1
|
Jeong H, Kim Y, Lee HS. CdbC: a disulfide bond isomerase involved in the refolding of mycoloyltransferases in Corynebacterium glutamicum cells exposed to oxidative conditions. J Biochem 2024; 175:457-470. [PMID: 38227582 DOI: 10.1093/jb/mvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, 65, Semyeong-ro, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve L-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res 2023; 272:127390. [PMID: 37087971 DOI: 10.1016/j.micres.2023.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Trehalose dicorynomycolates are structurally important constituents of the cell envelope in Corynebacterium glutamicum. The genes treS, treY, otsA, mytA and mytB are necessary for the biosynthesis of trehalose dicorynomycolates. In this study, the effect of biosynthesis of trehalose dicorynomycolates on L-isoleucine production in C. glutamicum has been investigated by deleting the genes treS, treY, otsA, mytA, and mytB in the L-isoleucine producing C. glutamicum WM001. L-isoleucine production was slightly improved in the mutants ΔtreY, ΔotsA, and ΔtreYA, and not improved in the single deletion mutant ΔtreS , but significantly improved in the triple deletion mutant ΔtreSYA. Deletion of mytA or mytB in ΔtreSYA could further improve L-isoleucine production. However, deletion of both mytA and mytB in ΔtreSYA significantly decreased L-isoleucine production. The final L-isoleucine producing C. glutamicum WL001 was constructed by deletion of treS, treY, otsA, and mytB, insertion of lrp, and replacement of the native promoter of ilvA with the L-isoleucine sensitive promoter PbrnFE7. WL001 grew worse than the control WM001, but produced 36.1% more L-isoleucine after 72 h shake flask cultivation than WM001.
Collapse
Affiliation(s)
- Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Daqing Xu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dezhi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guihong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ziwei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Gu H, Hao X, Liu R, Shi Z, Zhao Z, Chen F, Wang W, Wang Y, Shen X. Small protein Cgl2215 enhances phenolic tolerance by promoting MytA activity in Corynebacterium glutamicum. STRESS BIOLOGY 2022; 2:49. [PMID: 37676548 PMCID: PMC10441969 DOI: 10.1007/s44154-022-00071-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2023]
Abstract
Corynebacterium glutamicum is a promising chassis microorganism for the bioconversion of lignocellulosic biomass owing to its good tolerance and degradation of the inhibitors generated in lignocellulosic pretreatments. Among the identified proteins encoded by genes within the C. glutamicum genome, nearly 400 are still functionally unknown. Based on previous transcriptome analysis, we found that the hypothetical protein gene cgl2215 was highly upregulated in response to phenol, ferulic acid, and vanillin stress. The cgl2215 deletion mutant was shown to be more sensitive than the parental strain to phenolic compounds as well as other environmental factors such as heat, ethanol, and oxidative stresses. Cgl2215 interacts with C. glutamicum mycoloyltransferase A (MytA) and enhances its in vitro esterase activity. Sensitivity assays of the ΔmytA and Δcgl2215ΔmytA mutants in response to phenolic stress established that the role of Cgl2215 in phenolic tolerance was mediated by MytA. Furthermore, transmission electron microscopy (TEM) results showed that cgl2215 and mytA deletion both led to defects in the cell envelope structure of C. glutamicum, especially in the outer layer (OL) and electron-transparent layer (ETL). Collectively, these results indicate that Cgl2215 can enhance MytA activity and affect the cell envelope structure by directly interacting with MytA, thus playing an important role in resisting phenolic and other environmental stresses.
Collapse
Affiliation(s)
- Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruirui Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenkun Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zehua Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenqiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Li H, Xu D, Liu Y, Tan X, Qiao J, Li Z, Qi B, Hu X, Wang X. Preventing mycolic acid reduction in Corynebacterium glutamicum can efficiently increase L-glutamate production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Kumagai Y, Hirasawa T, Wachi M. Requirement of the LtsA Protein for Formation of the Mycolic Acid-Containing Layer on the Cell Surface of Corynebacterium glutamicum. Microorganisms 2021; 9:microorganisms9020409. [PMID: 33669405 PMCID: PMC7920481 DOI: 10.3390/microorganisms9020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The ltsA gene of Corynebacterium glutamicum encodes a purF-type glutamine-dependent amidotransferase, and mutations in this gene result in increased susceptibility to lysozyme. Recently, it was shown that the LtsA protein catalyzes the amidation of diaminopimelate residues in the lipid intermediates of peptidoglycan biosynthesis. In this study, intracellular localization of wild-type and mutant LtsA proteins fused with green fluorescent protein (GFP) was investigated. The GFP-fused wild-type LtsA protein showed a peripheral localization pattern characteristic of membrane-associated proteins. The GFP-fusions with a mutation in the N-terminal domain of LtsA, which is necessary for the glutamine amido transfer reaction, exhibited a similar localization to the wild type, whereas those with a mutation or a truncation in the C-terminal domain, which is not conserved among the purF-type glutamine-dependent amidotransferases, did not. These results suggest that the C-terminal domain is required for peripheral localization. Differential staining of cell wall structures with fluorescent dyes revealed that formation of the mycolic acid-containing layer at the cell division planes was affected in the ltsA mutant cells. This was also confirmed by observation that bulge formation was induced at the cell division planes in the ltsA mutant cells upon lysozyme treatment. These results suggest that the LtsA protein function is required for the formation of a mycolic acid-containing layer at the cell division planes and that this impairment results in increased susceptibility to lysozyme.
