1
|
Slinger BL, Banerjee S, Chandler JR, Blackwell HE. Interspecies Crosstalk via LuxI/LuxR-Type Quorum Sensing Pathways Contributes to Decreased Nematode Survival in Coinfections of Pseudomonas aeruginosa and Burkholderia multivorans. ACS Chem Biol 2024; 19:2557-2568. [PMID: 39636707 PMCID: PMC11927443 DOI: 10.1021/acschembio.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quorum sensing (QS) is a prominent chemical communication mechanism used by common bacteria to regulate group behaviors at high cell density, including many processes important in pathogenesis. There is growing evidence that certain bacteria can use QS to sense not only themselves but also other species and that this crosstalk could alter collective behaviors. In the current study, we report the results of culture-based and in vivo coinfection experiments that probe interspecies interactions between the opportunistic pathogens Pseudomonas aeruginosa and Burkholderia multivorans involving their LuxI/LuxR-type QS circuits. Using a Caenorhabditis elegans infection model, we show that infections with both species result in poorer host outcomes compared with monoinfections. We use genetic mutants and a transwell infection assay to establish that crosstalk via LuxR-type receptors and signals is important for this coinfection pathogenicity. Using laboratory cocultures with cell-based reporter systems, we show that the RhlR and CepR receptors in P. aeruginosa and B. multivorans, respectively, can each recognize a QS signal produced by the other species. Lastly, we apply chemical biology to complement our genetic approach and demonstrate the potential to regulate interspecies interactions between the wild-type strains of P. aeruginosa and B. multivorans through the application of synthetic compounds that modulate RhlR and CepR activities. Overall, this study reveals that interspecies interaction via QS networks is possible between P. aeruginosa and B. multivorans and that it can contribute to coinfection severity with these two species.
Collapse
Affiliation(s)
- Betty L. Slinger
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Samalee Banerjee
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Josephine R. Chandler
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| |
Collapse
|
2
|
Gan HM, Dailey L, Wengert P, Halliday N, Williams P, Hudson AO, Savka MA. Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones. PeerJ 2024; 12:e18657. [PMID: 39735558 PMCID: PMC11674143 DOI: 10.7717/peerj.18657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/17/2024] [Indexed: 12/31/2024] Open
Abstract
Background A grapevine crown gall tumor strain, Novosphingobium sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation. The exact identity of the complete suite of AHLs formed by novIspR1 is largely unknown. Methods This study validates the function of novIspR1 through inducible expression in Escherichia coli and in the wild-type parental strain Rr2-17. We further enhanced the capture of acyl homoserine lactone (AHL) signals produced by novIspR1 using polymeric resin XAD-16 and separated the AHLs by one- and two-dimensional thin layer chromatography followed by detection using AHL-dependent whole cell biosensor strains. Lastly, the complete number of AHLs produced by novIspR1 in our system was identified by LC-MS/MS analyses. Results The single LuxI homolog of N. sp. Rr2-17, NovIspR1, is able to produce up to eleven different AHL signals, including AHLs: C8-, C10-, C12-, C14-homoserine lactone (HSL) as well as AHLs with OH substitutions at the third carbon and includes 3-OH-C6-, 3-OH-C8-, 3-OH-C10-, 3-OH-C12- and 3-OH-C14-HSL. The most abundant AHL produced was identified as 3-OH-C8-HSL and isopropyl-D-1-thiogalactopyranoside (IPTG) induction of novIspR1 expression in wild type parental Rr2-17 strain increased its concentration by 6.8-fold when compared to the same strain with the vector only control plasmid. Similar increases were identified with the next two most abundant AHLs, 3-OH-C10- and unsubstituted C8-HSL. The presence of 2% w/v of XAD-16 resin in the growth culture bound 99.3 percent of the major AHL (3-OH-C8-HSL) produced by IPTG-induced overexpression of novIspR1 in Rr2-17 strain. This study significantly adds to our understanding of the AHL class of quorum sensing system in a grapevine crown gall tumor associated Novosphingobium sp. Rr2-17 strain. The identity of nine AHL signals produced by this bacterium will provide a framework to identify the specific function(s) of the AHL-mediated quorum-sensing associated genes in this bacterium.
Collapse
Affiliation(s)
- Han Ming Gan
- Patriot Biotech Sdn Bhd, Subang Jaya, Selangor, Malaysia
- Department of Biological Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Lucas Dailey
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Peter Wengert
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Nigel Halliday
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - André O. Hudson
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Michael A. Savka
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| |
Collapse
|
3
|
Ghosh D, Seth M, Mondal P, Mukhopadhyay SK. Biocontrol of biofilm forming Burkholderia cepacia using a quorum quenching crude lactonase enzyme extract from a marine Chromohalobacter sp. strain D23. Arch Microbiol 2023; 205:374. [PMID: 37935892 DOI: 10.1007/s00203-023-03712-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Biofilm plays advantageous role in Burkholderia cepacia by exerting multi-drug resistance. As quorum sensing (QS) system regulates biofilm formation and pathogenicity in B. cepacia strains, quorum quenching (QQ) may be a novel strategy to control persistent B. cepacia infections. In these regards, 120 halophilic bacteria were isolated from marine sample and tested using Chromobacterium violaceum and C. violaceum CV026-based bioassays initially, showing reduced violacein synthesis by QQ enzyme by 6 isolates. Among them, Chromohalobacter sp. D23 significantly degraded both C6-homoserine lactone (C6-HSL) and C8-HSL due to potent lactonase activity, which was detected by C. violaceum CV026 biosensor. Further high-performance liquid chromatography (HPLC) study confirmed degradation of N-acyl homoserine lactones (N-AHLs) particularly C6-HSL and C8-HSL by crude lactonase enzyme. Chromohalobacter sp. D23 reduced biofilm formation in terms of decreased total biomass and viability in biofilm-embedded cells in B. cepacia significantly which was also evidenced by fluorescence microscopic images. An increase in antibiotic susceptibility of B. cepacia biofilm was achieved when crude lactonase enzyme of Chromohalobacter sp. strain D23 was combined with chloramphenicol (1-5 × MIC). Chromohalobacter sp. D23 also showed prominent decrease in QS-mediated synthesis of virulence factors such as extracellular polymeric substances (EPS), extracellular protease, and hemolysin in B. cepacia. Again crude lactonase enzyme of Chromohalobacter sp. strain D23 inhibited B. cepacia biofilm formation inside nasal oxygen catheters in vitro. Finally, antibiotic susceptibility test and virulence tests revealed sensitivity of Chromohalobacter sp. strain D23 against a wide range of conventional antibiotics as well as absence of gelatinolytic, hemolytic, and serum coagulating activities. Therefore, the current study shows potential quorum quenching as well as anti-biofilm activity of Chromohalobacter sp. D23 against B. cepacia.
