no nitroreductase was demonstrated to possess azoreductase activity. But due to sequence divergence and activity specificity linked to substrates, activity prediction is not evident and biochemical characterisation remains necessary. Identifying enzymes active on these two classes of compounds: azo and nitro is of interest to consider a common physiological role. Results Four putative nitroreductases, EF0404, EF0648, EF0655 and EF1181 from Enterococcus faecalis V583 were overexpressed as his-tagged recombinant proteins in Escherichia coli and purified following a native or a denaturing/renaturing protocol. EF0648, EF0655 and EF1181 showed nitroreductase activity and their cofactor preferences were in agreement with their protein sequence phylogeny. EF0404 showed both nitroreductase and azoreductase activity. Interestingly, the biochemical characteristics (substrate and cofactor specificity) of EF0404 resembled the properties of the known azoreductase AzoA. But its sequence matched within nitroreductase group, the same as EF0648. Conclusions We here demonstrate nitroreductase activity of the putative reductases identified in the Enterococcus faecalis V583 genome. We identified the first nitroreductase able to reduce directly an azo compound, while its protein sequence is close to others nitroreductases. Consequently, it highlights the difficulty in classifying these enzymes solely on the basis of protein sequence alignment and hereby the necessity to experimentally demonstrate the activity. The results provide additional data to consider a broader functionality of these reductases.
Collapse
Affiliation(s)
- Valérie Chalansonnet
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France. .,CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France. .,INSERM, U1111, Lyon, France. .,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France. .,Université Lyon 1, F-69622, Lyon, France. .,CNRS, UMR5308, Lyon, France.
| | - Claire Mercier
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France.,CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France.,Université Lyon 1, F-69622, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sylvain Orenga
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France
| | - Christophe Gilbert
- CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France.,Université Lyon 1, F-69622, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
9
|
Li X, Doukhan P, Feugeas JP. Statistical inference for DNA sequences of promoters: a non-stationary qualitative model. STATISTICS-ABINGDON 2016. [DOI: 10.1080/02331888.2016.1261474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoyin Li
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Paul Doukhan
- AGM, Department of Mathematics, University of Cergy-Pontoise & IUF, Ile de France, Cergy-Pontoise, France
| | | |
Collapse
|
10
|
Fournier PE, Lagier JC, Dubourg G, Raoult D. From culturomics to taxonomogenomics: A need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015; 36:73-8. [DOI: 10.1016/j.anaerobe.2015.10.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023]
|
11
|
Caputo A, Merhej V, Georgiades K, Fournier PE, Croce O, Robert C, Raoult D. Pan-genomic analysis to redefine species and subspecies based on quantum discontinuous variation: the Klebsiella paradigm. Biol Direct 2015; 10:55. [PMID: 26420254 PMCID: PMC4588269 DOI: 10.1186/s13062-015-0085-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Various methods are currently used to define species and are based on the phylogenetic marker 16S ribosomal RNA gene sequence, DNA-DNA hybridization and DNA GC content. However, these are restricted genetic tools and showed significant limitations. Results In this work, we describe an alternative method to build taxonomy by analyzing the pan-genome composition of different species of the Klebsiella genus. Klebsiella species are Gram-negative bacilli belonging to the large Enterobacteriaceae family. Interestingly, when comparing the core/pan-genome ratio; we found a clear discontinuous variation that can define a new species. Conclusions Using this pan-genomic approach, we showed that Klebsiella pneumoniae subsp. ozaenae and Klebsiella pneumoniae subsp. rhinoscleromatis are species of the Klebsiella genus, rather than subspecies of Klebsiella pneumoniae. This pan-genomic analysis, helped to develop a new tool for defining species introducing a quantic perspective for taxonomy. Reviewers This article was reviewed by William Martin, Pierre Pontarotti and Pere Puigbo (nominated by Dr Yuri Wolf). Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0085-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélia Caputo
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Vicky Merhej
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Kalliopi Georgiades
- Departement of Biological Sciences, University of Cyprus, P.O. Box 20537-1678, Nicosia Cyprus, Greece.