Collapse
Affiliation(s)
- Yutaro Kumagai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
| | - Masaaki Wachi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
- Correspondence:
| |
Collapse
|
6
|
Genome-wide identification of novel genes involved in Corynebacteriales cell envelope biogenesis using Corynebacterium glutamicum as a model. PLoS One 2021; 15:e0240497. [PMID: 33383576 PMCID: PMC7775120 DOI: 10.1371/journal.pone.0240497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023] Open
Abstract
Corynebacteriales are Actinobacteria that possess an atypical didermic cell envelope. One of the principal features of this cell envelope is the presence of a large complex made up of peptidoglycan, arabinogalactan and mycolic acids. This covalent complex constitutes the backbone of the cell wall and supports an outer membrane, called mycomembrane in reference to the mycolic acids that are its major component. The biosynthesis of the cell envelope of Corynebacteriales has been extensively studied, in particular because it is crucial for the survival of important pathogens such as Mycobacterium tuberculosis and is therefore a key target for anti-tuberculosis drugs. In this study, we explore the biogenesis of the cell envelope of Corynebacterium glutamicum, a non-pathogenic Corynebacteriales, which can tolerate dramatic modifications of its cell envelope as important as the loss of its mycomembrane. For this purpose, we used a genetic approach based on genome-wide transposon mutagenesis. We developed a highly effective immunological test based on the use of anti-cell wall antibodies that allowed us to rapidly identify bacteria exhibiting an altered cell envelope. A very large number (10,073) of insertional mutants were screened by means of this test, and 80 were finally selected, representing 55 different loci. Bioinformatics analyses of these loci showed that approximately 60% corresponded to genes already characterized, 63% of which are known to be directly involved in cell wall processes, and more specifically in the biosynthesis of the mycoloyl-arabinogalactan-peptidoglycan complex. We identified 22 new loci potentially involved in cell envelope biogenesis, 76% of which encode putative cell envelope proteins. A mutant of particular interest was further characterized and revealed a new player in mycolic acid metabolism. Because a large proportion of the genes identified by our study is conserved in Corynebacteriales, the library described here provides a new resource of genes whose characterization could lead to a better understanding of the biosynthesis of the envelope components of these bacteria.
Collapse
|
7
|
Dietrich C, Li de la Sierra-Gallay I, Masi M, Girard E, Dautin N, Constantinesco-Becker F, Tropis M, Daffé M, van Tilbeurgh H, Bayan N. The C-terminal domain of Corynebacterium glutamicum mycoloyltransferase A is composed of five repeated motifs involved in cell wall binding and stability. Mol Microbiol 2020; 114:1-16. [PMID: 32073722 DOI: 10.1111/mmi.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/07/2020] [Indexed: 12/29/2022]
Abstract
The genomes of Corynebacteriales contain several genes encoding mycoloyltransferases (Myt) that are specific cell envelope enzymes essential for the biogenesis of the outer membrane. MytA is a major mycoloyltransferase of Corynebacterium glutamicum, displaying an N-terminal domain with esterase activity and a C-terminal extension containing a conserved repeated Leu-Gly-Phe-Pro (LGFP) sequence motif of unknown function. This motif is highly conserved in Corynebacteriales and found associated with cell wall hydrolases and with proteins of unknown function. In this study, we determined the crystal structure of MytA and found that its C-terminal domain is composed of five LGFP motifs and forms a long stalk perpendicular to the N-terminal catalytic α/β-hydrolase domain. The LGFP motifs are composed of a 4-stranded β-fold and occupy alternating orientations along the axis of the stalk. Multiple acetate binding pockets were identified in the stalk, which could correspond to putative ligand-binding sites. By using various MytA mutants and complementary in vitro and in vivo approaches, we provide evidence that the C-terminal LGFP domain interacts with the cell wall peptidoglycan-arabinogalactan polymer. We also show that the C-terminal LGFP domain is not required for the activity of MytA but rather contributes to the overall integrity of the cell envelope.