Collapse
Affiliation(s)
- Dhritishree Ghosh
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India
| | - Madhupa Seth
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India
| | - Priyajit Mondal
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India
| | - Subhra Kanti Mukhopadhyay
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
4
|
Dou Q, Yuan J, Yu R, Yang J, Wang J, Zhu Y, Zhong J, Long H, Liu Z, Wang X, Li Y, Xiao Y, Liang J, Zhang X, Wang Y. MomL inhibits bacterial antibiotic resistance through the starvation stringent response pathway. MLIFE 2022; 1:428-442. [PMID: 38818489 PMCID: PMC10989899 DOI: 10.1002/mlf2.12016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/20/2022] [Accepted: 02/27/2022] [Indexed: 06/01/2024]
Abstract
Antibiotic resistance in gram-negative pathogens has become one of the most serious global public health threats. The role of the N-acyl homoserine lactone (AHL)-mediated signaling pathway, which is widespread in gram-negative bacteria, in the bacterial resistance process should be studied in depth. Here, we report a degrading enzyme of AHLs, MomL, that inhibits the antibiotic resistance of Pseudomonas aeruginosa through a novel mechanism. The MomL-mediated reactivation of kanamycin is highly associated with the relA-mediated starvation stringent response. The degradation of AHLs by MomL results in the inability of LasR to activate relA, which, in turn, stops the activation of downstream rpoS. Further results show that rpoS directly regulates the type VI secretion system H2-T6SS. Under MomL treatment, inactivated RpoS fails to regulate H2-T6SS; therefore, the expression of effector phospholipase A is reduced, and the adaptability of bacteria to antibiotics is weakened. MomL in combination with kanamycin is effective against a wide range of gram-negative pathogenic bacteria. Therefore, this study reports a MomL-antibiotic treatment strategy on antibiotic-resistant bacteria and reveals its mechanism of action.
Collapse
Affiliation(s)
- Qin Dou
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Jiayi Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Hongan Long
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Zhiqing Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xianghong Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yuying Li
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Xiao‐Hua Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
5
|
|
6
|
N-acyl homoserine lactone molecules assisted quorum sensing: effects consequences and monitoring of bacteria talking in real life. Arch Microbiol 2021; 203:3739-3749. [PMID: 34002253 DOI: 10.1007/s00203-021-02381-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Bacteria utilize small signal molecules to monitor population densities. Bacteria arrange gene regulation in a method called Quorum Sensing (QS). The most widespread signalling molecules are N-Acyl Homoserine Lactones (AHLs/HSLs) for Gram-negative bacteria communities. QS plays significant role in the organizing of the bacterial gene that adapts to harsh environmental conditions for bacteria. It is involved in the arrangement of duties, such as biofilm formation occurrence, virulence activity of bacteria, production of antibiotics, plasmid conjugal transfer incident, pigmentation phenomenon and production of exopolysaccharide (EPS). QS obviously impacts on human health, agriculture and environment. AHL-related QS researches have been extensively studied and understood in depth for cell to cell intercommunication channel in Gram-negative bacteria. It is understood that AHL-based QS research has been extensively studied for cell-to-cell communication in Gram-negative bacteria; hence, a comprehensive study of AHLs, which are bacterial signal molecules, is required. The purpose of this review is to examine the effects of QS-mediated AHLs in many areas by looking at them from a different perspectives, such as clinic samples, food industry, aquatic life and wastewater treatment system.
Collapse
|
7
|
Malka O, Kalson D, Yaniv K, Shafir R, Rajendran M, Ben-David O, Kushmaro A, Meijler MM, Jelinek R. Cross-kingdom inhibition of bacterial virulence and communication by probiotic yeast metabolites. MICROBIOME 2021; 9:70. [PMID: 33762022 PMCID: PMC7992341 DOI: 10.1186/s40168-021-01027-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Probiotic milk-fermented microorganism mixtures (e.g., yogurt, kefir) are perceived as contributing to human health, and possibly capable of protecting against bacterial infections. Co-existence of probiotic microorganisms are likely maintained via complex biomolecular mechanisms, secreted metabolites mediating cell-cell communication, and other yet-unknown biochemical pathways. In particular, deciphering molecular mechanisms by which probiotic microorganisms inhibit proliferation of pathogenic bacteria would be highly important for understanding both the potential benefits of probiotic foods as well as maintenance of healthy gut microbiome. RESULTS The microbiome of a unique milk-fermented microorganism mixture was determined, revealing a predominance of the fungus Kluyveromyces marxianus. We further identified a new fungus-secreted metabolite-tryptophol acetate-which inhibits bacterial communication and virulence. We discovered that tryptophol acetate blocks quorum sensing (QS) of several Gram-negative bacteria, particularly Vibrio cholerae, a prominent gut pathogen. Notably, this is the first report of tryptophol acetate production by a yeast and role of the molecule as a signaling agent. Furthermore, mechanisms underscoring the anti-QS and anti-virulence activities of tryptophol acetate were elucidated, specifically down- or upregulation of distinct genes associated with V. cholerae QS and virulence pathways. CONCLUSIONS This study illuminates a yet-unrecognized mechanism for cross-kingdom inhibition of pathogenic bacteria cell-cell communication in a probiotic microorganism mixture. A newly identified fungus-secreted molecule-tryptophol acetate-was shown to disrupt quorum sensing pathways of the human gut pathogen V. cholerae. Cross-kingdom interference in quorum sensing may play important roles in enabling microorganism co-existence in multi-population environments, such as probiotic foods and the gut microbiome. This discovery may account for anti-virulence properties of the human microbiome and could aid elucidating health benefits of probiotic products against bacterially associated diseases. Video Abstract.