| | - Pierre-Edouard Fournier
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Olivier Croce
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Catherine Robert
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Didier Raoult
- URMITE, UMR CNRS 7278-IRD 198, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| |
Collapse
|
12
|
A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics 2015; 16 Suppl 5:S10. [PMID: 26040196 PMCID: PMC4460661 DOI: 10.1186/1471-2164-16-s5-s10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Biological nitrogen fixation, with an emphasis on the legume-rhizobia symbiosis, is a key process for agriculture and the environment, allowing the replacement of nitrogen fertilizers, reducing water pollution by nitrate as well as emission of greenhouse gases. Soils contain numerous strains belonging to the bacterial genus Bradyrhizobium, which establish symbioses with a variety of legumes. However, due to the high conservation of Bradyrhizobium 16S rRNA genes - considered as the backbone of the taxonomy of prokaryotes - few species have been delineated. The multilocus sequence analysis (MLSA) methodology, which includes analysis of housekeeping genes, has been shown to be promising and powerful for defining bacterial species, and, in this study, it was applied to Bradyrhizobium, species, increasing our understanding of the diversity of nitrogen-fixing bacteria. Description Classification of bacteria of agronomic importance is relevant to biodiversity, as well as to biotechnological manipulation to improve agricultural productivity. We propose the construction of an online database that will provide information and tools using MLSA to improve phylogenetic and taxonomic characterization of Bradyrhizobium, allowing the comparison of genomic sequences with those of type and representative strains of each species. Conclusion A database for the taxonomic and phylogenetic identification of the Bradyrhizobium, genus, using MLSA, will facilitate the use of biological data available through an intuitive web interface. Sequences stored in the on-line database can be compared with multiple sequences of other strains with simplicity and agility through multiple alignment algorithms and computational routines integrated into the database. The proposed database and software tools are available at http://mlsa.cnpso.embrapa.br, and can be used, free of charge, by researchers worldwide to classify Bradyrhizobium, strains; the database and software can be applied to replicate the experiments presented in this study as well as to generate new experiments. The next step will be expansion of the database to include other rhizobial species.
Collapse
|
13
|
Gupta A, Sharma VK. Using the taxon-specific genes for the taxonomic classification of bacterial genomes. BMC Genomics 2015; 16:396. [PMID: 25990029 PMCID: PMC4438512 DOI: 10.1186/s12864-015-1542-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The correct taxonomic assignment of bacterial genomes is a primary and challenging task. With the availability of whole genome sequences, the gene content based approaches appear promising in inferring the bacterial taxonomy. The complete genome sequencing of a bacterial genome often reveals a substantial number of unique genes present only in that genome which can be used for its taxonomic classification. RESULTS In this study, we have proposed a comprehensive method which uses the taxon-specific genes for the correct taxonomic assignment of existing and new bacterial genomes. The taxon-specific genes identified at each taxonomic rank have been successfully used for the taxonomic classification of 2,342 genomes present in the NCBI genomes, 36 newly sequenced genomes, and 17 genomes for which the complete taxonomy is not yet known. This approach has been implemented for the development of a tool 'Microtaxi' which can be used for the taxonomic assignment of complete bacterial genomes. CONCLUSION The taxon-specific gene based approach provides an alternate valuable methodology to carry out the taxonomic classification of newly sequenced or existing bacterial genomes.
Collapse
Affiliation(s)
- Ankit Gupta
- MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| | - Vineet K Sharma
- MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| |
Collapse
|
14
|
Homology-independent metrics for comparative genomics. Comput Struct Biotechnol J 2015; 13:352-7. [PMID: 26029354 PMCID: PMC4446528 DOI: 10.1016/j.csbj.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/06/2015] [Accepted: 04/18/2015] [Indexed: 11/24/2022] Open
Abstract
A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference.
Collapse
|
15
|
Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 2014; 197:359-70. [PMID: 25533848 DOI: 10.1007/s00203-014-1071-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Collapse
|
16
|
The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci Rep 2014; 4:7202. [PMID: 25425319 PMCID: PMC4244635 DOI: 10.1038/srep07202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.