Collapse
Affiliation(s)
- Christiane Dietrich
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Muriel Masi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Eric Girard
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Nathalie Dautin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse Cedex, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse Cedex, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Nicolas Bayan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Kapil S, Petit C, Drago VN, Ronning DR, Sucheck SJ. Synthesis and in Vitro Characterization of Trehalose-Based Inhibitors of Mycobacterial Trehalose 6-Phosphate Phosphatases. Chembiochem 2019; 20:260-269. [PMID: 30402996 PMCID: PMC6467533 DOI: 10.1002/cbic.201800551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/17/2022]
Abstract
α,α'-Trehalose plays roles in the synthesis of several cell wall components involved in pathogenic mycobacteria virulence. Its absence in mammalian biochemistry makes trehalose-related biochemical processes potential targets for chemotherapy. The trehalose 6-phosphate synthase (TPS)/trehalose 6-phosphate phosphatase (TPP) pathway, also known as the OtsA/OtsB2 pathway, is the major pathway involved in the production of trehalose in Mycobacterium tuberculosis (Mtb). In addition, TPP is essential for Mtb survival. We describe the synthesis of α,α'-trehalose derivatives in the forms of the 6-phosphonic acid 4 (TMP), the 6-methylenephosphonic acid 5 (TEP), and the 6-N-phosphonamide 6 (TNP). These non-hydrolyzable substrate analogues of TPP were examined as inhibitors of Mtb, Mycobacterium lentiflavum (Mlt), and Mycobacterium triplex (Mtx) TPP. In all cases the compounds were most effective in inhibiting Mtx TPP, with TMP [IC50 =(288±32) μm] acting most strongly, followed by TNP [IC50 =(421±24) μm] and TEP [IC50 =(1959±261) μm]. The results also indicate significant differences in the analogue binding profile when comparing Mtb TPP, Mlt TPP, and Mtx TPP homologues.
Collapse
Affiliation(s)
- Sunayana Kapil
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Cecile Petit
- Dr. C. Petit, EMBL Hamburg, c/oDESY, Building 25A, Notkestraß, e85, 22603 Hamburg, Germany
| | - Victoria N. Drago
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Donald R. Ronning
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| |
Collapse
|
9
|
Kuyukina MS, Ivshina IB. Production of Trehalolipid Biosurfactants by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF. Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol 2017; 17:158. [PMID: 28701150 PMCID: PMC5508688 DOI: 10.1186/s12866-017-1067-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sigma factors are one of the components of RNA polymerase holoenzymes, and an essential factor of transcription initiation in bacteria. Corynebacterium glutamicum possesses seven genes coding for sigma factors, most of which have been studied to some detail; however, the role of SigD in transcriptional regulation in C. glutamicum has been mostly unknown. RESULTS In this work, pleiotropic effects of sigD overexpression at the level of phenotype, transcripts, proteins and metabolites were investigated. Overexpression of sigD decreased the growth rate of C. glutamicum cultures, and induced several physiological effects such as reduced culture foaming, turbid supernatant and cell aggregation. Upon overexpression of sigD, the level of Cmt1 (corynomycolyl transferase) in the supernatant was notably enhanced, and carbohydrate-containing compounds were excreted to the supernatant. The real-time PCR analysis revealed that sigD overexpression increased the expression of genes related to corynomycolic acid synthesis (fadD2, pks), genes encoding corynomycolyl transferases (cop1, cmt1, cmt2, cmt3), L, D-transpeptidase (lppS), a subunit of the major cell wall channel (porH), and the envelope lipid regulation factor (elrF). Furthermore, overexpression of sigD resulted in trehalose dicorynomycolate accumulation in the cell envelope. CONCLUSIONS This study demonstrated that SigD regulates the synthesis of corynomycolate and related compounds, and expanded the knowledge of regulatory functions of sigma factors in C. glutamicum.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Patschkowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
11
|
Lee DS, Kim Y, Lee HS. The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation. Microbiology (Reading) 2017; 163:131-143. [DOI: 10.1099/mic.0.000399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dong-Seok Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| |
Collapse
|
12
|
Wesener DA, Levengood MR, Kiessling LL. Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae. J Biol Chem 2016; 292:2944-2955. [PMID: 28039359 DOI: 10.1074/jbc.m116.759340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis In each species, the galactan is constructed from uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope.