Collapse
Affiliation(s)
- Orit Malka
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Dorin Kalson
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Reut Shafir
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Manikandan Rajendran
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Oshrit Ben-David
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Michael M. Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, 84105 Be’er Sheva, Israel
| |
Collapse
|
8
|
Dong W, Cai Y, Xu Z, Fu B, Chen Q, Cui Y, Ruan Z, Liang Y, Peng N, Zhao S. Heterologous expression of AHL lactonase AiiK by Lactobacillus casei MCJΔ1 with great quorum quenching ability against Aeromonas hydrophila AH-1 and AH-4. Microb Cell Fact 2020; 19:191. [PMID: 33028330 PMCID: PMC7542731 DOI: 10.1186/s12934-020-01448-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background Nowadays, microbial infections have caused increasing economic losses in aquaculture industry and deteriorated worldwide environments. Many of these infections are caused by opportunistic pathogens through cell-density mediated quorum sensing (QS). The disruption of QS, known as quorum quenching (QQ), is an effective and promising way to prevent and control pathogens, driving it be the potential bio-control agents. In our previous studies, AHL lactonase AiiK was identified with many characteristics, and constitutive expression vector pELX1 was constructed to express heterologous proteins in Lactobacillus casei MCJΔ1 (L. casei MCJΔ1). In this study, recombinant strain pELCW-aiiK/L. casei MCJΔ1 (LcAiiK) and wild-type Aeromonas hydrophila (A. hydrophila) were co-cultured to test the QQ ability of LcAiiK against A. hydrophila. Results A cell wall-associated expression vector pELCW for L. casei MCJΔ1 was constructed. Localization assays revealed that the expressed AiiK was anchored at the surface layer of LcAiiK via vector pELCW-aiiK. LcAiiK (OD600 = 0.5) degraded 24.13 μM of C6-HSL at 2 h, 40.99 μM of C6-HSL at 12 h, and 46.63 μM of C6-HSL at 24 h. Over 50% LcAiiK cells maintained the pELCW-aiiK plasmid after 15 generations of cultivation without erythromycin. Furthermore, LcAiiK inhibited the swimming motility, extracellular proteolytic activity, haemolytic activity and biofilm formation of A. hydrophila AH-1 and AH-4. Conclusion The AHL lactonase AiiK is firstly and constitutively expressed at the surface layer of L. casei MCJΔ1. LcAiiK displayed considerable AHL lactonase activity and great QQ abilities against A. hydrophila AH-1 and AH-4 by attenuating their QS processes instead of killing them. Therefore, the LcAiiK can be exploited as an anti-pathogenic drug or a bio-control agent to control the AHL-mediated QS of pathogenic bacteria.
Collapse
Affiliation(s)
- Weiwei Dong
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyuan Cai
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilong Xu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Fu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qitong Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxin Cui
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Phenylacetyl Coenzyme A, Not Phenylacetic Acid, Attenuates CepIR-Regulated Virulence in Burkholderia cenocepacia. Appl Environ Microbiol 2019; 85:AEM.01594-19. [PMID: 31585996 DOI: 10.1128/aem.01594-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
During phenylalanine catabolism, phenylacetic acid (PAA) is converted to phenylacetyl coenzyme A (PAA-CoA) by a ligase, PaaK, and then PAA-CoA is epoxidized by a multicomponent monooxygenase, PaaABCDE, before further degradation through the tricarboxylic acid (TCA) cycle. In the opportunistic pathogen Burkholderia cenocepacia, loss of paaABCDE attenuates virulence factor expression, which is under the control of the LuxIR-like quorum sensing (QS) system, CepIR. To further investigate the link between CepIR-regulated virulence and PAA catabolism, we created knockout mutants of the first step of the pathway (PAA-CoA synthesis by PaaK) and characterized them in comparison to a paaABCDE mutant using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and virulence assays. We found that while loss of PaaABCDE decreased virulence, deletion of the paaK genes resulted in a more virulent phenotype than that of the wild-type strain. Deletion of either paaK or paaABCDE led to higher levels of released PAA but no differences in levels of internal accumulation compared to the wild-type level. While we found no evidence of direct cepIR downregulation by PAA-CoA or PAA, a low-virulence cepR mutant reverted to a virulent phenotype upon removal of the paaK genes. On the other hand, removal of paaABCDE in the cepR mutant did not impact its attenuated phenotype. Together, our results suggest an indirect role for PAA-CoA in suppressing B. cenocepacia CepIR-activated virulence.IMPORTANCE The opportunistic pathogen Burkholderia cenocepacia uses a chemical signal process called quorum sensing (QS) to produce virulence factors. In B. cenocepacia, QS relies on the presence of the transcriptional regulator CepR which, upon binding QS signal molecules, activates virulence. In this work, we found that even in the absence of CepR, B. cenocepacia can elicit a pathogenic response if phenylacetyl-CoA, an intermediate of the phenylacetic acid degradation pathway, is not produced. Instead, accumulation of phenylacetyl-CoA appears to attenuate pathogenicity. Therefore, we have discovered that it is possible to trigger virulence in the absence of CepR, challenging the classical view of activation of virulence by this QS mechanism. Our work provides new insight into the relationship between metabolism and virulence in opportunistic bacteria. We propose that in the event that QS signaling molecules cannot accumulate to trigger a pathogenic response, a metabolic signal can still activate virulence in B. cenocepacia.
Collapse
|
10
|
Oppy CC, Jebeli L, Kuba M, Oates CV, Strugnell R, Edgington-Mitchell LE, Valvano MA, Hartland EL, Newton HJ, Scott NE. Loss of O-Linked Protein Glycosylation in Burkholderia cenocepacia Impairs Biofilm Formation and Siderophore Activity and Alters Transcriptional Regulators. mSphere 2019; 4:e00660-19. [PMID: 31722994 PMCID: PMC6854043 DOI: 10.1128/msphere.00660-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.
Collapse
Affiliation(s)
- Cameron C Oppy
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Clare V Oates
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura E Edgington-Mitchell
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
11
|
Potent modulation of the CepR quorum sensing receptor and virulence in a Burkholderia cepacia complex member using non-native lactone ligands. Sci Rep 2019; 9:13449. [PMID: 31530834 PMCID: PMC6748986 DOI: 10.1038/s41598-019-49693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.
Collapse
|
12
|
Various Evolutionary Trajectories Lead to Loss of the Tobramycin-Potentiating Activity of the Quorum-Sensing Inhibitor Baicalin Hydrate in Burkholderia cenocepacia Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02092-18. [PMID: 30670425 DOI: 10.1128/aac.02092-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Combining antibiotics with potentiators that increase their activity is a promising strategy to tackle infections caused by antibiotic-resistant bacteria. As potentiators do not interfere with essential processes, it has been hypothesized that they are less likely to induce resistance. However, evidence supporting this hypothesis is lacking. In the present study, we investigated whether Burkholderia cenocepacia J2315 biofilms develop reduced susceptibility toward one such adjuvant, baicalin hydrate (BH). Biofilms were repeatedly and intermittently treated with tobramycin (TOB) alone or in combination with BH for 24 h. After treatment, the remaining cells were quantified using plate counting. After 15 cycles, biofilm cells were less susceptible to TOB and TOB+BH compared to the start population, and the potentiating effect of BH toward TOB was lost. Whole-genome sequencing was performed to probe which changes were involved in the reduced effect of BH, and mutations in 14 protein-coding genes were identified (including mutations in genes involved in central metabolism and in BCAL0296, encoding an ABC transporter). No changes in the MIC or MBC of TOB or changes in the number of persister cells were observed. However, basal intracellular levels of reactive oxygen species (ROS) and ROS levels found after treatment with TOB were markedly decreased in the evolved populations. In addition, in evolved cultures with mutations in BCAL0296, a significantly reduced uptake of TOB was observed. Our results indicate that B. cenocepacia J2315 biofilms rapidly lose susceptibility toward the antibiotic-potentiating activity of BH and point to changes in central metabolism, reduced ROS production, and reduced TOB uptake as mechanisms.