Collapse
|
17
|
Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 2014; 103:80-100. [PMID: 24886836 DOI: 10.1016/j.mimet.2014.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
The major proportion of earth's biological diversity is inhabited by microorganisms and they play a useful role in diversified environments. However, taxonomy of microorganisms is progressing at a snail's pace, thus less than 1% of the microbial population has been identified so far. The major problem associated with this is due to a lack of uniform, reliable, advanced, and common to all practices for microbial identification and systematic studies. However, recent advances have developed many useful techniques taking into account the house-keeping genes as well as targeting other gene catalogues (16S rRNA, rpoA, rpoB, gyrA, gyrB etc. in case of bacteria and 26S, 28S, β-tubulin gene in case of fungi). Some uncultivable approaches using much advanced techniques like flow cytometry and gel based techniques have also been used to decipher microbial diversity. However, all these techniques have their corresponding pros and cons. In this regard, a polyphasic taxonomic approach is advantageous because it exploits simultaneously both conventional as well as molecular identification techniques. In this review, certain aspects of the merits and limitations of different methods for molecular identification and systematics of microorganisms have been discussed. The major advantages of the polyphasic approach have also been described taking into account certain groups of bacteria as case studies to arrive at a consensus approach to microbial identification.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| |
Collapse
|
18
|
Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014; 64:384-391. [DOI: 10.1099/ijs.0.057091-0] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, bacterial taxonomy relies on a polyphasic approach based on the combination of phenotypic and genotypic characteristics. However, the current situation is paradoxical in that the genetic criteria that are used, including DNA–DNA hybridization, 16S rRNA gene sequence nucleotide similarity and phylogeny, and DNA G+C content, have significant limitations, but genome sequences that contain the whole genetic information of bacterial strains are not used for taxonomic purposes, despite the decreasing costs of sequencing and the increasing number of available genomes. Recently, we diversified bacterial culture conditions with the aim of isolating uncultivated bacteria. To classify the putative novel species that we cultivated, we used a polyphasic strategy that included phenotypic as well as genomic criteria (genome characteristics as well as genomic sequence similarity). Herein, we review the pros and cons of genome sequencing for taxonomy and propose that the incorporation of genome sequences in taxonomic studies has the advantage of using reliable and reproducible data. This strategy, which we name taxono-genomics, may contribute to the taxonomic classification of bacteria.
Collapse
Affiliation(s)
- Dhamodharan Ramasamy
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Ajay Kumar Mishra
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean-Christophe Lagier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Roshan Padhmanabhan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Morgane Rossi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Erwin Sentausa
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
19
|
Latorre M, Galloway-Peña J, Roh JH, Budinich M, Reyes-Jara A, Murray BE, Maass A, González M. Enterococcus faecalis reconfigures its transcriptional regulatory network activation at different copper levels. Metallomics 2014; 6:572-81. [PMID: 24382465 DOI: 10.1039/c3mt00288h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A global transcriptional regulatory network was generated in the pathogenic bacterium Enterococcus faecalis in order to understand how this organism can activate and coordinate its expression at different copper concentrations. The topological evaluation of the network showed common patterns described in other organisms. Integrating microarray experiments allowed the identification of two sub-networks activated at low (0.05 mM CuSO4) and high (0.5 mM CuSO4) concentrations of copper. The analysis indicates the presence of specific functionally activated modules induced by copper levels, highlighting the regulons LysR and ArgR as global regulators and CopY, Fur and LexA as local regulators. Taking advantage of the fact that E. faecalis presented a homeostatic module, we produced an in vivo intervention by removing this system from the cell without affecting the connectivity of the global transcriptional network. This strategy led us to find that this bacterium can reconfigure its gene expression to maintain cellular homeostasis, activating new modules principally related to glucose metabolism and transcriptional processes. Finally, these results position E. faecalis as the most complete and controllable systemic model organism for copper homeostasis available to date.
Collapse
Affiliation(s)
- Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Santiago 11, Chile. ,
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu R, Lu J. Proteomics of Lactic Acid Bacteria. LACTIC ACID BACTERIA 2014:249-301. [DOI: 10.1007/978-94-017-8841-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Patil KR, McHardy AC. Alignment-free genome tree inference by learning group-specific distance metrics. Genome Biol Evol 2013; 5:1470-84. [PMID: 23843191 PMCID: PMC3762195 DOI: 10.1093/gbe/evt105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding the evolutionary relationships between organisms is vital for their in-depth study. Gene-based methods are often used to infer such relationships, which are not without drawbacks. One can now attempt to use genome-scale information, because of the ever increasing number of genomes available. This opportunity also presents a challenge in terms of computational efficiency. Two fundamentally different methods are often employed for sequence comparisons, namely alignment-based and alignment-free methods. Alignment-free methods rely on the genome signature concept and provide a computationally efficient way that is also applicable to nonhomologous sequences. The genome signature contains evolutionary signal as it is more similar for closely related organisms than for distantly related ones. We used genome-scale sequence information to infer taxonomic distances between organisms without additional information such as gene annotations. We propose a method to improve genome tree inference by learning specific distance metrics over the genome signature for groups of organisms with similar phylogenetic, genomic, or ecological properties. Specifically, our method learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the learning process. By applying this method to more than a thousand prokaryotic genomes, we showed that, indeed, better distance metrics could be learned for most of the 18 groups of organisms tested here. Once a group-specific metric is available, it can be used to estimate the taxonomic distances for other sequenced organisms from the group. This study also presents a large scale comparison between 10 methods--9 alignment-free and 1 alignment-based.
Collapse
Affiliation(s)
- Kaustubh R Patil
- Max-Planck Research Group for Computational Genomics and Epidemiology, Max-Planck Institute for Informatics, Saarbrücken, Germany.
| | | |
Collapse
|
22
|
Whole-proteome analysis of twelve species of alphaproteobacteria links four pathogens. Pathogens 2013; 2:627-35. [PMID: 25437336 PMCID: PMC4235700 DOI: 10.3390/pathogens2040627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/05/2022] Open
Abstract
Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.
Collapse
|
23
|
Kumar S, Vikram S, Raghava GPS. Genome annotation of Burkholderia sp. SJ98 with special focus on chemotaxis genes. PLoS One 2013; 8:e70624. [PMID: 23940608 PMCID: PMC3734258 DOI: 10.1371/journal.pone.0070624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholderia sp. SJ98 was annotated using PGAAP pipeline that predicts 7,268 CDSs, 52 tRNAs and 3 rRNAs. Our analysis based on phylogenetic and comparative genomics suggest that Burkholderia sp. YI23 is closest neighbor of the strain SJ98. The genes involved in the chemotaxis of strain SJ98 were compared with genes of closely related Burkholderia strains (i.e. YI23, CCGE 1001, CCGE 1002, CCGE 1003) and with well characterized bacterium E. coli K12. It was found that strain SJ98 has 37 che genes including 19 methyl accepting chemotaxis proteins that involved in sensing of different attractants. Chemotaxis genes have been found in a cluster along with the flagellar motor proteins. We also developed a web resource that provides comprehensive information on strain SJ98 that includes all analysis data (http://crdd.osdd.net/raghava/genomesrs/burkholderia/).
Collapse
Affiliation(s)
- Shailesh Kumar
- Bioinformatics Centre, Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | - Surendra Vikram
- Bioinformatics Centre, Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | - Gajendra Pal Singh Raghava
- Bioinformatics Centre, Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| |
Collapse
|
24
|
Thompson CC, Emmel VE, Fonseca EL, Marin MA, Vicente ACP. Streptococcal taxonomy based on genome sequence analyses. F1000Res 2013; 2:67. [PMID: 24358875 PMCID: PMC3799547 DOI: 10.12688/f1000research.2-67.v1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/20/2022] Open
Abstract
The identification of the clinically relevant viridans streptococci group, at species level, is still problematic. The aim of this study was to extract taxonomic information from the complete genome sequences of 67 streptococci, comprising 19 species, by means of genomic analyses, multilocus sequence analysis (MLSA), average amino acid identity (AAI), genomic signatures, genome-to-genome distances (GGD) and codon usage bias. We then attempted to determine the usefulness of these genomic tools for species identification in streptococci. Our results showed that MLSA, AAI and GGD analyses are robust markers to identify streptococci at the species level, for instance,
S. pneumoniae,
S. mitis, and
S. oralis. A
Streptococcus species can be defined as a group of strains that share ≥ 95% DNA similarity in MLSA and AAI, and > 70% DNA identity in GGD. This approach allows an advanced understanding of bacterial diversity.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) Avenida Brasil 4365, Manguinhos, Rio de Janeiro, P. O. Box 926, Zip Code 21040-360, Brazil
| | - Vanessa E Emmel
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) Avenida Brasil 4365, Manguinhos, Rio de Janeiro, P. O. Box 926, Zip Code 21040-360, Brazil
| | - Erica L Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) Avenida Brasil 4365, Manguinhos, Rio de Janeiro, P. O. Box 926, Zip Code 21040-360, Brazil
| | - Michel A Marin
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) Avenida Brasil 4365, Manguinhos, Rio de Janeiro, P. O. Box 926, Zip Code 21040-360, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) Avenida Brasil 4365, Manguinhos, Rio de Janeiro, P. O. Box 926, Zip Code 21040-360, Brazil
| |
Collapse
|
25
|
Differentiation of lactic acid bacteria based on RFLP analysis of the tuf gene. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
26
|
Zhi XY, Zhao W, Li WJ, Zhao GP. Prokaryotic systematics in the genomics era. Antonie van Leeuwenhoek 2011; 101:21-34. [PMID: 22116211 DOI: 10.1007/s10482-011-9667-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
Abstract
As an essential and basic biological discipline, prokaryotic systematics is entering the era of genomics. This paradigmatic shift is significant not only for understanding molecular phylogeny at the whole genome level but also in revealing the genetic or epigenetic basis that accounts for the phenotypic criteria used to classify and identify species. These developments provide an opportunity and a challenge for systematists to reanalyze the molecular mechanisms underlying the taxonomic characteristics of prokaryotes by drawing the knowledge from studies of genomics and/or functional genomics employing platform technologies and related bioinformatics tools. It is expected that taxonomic books, such as Bergey's Manual of Systematic Bacteriology may evolve into a systematics library indexed by phylogenomic information with an comprehensive understanding of prokaryotic speciation and associated increasing knowledge of biological phenomena.