Collapse
|
13
|
Zhang J, Wang J, Feng T, Du R, Tian X, Wang Y, Zhang XH. Heterologous Expression of the Marine-Derived Quorum Quenching Enzyme MomL Can Expand the Antibacterial Spectrum of Bacillus brevis. Mar Drugs 2019; 17:E128. [PMID: 30795579 PMCID: PMC6409708 DOI: 10.3390/md17020128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Quorum sensing (QS) is closely associated with the production of multiple virulence factors in bacterial pathogens. N-acyl homoserine lactones (AHLs) are important QS signal molecules that modulate the virulence of gram-negative pathogenic bacteria. Enzymatic degradation of AHLs to interrupt QS, termed quorum quenching (QQ), has been considered a novel strategy for reduction of pathogenicity and prevention of bacterial disease. However, the low expression levels of QQ proteins in the original host bacteria has affected the applications of these proteins. Previously, we identified a novel marine QQ enzyme, named MomL, with high activity and promising biocontrol function. In this study, we linked the target fragment momL to pNCMO2, which provided a basis for the first heterologous expression of MomL in the antifungal and anti-gram-positive-bacteria biocontrol strain Bacillus brevis, and obtaining the recombinant strain named BbMomL. The QQ activity of BbMomL was confirmed using a series of bioassays. BbMomL could not only degrade the exogenous signal molecule C6-HSL, but also the AHL signal molecules produced by the gram-negative pathogens Pectobacterium carotovorum subsp. carotovorum (Pcc) and Pseudomonas aeruginosa PAO1. In addition, BbMomL significantly reduced the secretion of pathogenic factors and the pathogenicity of Pcc and P. aeruginosa PAO1. We tested the biocontrol function of BbMomL for prevention of plant diseases in vitro. The result indicates that BbMomL has a broad antibacterial spectrum. Compared with wild-type B. brevis, BbMomL not only inhibited fungi and gram-positive bacterial pathogens but also considerably inhibited gram-negative bacterial pathogens. Moreover, the Bacillus brevis expression system has good application prospects and is an ideal host for expression and secretion of foreign proteins.
Collapse
Affiliation(s)
- Jingjing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jiayi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tao Feng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Rui Du
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaorong Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition. Microbiologyopen 2019; 8:e00774. [PMID: 30628184 PMCID: PMC6612558 DOI: 10.1002/mbo3.774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Burkholderia cenocepacia is an opportunistic bacterial pathogen that poses a significant threat to individuals with cystic fibrosis by provoking a strong inflammatory response within the lung. It possesses a type VI secretion system (T6SS), a secretory apparatus that can perforate the cellular membrane of other bacterial species and/or eukaryotic targets, to deliver an arsenal of effector proteins. The B. cenocepacia T6SS (T6SS-1) has been shown to be implicated in virulence in rats and contributes toward actin rearrangements and inflammasome activation in B. cenocepacia-infected macrophages. Here, we present bioinformatics evidence to suggest that T6SS-1 is the archetype T6SS in the Burkholderia genus. We show that B. cenocepacia T6SS-1 is active under normal laboratory growth conditions and displays antibacterial activity against other Gram-negative bacterial species. Moreover, B. cenocepacia T6SS-1 is not required for virulence in three eukaryotic infection models. Bioinformatics analysis identified several candidate T6SS-dependent effectors that may play a role in the antibacterial activity of B. cenocepacia T6SS-1. We conclude that B. cenocepacia T6SS-1 plays an important role in bacterial competition for this organism, and probably in all Burkholderia species that possess this system, thereby broadening the range of species that utilize the T6SS for this purpose.
Collapse
Affiliation(s)
- Helena L. Spiewak
- Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolThe University of SheffieldSheffieldUK,Present address:
Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic MedicineInternational Centre for LifeNewcastle upon TyneUK
| | - Sravanthi Shastri
- Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolThe University of SheffieldSheffieldUK
| | - Lili Zhang
- VBMI, INSERM, Université de MontpellierNîmesFrance,Present address:
Section of Molecular Biology, Division of Biological SciencesUniversity of California, San DiegoLa JollaCalifornia
| | - Stephan Schwager
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland,Present address:
Analytical ChemistrySynthes GmbHOberdorf BLSwitzerland
| | - Leo Eberl
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | | | - Mark S. Thomas
- Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolThe University of SheffieldSheffieldUK
| |
Collapse
|
15
|
Gomes MC, Tasrini Y, Subramoni S, Agnoli K, Feliciano JR, Eberl L, Sokol P, O’Callaghan D, Vergunst AC. The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection. PLoS Pathog 2018; 14:e1007473. [PMID: 30513124 PMCID: PMC6301696 DOI: 10.1371/journal.ppat.1007473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia is particularly life-threatening for cystic fibrosis (CF) patients. Chronic lung infections with these bacteria can rapidly develop into fatal pulmonary necrosis and septicaemia. We have recently shown that macrophages are a critical site for replication of B. cenocepacia K56-2 and the induction of fatal pro-inflammatory responses using a zebrafish infection model. Here, we show that ShvR, a LysR-type transcriptional regulator that is important for biofilm formation, rough colony morphotype and inflammation in a rat lung infection model, is also required for the induction of fatal pro-inflammatory responses in zebrafish larvae. ShvR was not essential, however, for bacterial survival and replication in macrophages. Temporal, rhamnose-induced restoration of shvR expression in the shvR mutant during intramacrophage stages unequivocally demonstrated a key role for ShvR in transition from intracellular persistence to acute fatal pro-inflammatory disease. ShvR has been previously shown to tightly control the expression of the adjacent afc gene cluster, which specifies the synthesis of a lipopeptide with antifungal activity. Mutation of afcE, encoding an acyl-CoA dehydrogenase, has been shown to give similar phenotypes as the shvR mutant. We found that, like shvR, afcE is also critical for the switch from intracellular persistence to fatal infection in zebrafish. The closely related B. cenocepacia H111 has been shown to be less virulent than K56-2 in several infection models, including Galleria mellonella and rats. Interestingly, constitutive expression of shvR in H111 increased virulence in zebrafish larvae to almost K56-2 levels in a manner that absolutely required afc. These data confirm a critical role for afc in acute virulence caused by B. cenocepacia that depends on strain-specific regulatory control by ShvR. We propose that ShvR and AFC are important virulence factors of the more virulent Bcc species, either through pro-inflammatory effects of the lipopeptide AFC, or through AFC-dependent membrane properties.