Collapse
Affiliation(s)
- Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | | | | | | |
Collapse
|
27
|
Towards a genome based taxonomy of Mycoplasmas. INFECTION GENETICS AND EVOLUTION 2011; 11:1798-804. [DOI: 10.1016/j.meegid.2011.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022]
|
28
|
Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0157-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Trost B, Haakensen M, Pittet V, Ziola B, Kusalik A. Analysis and comparison of the pan-genomic properties of sixteen well-characterized bacterial genera. BMC Microbiol 2010; 10:258. [PMID: 20942950 PMCID: PMC3020658 DOI: 10.1186/1471-2180-10-258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
Background The increasing availability of whole genome sequences allows the gene or protein content of different organisms to be compared, leading to burgeoning interest in the relatively new subfield of pan-genomics. However, while several studies have analyzed protein content relationships in specific groups of bacteria, there has yet to be a study that provides a general characterization of protein content relationships in a broad range of bacteria. Results A variation on reciprocal BLAST hits was used to infer relationships among proteins in several groups of bacteria, and data regarding protein conservation and uniqueness in different bacterial genera are reported in terms of "core proteomes", "unique proteomes", and "singlets". We also analyzed the relationship between protein content similarity and the percent identity of the 16S rRNA gene in pairs of bacterial isolates from the same genus, and found that the strength of this relationship varied substantially depending on the genus, perhaps reflecting different rates of genome evolution and/or horizontal gene transfer. Finally, core proteomes and unique proteomes were used to study the proteomic cohesiveness of several bacterial species, revealing that some bacterial species had little cohesiveness in their protein content, with some having fewer proteins unique to that species than randomly-chosen sets of isolates from the same genus. Conclusions The results described in this study aid our understanding of protein content relationships in different bacterial groups, allowing us to make further inferences regarding genome-environment relationships, genome evolution, and the soundness of existing taxonomic classifications.
Collapse
Affiliation(s)
- Brett Trost
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada.
| | | | | | | | | |
Collapse
|
30
|
Aguado-Urda M, López-Campos GH, Fernández-Garayzábal JF, Martín-Sánchez F, Gibello A, Domínguez L, Blanco MM. Analysis of the genome content of Lactococcus garvieae by genomic interspecies microarray hybridization. BMC Microbiol 2010; 10:79. [PMID: 20233401 PMCID: PMC2851595 DOI: 10.1186/1471-2180-10-79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background Lactococcus garvieae is a bacterial pathogen that affects different animal species in addition to humans. Despite the widespread distribution and emerging clinical significance of L. garvieae in both veterinary and human medicine, there is almost a complete lack of knowledge about the genetic content of this microorganism. In the present study, the genomic content of L. garvieae CECT 4531 was analysed using bioinformatics tools and microarray-based comparative genomic hybridization (CGH) experiments. Lactococcus lactis subsp. lactis IL1403 and Streptococcus pneumoniae TIGR4 were used as reference microorganisms. Results The combination and integration of in silico analyses and in vitro CGH experiments, performed in comparison with the reference microorganisms, allowed establishment of an inter-species hybridization framework with a detection threshold based on a sequence similarity of ≥ 70%. With this threshold value, 267 genes were identified as having an analogue in L. garvieae, most of which (n = 258) have been documented for the first time in this pathogen. Most of the genes are related to ribosomal, sugar metabolism or energy conversion systems. Some of the identified genes, such as als and mycA, could be involved in the pathogenesis of L. garvieae infections. Conclusions In this study, we identified 267 genes that were potentially present in L. garvieae CECT 4531. Some of the identified genes could be involved in the pathogenesis of L. garvieae infections. These results provide the first insight into the genome content of L. garvieae.