Collapse
Affiliation(s)
| | - Yara Tasrini
- VBMI, INSERM, Université de Montpellier, Nîmes, France
| | - Sujatha Subramoni
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Pamela Sokol
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
16
|
Mion S, Rémy B, Plener L, Chabrière E, Daudé D. [Prevent bacteria from communicating: Divide to cure]. ANNALES PHARMACEUTIQUES FRANÇAISES 2018; 76:249-264. [PMID: 29598881 DOI: 10.1016/j.pharma.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Quorum Sensing (QS) is a communication system used by numerous bacteria to synchronize their behavior according to the cell density. In this way, bacteria secrete and sense small mediating molecules, called autoinducers (AI), which concentration increases in the environment proportionally to bacterial cell number. QS induces major physiological and phenotypic changes such as virulence induction and biofilm formation. Biofilm represents a physical barrier which shelters bacteria poorly sensitive to antimicrobial treatments and favors the apparition of resistance mechanisms. Disturbing QS is referred to as quorum quenching (QQ). This strategy is used by microorganisms themselves to prevent the development of specific group behaviors. Two strategies are mainly employed: the use of quorum sensing inhibitors (QSI) and of quorum quenching enzymes (QQE) that degrades AI. Many studies have been dedicated to identifying QSI (natural or synthetic) as well as QQE and demonstrating their anti-virulence and anti-biofilm effects on numerous bacterial species. Synergistic effects between QQ and traditional treatments such as antibiotherapy or with reemerging phage therapy have been put forward. The efficiency of numerous QSI and QQE was thereby demonstrated either with in vitro or in vivo animal models leading to the development of medical devices containing QSI and QQE to improve already existing treatments.
Collapse
Affiliation(s)
- S Mion
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - B Rémy
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21, boulevard Jean-Moulin, 13005 Marseille, France; Gene&GreenTK, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - L Plener
- Gene&GreenTK, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - E Chabrière
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - D Daudé
- Gene&GreenTK, 19-21, boulevard Jean-Moulin, 13005 Marseille, France.
| |
Collapse
|
17
|
Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front Pharmacol 2018; 9:203. [PMID: 29563876 PMCID: PMC5845960 DOI: 10.3389/fphar.2018.00203] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.
Collapse
Affiliation(s)
- Benjamin Rémy
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
- Gene&GreenTK, Marseille, France
| | - Sonia Mion
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | | | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
18
|
Wen KY, Cameron L, Chappell J, Jensen K, Bell DJ, Kelwick R, Kopniczky M, Davies JC, Filloux A, Freemont PS. A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples. ACS Synth Biol 2017; 6:2293-2301. [PMID: 28981256 DOI: 10.1021/acssynbio.7b00219] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic biology designed cell-free biosensors are a promising new tool for the detection of clinically relevant biomarkers in infectious diseases. Here, we report that a modular DNA-encoded biosensor in cell-free protein expression systems can be used to measure a bacterial biomarker of Pseudomonas aeruginosa infection from human sputum samples. By optimizing the cell-free system and sample extraction, we demonstrate that the quorum sensing molecule 3-oxo-C12-HSL in sputum samples from cystic fibrosis lungs can be quantitatively measured at nanomolar levels using our cell-free biosensor system, and is comparable to LC-MS measurements of the same samples. This study further illustrates the potential of modular cell-free biosensors as rapid, low-cost detection assays that can inform clinical practice.
Collapse
Affiliation(s)
- Ke Yan Wen
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Loren Cameron
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - James Chappell
- Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Kirsten Jensen
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K.,SynbiCITE, Imperial College London , London SW7 2AZ, U.K
| | - David J Bell
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,SynbiCITE, Imperial College London , London SW7 2AZ, U.K
| | - Richard Kelwick
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Margarita Kopniczky
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Jane C Davies
- Chronic Suppurative Lung Disease, National Heart and Lung Institute, Imperial College London , London SW7 2AZ, U.K.,Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust , London SW3 6NP, U.K
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K.,SynbiCITE, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
19
|
Schmid N, Suppiger A, Steiner E, Pessi G, Kaever V, Fazli M, Tolker-Nielsen T, Jenal U, Eberl L. High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. MICROBIOLOGY-SGM 2017; 163:754-764. [PMID: 28463102 DOI: 10.1099/mic.0.000452] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The opportunistic human pathogen Burkholderia cenocepacia H111 uses two chemically distinct signal molecules for controlling gene expression in a cell density-dependent manner: N-acyl-homoserine lactones (AHLs) and cis-2-dodecenoic acid (BDSF). Binding of BDSF to its cognate receptor RpfR lowers the intracellular c-di-GMP level, which in turn leads to differential expression of target genes. In this study we analysed the transcriptional profile of B. cenocepacia H111 upon artificially altering the cellular c-di-GMP level. One hundred and eleven genes were shown to be differentially expressed, 96 of which were downregulated at a high c-di-GMP concentration. Our analysis revealed that the BDSF, AHL and c-di-GMP regulons overlap for the regulation of 24 genes and that a high c-di-GMP level suppresses expression of AHL-regulated genes. Phenotypic analyses confirmed changes in the expression of virulence factors, the production of AHL signal molecules and the biosynthesis of different biofilm matrix components upon altered c-di-GMP levels. We also demonstrate that the intracellular c-di-GMP level determines the virulence of B. cenocepacia to Caenorhabditis elegans and Galleria mellonella.
Collapse
Affiliation(s)
- Nadine Schmid
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Angela Suppiger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elisabeth Steiner
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Mustafa Fazli
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Urs Jenal
- Focal Area of Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|
21
|
Shastri S, Spiewak HL, Sofoluwe A, Eidsvaag VA, Asghar AH, Pereira T, Bull EH, Butt AT, Thomas MS. An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia. Plasmid 2016; 89:49-56. [PMID: 27825973 PMCID: PMC5312678 DOI: 10.1016/j.plasmid.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis. We have constructed antibiotic-resistance cassettes and suicide vectors for use in Burkholderia and related species. These vectors facilitate construction of mutants by gene disruption with antibiotic-resistance markers. We have validated the utility of the vectors for marked genetic inactivation in members of the genus Burkholderia.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Helena L Spiewak
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Vigdis A Eidsvaag
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Atif H Asghar
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Tyrone Pereira
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Edward H Bull
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK,.
| |
Collapse
|
22
|
Gan HM, Dailey LK, Halliday N, Williams P, Hudson AO, Savka MA. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family. PeerJ 2016; 4:e2332. [PMID: 27635318 PMCID: PMC5012321 DOI: 10.7717/peerj.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. METHODS In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. RESULTS Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. DISCUSSION This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Genomics Facility, Tropical Medicine Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lucas K Dailey
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| |
Collapse
|
23
|
Mahenthiralingam E, Vandamme P. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2016; 2:209-17. [PMID: 16541604 DOI: 10.1191/1479972305cd053ra] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infection with a number of bacterial pathogens. The Burkholderia cepacia complex bacteria are problematic CF pathogens because (i) they are very resistant to antibiotics, making respiratory infection difficult to treat and eradicate; (ii) infection with these bacteria is associated with high mortality in CF; (iii) they may spread from one CF patient to another, leading to considerable problems for both patients and carers; and (iv) B. cepacia complex bacteria are difficult to identify and nine new species have now been found to constitute isolates originally identified as ‘B. cepacia’ based on their phenotypic properties. Here we review the changes that have occurred in the taxonomy of the B. cepacia complex and the pathogenic factors these bacteria possess. While the taxonomy of the B.cepacia complex has advanced considerably with the development of accurate methods for their identification, the pathogenic mechanisms employed by these CF pathogens are only just beginning to be explored at the molecular level. Several virulence factors have been defined for B. cenocepacia (the dominant CF pathogen within the complex); however, knowledge of the disease mechanisms employed by other B. cepacia complex species is limited. The recent determination of the complete genome sequences for several of the B. cepacia complex species should greatly enhance our ability to study these problematic CF pathogens.
Collapse
|
24
|
Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo. Sci Rep 2016; 6:32487. [PMID: 27580679 PMCID: PMC5007513 DOI: 10.1038/srep32487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia.
Collapse
|
25
|
Pradenas GA, Ross BN, Torres AG. Burkholderia cepacia Complex Vaccines: Where Do We Go from here? Vaccines (Basel) 2016; 4:vaccines4020010. [PMID: 27092530 PMCID: PMC4931627 DOI: 10.3390/vaccines4020010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine.
Collapse
Affiliation(s)
- Gonzalo A Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Brittany N Ross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
26
|
Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00063-15. [PMID: 25745000 PMCID: PMC4358387 DOI: 10.1128/genomea.00063-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene.
Collapse
|
27
|
Pribytkova T, Lightly TJ, Kumar B, Bernier SP, Sorensen JL, Surette MG, Cardona ST. The attenuated virulence of aBurkholderia cenocepacia paaABCDEmutant is due to inhibition of quorum sensing by release of phenylacetic acid. Mol Microbiol 2014; 94:522-36. [DOI: 10.1111/mmi.12771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Tanya Pribytkova
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
| | - Tasia Joy Lightly
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
| | - Brijesh Kumar
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
| | - Steve P. Bernier
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton Ontario Canada
| | - John L. Sorensen
- Department of Chemistry; University of Manitoba; Winnipeg Manitoba Canada
| | - Michael G. Surette
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton Ontario Canada
- Department of Biochemistry and Biological Sciences; McMaster University; Hamilton Ontario Canada
| | - Silvia T. Cardona
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
- Department of Medical Microbiology & Infectious Disease; University of Manitoba; Winnipeg Manitoba Canada
| |
Collapse
|
28
|
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2014; 4:400-9. [PMID: 23799665 PMCID: PMC3714132 DOI: 10.4161/viru.25338] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PLoS One 2013; 8:e80102. [PMID: 24223216 PMCID: PMC3819297 DOI: 10.1371/journal.pone.0080102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 01/05/2023] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R2 = 0.81) was found between the strains’ virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R2 = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhBBc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial virulence factors and therapeutic strategies to combat them.
Collapse
|
30
|
Distribution of sdiA quorum sensing gene and its two regulon among Salmonella serotypes isolated from different origins. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1801-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Khodai-Kalaki M, Aubert DF, Valvano MA. Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem 2013; 288:30473-30484. [PMID: 24014026 DOI: 10.1074/jbc.m113.489914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.
Collapse
Affiliation(s)
- Maryam Khodai-Kalaki
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Daniel F Aubert
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Miguel A Valvano
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and; the Centre for Infection and Immunity, Queen's University Belfast, BT9 5GZ Belfast, United Kingdom.
| |
Collapse
|
32
|
Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 2013; 12:3327-41. [PMID: 23688240 DOI: 10.1021/pr4001543] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Subramoni S, Sokol PA. Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 2013; 7:1373-87. [PMID: 23231487 DOI: 10.2217/fmb.12.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia cepacia complex strains communicate using N-acyl homoserine lactones and BDSF-dependent quorum sensing (QS) systems. Burkholderia cenocepacia QS systems include CepIR, CciIR, CepR2 and BDSF. Analysis of CepR, CciIR, CepR2 and RpfF (BDSF synthase) QS regulons revealed that these QS systems both independently regulate and coregulate many target genes, often in an opposing manner. The role of QS and several QS-regulated genes in virulence has been determined using vertebrate, invertebrate and plant infection models. Virulence phenotypes are strain and model dependent, suggesting that different QS-regulated genes are important depending on the strain and type of infection. QS inhibitors in combination with antibiotics can reduce biofilm formation and virulence in infection models.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
34
|
Ryan GT, Wei Y, Winans SC. A LuxR-type repressor of Burkholderia cenocepacia inhibits transcription via antiactivation and is inactivated by its cognate acylhomoserine lactone. Mol Microbiol 2012; 87:94-111. [PMID: 23136852 DOI: 10.1111/mmi.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that encodes two LuxI-type acylhomoserine lactone (AHL) synthases and three LuxR-type AHL receptors. Of these, cepI and cepR form a cognate synthase/receptor pair, as do cciI and cciR, while cepR2 lacks a genetically linked AHL synthase gene. Another group showed that a cepR2 mutant overexpressed a cluster of linked genes that appear to direct the production of a secondary metabolite. We found that these same genes were upregulated by octanoylhomoserine lactone (OHL), which is synthesized by CepI. These data suggest that several cepR2-linked promoters are repressed by CepR2 and that CepR2 is antagonized by OHL. Fusions of two divergent promoters to lacZ were used to confirm these hypotheses, and promoter resections and DNase I footprinting assays revealed a single CepR2 binding site between the two promoters. This binding site lies well upstream of both promoters, suggesting an unusual mode of repression. Adjacent to the cepR2 gene is a gene that we designate cepS, which encodes an AraC-type transcription factor. CepS is essential for expression of both promoters, regardless of the CepR2 status or OHL concentration. CepS therefore acts downstream of CepR2, and CepR2 appears to function as a CepS antiactivator.
Collapse
Affiliation(s)
- Gina T Ryan
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
35
|
Aubert DF, O'Grady EP, Hamad MA, Sokol PA, Valvano MA. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 2012; 15:372-85. [PMID: 22830644 DOI: 10.1111/j.1462-2920.2012.02828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ΔatsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ΔatsRΔcepIΔcciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.