Collapse
Affiliation(s)
- Mónica Aguado-Urda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Park YL, Lee NK, Park KK, Park YH, Kim JM, Nam HM, Jung SC, Paik HD. Medium Optimization for Pediocin SA131 Production by Pediococcus pentosaceus SA131 against Bovine Mastitis Using Response Surface Methodology. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.1.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Thompson CC, Vicente ACP, Souza RC, Vasconcelos ATR, Vesth T, Alves N, Ussery DW, Iida T, Thompson FL. Genomic taxonomy of Vibrios. BMC Evol Biol 2009; 9:258. [PMID: 19860885 PMCID: PMC2777879 DOI: 10.1186/1471-2148-9-258] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 10/27/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. RESULTS We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, < or = 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. CONCLUSION The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Rangel C Souza
- National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av. Getúlio Vargas 333, Quitandinha, 25651-070, Petropolis, RJ, Brazil
| | - Ana Tereza R Vasconcelos
- National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av. Getúlio Vargas 333, Quitandinha, 25651-070, Petropolis, RJ, Brazil
| | - Tammi Vesth
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nelson Alves
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| | - David W Ussery
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fabiano L Thompson
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| |
Collapse
|
33
|
Detection and Identification of a Novel Lactic Acid Bacterial Flora Within the Honey Stomach of the Honeybee Apis mellifera. Curr Microbiol 2008; 57:356-63. [DOI: 10.1007/s00284-008-9202-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 05/14/2008] [Indexed: 10/21/2022]
|
34
|
Loughman JA, Caparon MG. Contribution of invariant residues to the function of Rgg family transcription regulators. J Bacteriol 2006; 189:650-5. [PMID: 17098902 PMCID: PMC1797381 DOI: 10.1128/jb.01437-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rgg family of transcription regulators is widely distributed among gram-positive bacteria, yet how these proteins control transcription is poorly understood. Using Streptococcus pyogenes RopB as a model, we demonstrated that residues invariant among Rgg-like regulators are critical for function and obtained evidence for a mechanism involving protein complex formation.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
35
|
van Passel MWJ, Kuramae EE, Luyf ACM, Bart A, Boekhout T. The reach of the genome signature in prokaryotes. BMC Evol Biol 2006; 6:84. [PMID: 17040564 PMCID: PMC1621082 DOI: 10.1186/1471-2148-6-84] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/13/2006] [Indexed: 01/31/2023] Open
Abstract
Background With the increased availability of sequenced genomes there have been several initiatives to infer evolutionary relationships by whole genome characteristics. One of these studies suggested good congruence between genome synteny, shared gene content, 16S ribosomal DNA identity, codon usage and the genome signature in prokaryotes. Here we rigorously test the phylogenetic signal of the genome signature, which consists of the genome-specific relative frequencies of dinucleotides, on 334 sequenced prokaryotic genome sequences. Results Intrageneric comparisons show that in general the genomic dissimilarity scores are higher than in intraspecific comparisons, in accordance with the suggested phylogenetic signal of the genome signature. Exceptions to this trend, (Bartonella spp., Bordetella spp., Salmonella spp. and Yersinia spp.), which have low average intrageneric genomic dissimilarity scores, suggest that members of these genera might be considered the same species. On the other hand, high genomic dissimilarity values for intraspecific analyses suggest that in some cases (e.g.Prochlorococcus marinus, Pseudomonas fluorescens, Buchnera aphidicola and Rhodopseudomonas palustris) different strains from the same species may actually represent different species. Comparing 16S rDNA identity with genomic dissimilarity values corroborates the previously suggested trend in phylogenetic signal, albeit that the dissimilarity values only provide low resolution. Conclusion The genome signature has a distinct phylogenetic signal, independent of individual genetic marker genes. A reliable phylogenetic clustering cannot be based on dissimilarity values alone, as bootstrapping is not possible for this parameter. It can however be used to support or refute a given phylogeny and resulting taxonomy.