Collapse
Affiliation(s)
- Daniel F Aubert
- Centre for Human Immunology, Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
O'Grady EP, Viteri DF, Sokol PA. A unique regulator contributes to quorum sensing and virulence in Burkholderia cenocepacia. PLoS One 2012; 7:e37611. [PMID: 22624054 PMCID: PMC3356288 DOI: 10.1371/journal.pone.0037611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia causes chronic and life-threatening respiratory infections in immunocompromized people. The B. cenocepacia N-acyl-homoserine lactone (AHL)-dependent quorum sensing system relies on the production of AHLs by the synthases CepI and CciI while CepR, CciR and CepR2 control expression of many genes important for pathogenesis. Downstream from, and co-transcribed with cepI, lies BCAM1871 encoding a hypothetical protein that was uncharacterized prior to this study. Orthologs of B. cenocepacia BCAM1871 are uniquely found in Burkholderia spp and are conserved in their genomic locations in pathogenic Burkholderia. We observed significant effects on AHL activity upon mutation or overexpression of BCAM1871, although these effects were more subtle than those observed for CepI indicating BCAM1871 acts as an enhancer of AHL activity. Transcription of cepI, cepR and cciIR was significantly reduced in the BCAM1871 mutant. Swimming and swarming motilities as well as transcription of fliC, encoding flagellin, were significantly reduced in the BCAM1871 mutant. Protease activity and transcription of zmpA and zmpB, encoding extracellular zinc metalloproteases, were undetectable in the BCAM1871 mutant indicating a more significant effect of mutating BCAM1871 than cepI. Exogenous addition of OHL restored cepI, cepR and fliC transcription but had no effect on motility, protease activity or zmpA or zmpB transcription suggesting AHL-independent effects. The BCAM1871 mutant exhibited significantly reduced virulence in rat chronic respiratory and nematode infection models. Gene expression and phenotypic assays as well as vertebrate and invertebrate infection models showed that BCAM1871 significantly contributes to pathogenesis in B. cenocepacia.
Collapse
Affiliation(s)
| | | | - Pamela A. Sokol
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
37
|
Ganesan S, Sajjan US. Host evasion by Burkholderia cenocepacia. Front Cell Infect Microbiol 2012; 1:25. [PMID: 22919590 PMCID: PMC3417383 DOI: 10.3389/fcimb.2011.00025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/22/2011] [Indexed: 11/13/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal "cepacia syndrome." During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22 kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
38
|
Ferreira AS, Silva IN, Oliveira VH, Cunha R, Moreira LM. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front Cell Infect Microbiol 2011; 1:16. [PMID: 22919582 PMCID: PMC3417362 DOI: 10.3389/fcimb.2011.00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022] Open
Abstract
The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico Lisboa, Portugal
| | | | | | | | | |
Collapse
|
39
|
O'Grady EP, Sokol PA. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment. Front Cell Infect Microbiol 2011; 1:15. [PMID: 22919581 PMCID: PMC3417382 DOI: 10.3389/fcimb.2011.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
40
|
Molecular approaches to pathogenesis study of Burkholderia cenocepacia, an important cystic fibrosis opportunistic bacterium. Appl Microbiol Biotechnol 2011; 92:887-95. [PMID: 21997606 DOI: 10.1007/s00253-011-3616-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/08/2011] [Accepted: 09/28/2011] [Indexed: 10/15/2022]
Abstract
Burkholderia cenocepacia is a Gram-negative opportunistic pathogen belonging to the Burkholderia cepacia complex (Bcc). It is spread in a wide range of ecological niches, and in cystic fibrosis patients, it is responsible for serious infections. Its eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. One of the main resistance mechanisms in clinical isolates is represented by efflux systems that are able to extrude a variety of molecules, such as antibiotics, out of the cell. Resistance-Nodulation-Cell Division (RND) efflux pumps are known to be mediators of multidrug resistance in Gram-negative bacteria. Since now, the significance of the RND efflux systems in B. cenocepacia has been partially determined. However, the analysis of the completely sequenced genome of B. cenocepacia J2315 allowed the identification of 16 operons coding for these transporters. We focused our attention on the role of these pumps through the construction of several deletion mutants. Since manipulating B. cenocepacia J2315 genome is difficult, we used a peculiar inactivation system, which enables different deletions in the same strain. The characterization of our mutants through transcriptome and phenotype microarray analysis suggested that RND efflux pumps can be involved not only in drug resistance but also in pathways important for the pathogenesis of this microorganism. The aim of this review is an updated overview on host-pathogen interactions and drug resistance, particularly focused on RND-mediated efflux mechanisms, highlighting the importance of molecular techniques in the study of B. cenocepacia.
Collapse
|
41
|
Wei Y, Ryan GT, Flores-Mireles AL, Costa ED, Schneider DJ, Winans SC. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia. Mol Microbiol 2011; 79:616-32. [PMID: 21255107 PMCID: PMC3046370 DOI: 10.1111/j.1365-2958.2010.07469.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen of humans that encodes two genes that resemble the acylhomoserine lactone synthase gene luxI of Vibrio fischeri and three genes that resemble the acylhomoserine lactone receptor gene luxR. Of these, CepI synthesizes octanoylhomoserine lactone (OHL), while CepR is an OHL-dependent transcription factor. In the current study we developed a strategy to identify genes that are directly regulated by CepR. We systematically altered a CepR binding site (cep box) upstream of a target promoter to identify nucleotides that are essential for CepR activity in vivo and for CepR binding in vitro. We constructed 34 self-complementary oligonucleotides containing altered cep boxes, and measured binding affinity for each. These experiments allowed us to identify a consensus CepR binding site. Several hundred similar sequences were identified, some of which were adjacent to probable promoters. Several such promoters were fused to a reporter gene with and without intact cep boxes. This allowed us to identify four new regulated promoters that were induced by OHL, and that required a cep box for induction. CepR-dependent, OHL-dependent expression of all four promoters was reconstituted in Escherichia coli. Purified CepR bound to each of these sites in electrophoretic mobility shift assays.
Collapse
Affiliation(s)
- Yuping Wei
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Gina T. Ryan
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Esther D. Costa
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - David J. Schneider
- U.S. Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
42
|
McKeon SA, Nguyen DT, Viteri DF, Zlosnik JEA, Sokol PA. Functional quorum sensing systems are maintained during chronic Burkholderia cepacia complex infections in patients with cystic fibrosis. J Infect Dis 2010; 203:383-92. [PMID: 21208930 DOI: 10.1093/infdis/jiq054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) contributes to the virulence of Pseudomonas aeruginosa and Burkholderia cepacia complex lung infections. P. aeruginosa QS mutants are frequently isolated from patients with cystic fibrosis. The objective of this study was to determine whether similar adaptations occur over time in B. cepacia complex isolates. Forty-five Burkholderia multivorans and Burkholderia cenocepacia sequential isolates from patients with cystic fibrosis were analyzed for N-acyl-homoserine lactone activity. All but one isolate produced N-acyl-homoserine lactones. The B. cenocepacia N-acyl-homoserine lactone-negative isolate contained mutations in cepR and cciR. Growth competition assays were performed that compared B. cenocepacia clinical and laboratory defined wild-type and QS mutants. Survival of the laboratory wild-type and QS mutants varied, dependent on the mutation. The clinical wild-type isolate demonstrated a growth advantage over its QS mutant. These data suggest that there is a selective advantage for strains with QS systems and that QS mutations do not occur at a high frequency in B. cepacia complex isolates.