Collapse
Affiliation(s)
- Mark WJ van Passel
- Centraalbureau voor Schimmelcultures (CBS), Uppsalalaan 8, Utrecht, The Netherlands
- Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
- Department of Biochemistry and Molecular Biophysics, University of Arizona, POBox 210088, Tucson, Arizona, USA
| | - Eiko E Kuramae
- Centraalbureau voor Schimmelcultures (CBS), Uppsalalaan 8, Utrecht, The Netherlands
| | - Angela CM Luyf
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Aldert Bart
- Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Teun Boekhout
- Centraalbureau voor Schimmelcultures (CBS), Uppsalalaan 8, Utrecht, The Netherlands
| |
Collapse
|
36
|
Taylor CJ, Mahenthiralingam E. Functional foods and paediatric gastro-intestinal health and disease. ACTA ACUST UNITED AC 2006; 26:79-86. [PMID: 16709324 DOI: 10.1179/146532806x107403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The application of molecular methods to gastro-intestinal diseases is giving insight into the way in which the resident intestinal microbiota interacts with the mucosal immune system. Using traditional culture techniques, the importance of mucosally-associated bacterial biofilms in maintaining mucosal integrity has been demonstrated in ways previously impossible. Changes in the balance of organisms at initiation of and during disease provide a rationale for interventions with functional foods which facilitate re-establishment of the homeostasis of healthy gut.
Collapse
Affiliation(s)
- C J Taylor
- Department of Paediatric Gastroenterology, University of Sheffield, UK.
| | | |
Collapse
|
37
|
van Passel MWJ, Bart A, Luyf ACM, van Kampen AHC, van der Ende A. Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics 2006; 7:26. [PMID: 16480495 PMCID: PMC1382213 DOI: 10.1186/1471-2164-7-26] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 02/15/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucleotide composition of plasmids is similar to that of the genome of their hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity between plasmid and host genome. We compared the dinucleotide composition of a large collection of plasmids with that of their host genomes to shed more light on this enigma. RESULTS The dinucleotide frequency, coined the genome signature, facilitates the identification of putative horizontally transferred DNA in complete genome sequences, since it was found to be typical for a certain genome, and similar between related species. By comparison of the genome signature of 230 plasmid sequences with that of the genome of each respective host, we found that in general the genome signature of plasmids is dissimilar from that of their host genome. CONCLUSION Our results show that the genome signature of plasmids does not resemble that of their host genome. This indicates either absence of amelioration or a less stable relationship between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving the genome signature discordance between these episomes and host chromosomes.
Collapse
Affiliation(s)
- Mark WJ van Passel
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
| | - Aldert Bart
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
| | - Angela CM Luyf
- Academic Medical Center, Bioinformatics Laboratory, Amsterdam, The Netherlands
| | | | - Arie van der Ende
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
| |
Collapse
|
38
|
van Passel MWJ, Bart A, van der Ende A. Default taxonomy and the genomics era. MICROBIOLOGY-SGM 2005; 151:2818-2820. [PMID: 16151194 DOI: 10.1099/mic.0.28249-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- M W J van Passel
- Academic Medical Center, Department of Medical Microbiology, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - A Bart
- Academic Medical Center, Department of Medical Microbiology, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - A van der Ende
- Academic Medical Center, Department of Medical Microbiology, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
39
|
Fritzsch G, Schlegel M, Stadler PF. Alignments of mitochondrial genome arrangements: applications to metazoan phylogeny. J Theor Biol 2005; 240:511-20. [PMID: 16325206 DOI: 10.1016/j.jtbi.2005.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/11/2005] [Accepted: 10/18/2005] [Indexed: 11/24/2022]
Abstract
Mitochondrial genomes provide a valuable dataset for phylogenetic studies, in particular of metazoan phylogeny because of the extensive taxon sample that is available. Beyond the traditional sequence-based analysis it is possible to extract phylogenetic information from the gene order. Here we present a novel approach utilizing these data based on cyclic list alignments of the gene orders. A progressive alignment approach is used to combine pairwise list alignments into a multiple alignment of gene orders. Parsimony methods are used to reconstruct phylogenetic trees, ancestral gene orders, and consensus patterns in a straightforward approach. We apply this method to study the phylogeny of protostomes based exclusively on mitochondrial genome arrangements. We, furthermore, demonstrate that our approach is also applicable to the much larger genomes of chloroplasts.
Collapse
Affiliation(s)
- Guido Fritzsch
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | | | | |
Collapse
|
40
|
Ahn Y, Park EJ, Oh YK, Park S, Webster G, Weightman AJ. Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol Lett 2005; 249:31-8. [PMID: 16006066 DOI: 10.1016/j.femsle.2005.05.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/23/2005] [Accepted: 05/27/2005] [Indexed: 11/30/2022] Open
Abstract
Molecular methods were employed to investigate the microbial community of a biofilm obtained from a thermophilic trickling biofilter reactor (TBR) that was operated long-term to produce H(2). Biomass concentration in the TBR gradually decreased as reactor bed height increased. Despite this difference in biomass concentration, samples from the bottom and middle of the TBR bed revealed similar microbial populations as determined by PCR-DGGE analysis of 16S rRNA genes. Nucleotide sequences of most DGGE bands were affiliated with the classes Clostridia and Bacilli in the phylum Firmicutes, and the most dominant bands showed a high sequence similarity to Thermoanaerobacterium thermosaccharolyticum.
Collapse
Affiliation(s)
- Yeonghee Ahn
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Uncultured microorganisms comprise the majority of the planet's biological diversity. Microorganisms represent two of the three domains of life and contain vast diversity that is the product of an estimated 3.8 billion years of evolution. In many environments, as many as 99% of the microorganisms cannot be cultured by standard techniques, and the uncultured fraction includes diverse organisms that are only distantly related to the cultured ones. Therefore, culture-independent methods are essential to understand the genetic diversity, population structure, and ecological roles of the majority of microorganisms. Metagenomics, or the culture-independent genomic analysis of an assemblage of microorganisms, has potential to answer fundamental questions in microbial ecology. This review describes progress toward understanding the biology of uncultured Bacteria, Archaea, and viruses through metagenomic analyses.
Collapse
|
42
|
Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, Chang CY. Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. J Virol 2005; 79:2010-23. [PMID: 15681403 PMCID: PMC546566 DOI: 10.1128/jvi.79.4.2010-2023.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 10/06/2004] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of grouper iridovirus (GIV) was determined using a whole-genome shotgun approach on virion DNA. The circular form genome was 139,793 bp in length with a 49% G + C content. It contained 120 predicted open reading frames (ORFs) with coding capacities ranging from 62 to 1,268 amino acids. A total of 21% (25 of 120) of GIV ORFs are conserved in the other five sequenced iridovirus genomes, including DNA replication, transcription, nucleotide metabolism, protein modification, viral structure, and virus-host interaction genes. The whole-genome nucleotide pairwise comparison showed that GIV virus was partially colinear with counterparts of previously sequenced ranaviruses (ATV and TFV). Besides, sequence analysis revealed that GIV possesses several unique features which are different from those of other complete sequenced iridovirus genomes: (i) GIV is the first ranavirus-like virus which has been sequenced completely and which infects fish other than amphibians, (ii) GIV is the only vertebrate iridovirus without CpG sequence methylation and lacking DNA methyltransferase, (iii) GIV contains a purine nucleoside phosphorylase gene which is not found in other iridoviruses or in any other viruses, (iv) GIV contains 17 sets of repeat sequence, with basic unit sizes ranging from 9 to 63 bp, dispersed throughout the whole genome. These distinctive features of GIV further extend our understanding of molecular events taking place between ranavirus and its hosts and the iridovirus evolution.
Collapse
Affiliation(s)
- Chih-Tung Tsai
- Graduate Scholl of Life Science, Ntional Defense Medical Center, Tapei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Siezen RJ, van Enckevort FHJ, Kleerebezem M, Teusink B. Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr Opin Biotechnol 2004; 15:105-15. [PMID: 15081047 DOI: 10.1016/j.copbio.2004.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lactic acid bacteria (LAB) have been widely used in food fermentations and, more recently, as probiotics in health-promoting food products. Genome sequencing and functional genomics studies of a variety of LAB are now rapidly providing insights into their diversity and evolution and revealing the molecular basis for important traits such as flavor formation, sugar metabolism, stress response, adaptation and interactions. Bioinformatics plays a key role in handling, integrating and analyzing the flood of 'omics' data being generated. Reconstruction of metabolic potential using bioinformatics tools and databases, followed by targeted experimental verification and exploration of the metabolic and regulatory network properties, are the present challenges that should lead to improved exploitation of these versatile food bacteria.
Collapse
Affiliation(s)
- Roland J Siezen
- Wageningen Center for Food Sciences, PO Box 557, 6700AN, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Rediers H, Vanderleyden J, De Mot R. Azotobacter vinelandii: a Pseudomonas in disguise? Microbiology (Reading) 2004; 150:1117-1119. [PMID: 15133068 DOI: 10.1099/mic.0.27096-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| |
Collapse
|