Collapse
Affiliation(s)
- Suzanne A McKeon
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
43
|
Goo E, Kang Y, Kim H, Hwang I. Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. J Proteome Res 2010; 9:3184-99. [PMID: 20408571 DOI: 10.1021/pr100045n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Burkholderia glumae, the causal agent of bacterial rice grain rot, utilizes quorum sensing (QS) systems that rely on N-octanoyl homoserine lactone (synthesized by TofI) and its cognate receptor TofR to activate toxoflavin biosynthesis genes and an IclR-type transcriptional regulator gene, qsmR. Since QS is essential for B. glumae pathogenicity, we analyzed the QS-dependent proteome by 2-dimensional gel electrophoresis. A total of 79 proteins, including previously known QS-dependent proteins, were differentially expressed between the wild-type BGR1 and the tofI mutant BGS2 strains. Among this set, 59 proteins were found in the extracellular fraction, and 20 were cytoplasmic. Thirty-four proteins, including lipase and proteases, were secreted through the type II secretion system (T2SS). Real-time RT-PCR analysis showed that the corresponding genes of the 49 extracellular and 13 intracellular proteins are regulated by QS at the transcriptional level. The T2SS, encoded by 12 general secretion pathway (gsp) genes with 3 independent transcriptional units, was controlled by QS. beta-Glucuronidase activity analysis of gsp::Tn3-gusA gene fusions and electrophoretic mobility shift assays revealed that the expression of gsp genes is directly regulated by QsmR. T2SS-defective mutants exhibited reduced virulence, indicating that the T2SS-dependent extracellular proteins play important roles in B. glumae virulence.
Collapse
Affiliation(s)
- Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Lowery CA, Salzameda NT, Sawada D, Kaufmann GF, Janda KD. Medicinal chemistry as a conduit for the modulation of quorum sensing. J Med Chem 2010; 53:7467-89. [PMID: 20669927 PMCID: PMC2974035 DOI: 10.1021/jm901742e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Colin A. Lowery
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Nicholas T. Salzameda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Daisuke Sawada
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Gunnar F. Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
- Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
45
|
The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes. J Bacteriol 2010; 193:163-76. [PMID: 20971902 DOI: 10.1128/jb.00852-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia is a significant opportunistic pathogen in individuals with cystic fibrosis. ShvR, a LysR-type transcriptional regulator, has previously been shown to influence colony morphology, biofilm formation, virulence in plant and animal infection models, and some quorum-sensing-dependent phenotypes. In the present study, it was shown that ShvR negatively regulates its own expression, as is typical for LysR-type regulators. The production of quorum-sensing signal molecules was detected earlier in growth in the shvR mutant than in the wild type, and ShvR repressed expression of the quorum-sensing regulatory genes cepIR and cciIR. Microarray analysis and transcriptional fusions revealed that ShvR regulated over 1,000 genes, including the zinc metalloproteases zmpA and zmpB. The shvR mutant displayed increased gene expression of the type II secretion system and significantly increased protease and lipase activities. Both ShvR and CepR influence expression of a 24-kb genomic region adjacent to shvR that includes the afcA and afcC operons, required for the production of an antifungal agent; however, the reduction in expression was substantially greater in the shvR mutant than in the cepR mutant. Only the shvR mutation resulted in reduced antifungal activity against Rhizoctonia solani. ShvR, but not CepR, was shown to directly regulate expression of the afcA and afcC promoters. In summary, ShvR was determined to have a significant influence on the expression of quorum-sensing, protease, lipase, type II secretion, and afc genes.
Collapse
|
46
|
Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010; 87:31-40. [PMID: 20390415 DOI: 10.1007/s00253-010-2528-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 closely related species of the beta-proteobacteria subdivision that emerged in the 1980s as important human pathogens, especially to patients suffering from cystic fibrosis. Since then, a remarkable progress has been achieved on the taxonomy and molecular identification of these bacteria. Although some progress have been achieved on the knowledge of the pathogenesis traits and virulence factors used by these bacteria, further work envisaging the identification of potential targets for the scientifically based design of new therapeutic strategies is urgently needed, due to the very difficult eradication of these bacteria with available therapies. An overview of these aspects of Bcc pathogenesis and opportunities for the design of future therapies is presented and discussed in this work.
Collapse
|
47
|
Abstract
The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.
Collapse
Affiliation(s)
- Slade A. Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Miguel A. Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
48
|
Vial L, Chapalain A, Groleau MC, Déziel E. The various lifestyles of theBurkholderia cepaciacomplex species: a tribute to adaptation. Environ Microbiol 2010; 13:1-12. [DOI: 10.1111/j.1462-2920.2010.02343.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Castonguay-Vanier J, Vial L, Tremblay J, Déziel E. Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 2010; 5:e11467. [PMID: 20635002 PMCID: PMC2902503 DOI: 10.1371/journal.pone.0011467] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Background Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms. Methodology/Principal Findings The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models. Conclusions/Significance We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests.
Collapse
Affiliation(s)
- Josée Castonguay-Vanier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Ludovic Vial
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Julien Tremblay
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Eric Déziel
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
- * E-mail:
| |
Collapse
|
50
|
Vergunst AC, Meijer AH, Renshaw SA, O'Callaghan D. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 2010; 78:1495-508. [PMID: 20086083 PMCID: PMC2849400 DOI: 10.1128/iai.00743-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/05/2009] [Accepted: 01/09/2010] [Indexed: 11/20/2022] Open
Abstract
Bacteria belonging to the "Burkholderia cepacia complex" (Bcc) often cause fatal pulmonary infections in cystic fibrosis patients, yet little is know about the underlying molecular mechanisms. These Gram-negative bacteria can adopt an intracellular lifestyle, although their ability to replicate intracellularly has been difficult to demonstrate. Here we show that Bcc bacteria survive and multiply in macrophages of zebrafish embryos. Local dissemination by nonlytic release from infected cells was followed by bacteremia and extracellular replication. Burkholderia cenocepacia isolates belonging to the epidemic electrophoretic type 12 (ET12) lineage were highly virulent for the embryos; intravenous injection of <10 bacteria of strain K56-2 killed embryos within 3 days. However, small but significant differences between the clonal ET12 isolates K56-2, J2315, and BC7 were evident. In addition, the innate immune response in young embryos was sufficiently developed to control infection with other less virulent Bcc strains, such as Burkholderia vietnamiensis FC441 and Burkholderia stabilis LMG14294. A K56-2 cepR quorum-sensing regulator mutant was highly attenuated, and its ability to replicate and spread to neighboring cells was greatly reduced. Our data indicate that the zebrafish embryo is an excellent vertebrate model to dissect the molecular basis of intracellular replication and the early innate immune responses in this intricate host-pathogen interaction.
Collapse
Affiliation(s)
- Annette C Vergunst
- INSERM, ESPRI 26, UFR Médecine, CS83021, Avenue Kennedy, 30908 Nimes, France.
| | | | | | | |
Collapse
|