Collapse
Affiliation(s)
| | - Matthew R Levengood
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Laura L Kiessling
- From the Department of Biochemistry and .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
13
|
Dautin N, de Sousa-d'Auria C, Constantinesco-Becker F, Labarre C, Oberto J, Li de la Sierra-Gallay I, Dietrich C, Issa H, Houssin C, Bayan N. Mycoloyltransferases: A large and major family of enzymes shaping the cell envelope of Corynebacteriales. Biochim Biophys Acta Gen Subj 2016; 1861:3581-3592. [PMID: 27345499 DOI: 10.1016/j.bbagen.2016.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium and Corynebacterium are important genera of the Corynebacteriales order, the members of which are characterized by an atypical diderm cell envelope. Indeed the cytoplasmic membrane of these bacteria is surrounded by a thick mycolic acid-arabinogalactan-peptidoglycan (mAGP) covalent polymer. The mycolic acid-containing part of this complex associates with other lipids (mainly trehalose monomycolate (TMM) and trehalose dimycolate (TDM)) to form an outer membrane. The metabolism of mycolates in the cell envelope is governed by esterases called mycoloyltransferases that catalyze the transfer of mycoloyl chains from TMM to another TMM molecule or to other acceptors such as the terminal arabinoses of arabinogalactan or specific polypeptides. In this review we present an overview of this family of Corynebacteriales enzymes, starting with their expression, localization, structure and activity to finally discuss their putative functions in the cell. In addition, we show that Corynebacteriales possess multiple mycoloyltransferases encoding genes in their genome. The reason for this multiplicity is not known, as their function in mycolates biogenesis appear to be only partially redundant. It is thus possible that, in some species living in specific environments, some mycoloyltransferases have evolved to gain some new functions. In any case, the few characterized mycoloyltransferases are very important for the bacterial physiology and are also involved in adaptation in the host where they constitute major secreted antigens. Although not discussed in this review, all these functions make them interesting targets for the discovery of new antibiotics and promising vaccines candidates. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Nathalie Dautin
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Célia de Sousa-d'Auria
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Florence Constantinesco-Becker
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Cécile Labarre
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Jacques Oberto
- Cell Biology of Archaea, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Ines Li de la Sierra-Gallay
- Function and Architecture of Macromolecular Assemblies, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Christiane Dietrich
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Hanane Issa
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France; Faculty of Sciences, Department of Life and Earth Sciences, Holy Spirit University of Kaslik (USEK), Kaslik, B.P. 446, Jounieh, Lebanon
| | - Christine Houssin
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Nicolas Bayan
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
14
|
Abstract
The cell wall of Mycobacterium tuberculosis is unique in that it differs significantly from those of both Gram-negative and Gram-positive bacteria. The thick, carbohydrate- and lipid-rich cell wall with distinct lipoglycans enables mycobacteria to survive under hostile conditions such as shortage of nutrients and antimicrobial exposure. The key features of this highly complex cell wall are the mycolyl-arabinogalactan-peptidoglycan (mAGP)-based and phosphatidyl-myo-inositol-based macromolecular structures, with the latter possessing potent immunomodulatory properties. These structures are crucial for the growth, viability, and virulence of M. tuberculosis and therefore are often the targets of effective chemotherapeutic agents against tuberculosis. Over the past decade, sophisticated genomic and molecular tools have advanced our understanding of the primary structure and biosynthesis of these macromolecules. The availability of the full genome sequences of various mycobacterial species, including M. tuberculosis, Mycobacterium marinum, and Mycobacterium bovis BCG, have greatly facilitated the identification of large numbers of drug targets and antigens specific to tuberculosis. Techniques to manipulate mycobacteria have also improved extensively; the conditional expression-specialized transduction essentiality test (CESTET) is currently used to determine the essentiality of individual genes. Finally, various biosynthetic assays using either purified proteins or synthetic cell wall acceptors have been developed to study enzyme function. This article focuses on the recent advances in determining the structural details and biosynthesis of arabinogalactan, lipoarabinomannan, and related glycoconjugates.
Collapse
|
15
|
Yamaryo-Botte Y, Rainczuk AK, Lea-Smith DJ, Brammananth R, van der Peet PL, Meikle P, Ralton JE, Rupasinghe TWT, Williams SJ, Coppel RL, Crellin PK, McConville MJ. Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae. ACS Chem Biol 2015; 10:734-46. [PMID: 25427102 DOI: 10.1021/cb5007689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenic species of Mycobacteria and Corynebacteria, including Mycobacterium tuberculosis and Corynebacterium diphtheriae, synthesize complex cell walls that are rich in very long-chain mycolic acids. These fatty acids are synthesized on the inner leaflet of the cell membrane and are subsequently transported to the periplasmic space as trehalose monomycolates (TMM), where they are conjugated to other cell wall components and to TMM to form trehalose dimycolates (TDM). Mycobacterial TMM, and the equivalent Corynebacterium glutamicum trehalose corynomycolates (TMCM), are transported across the inner membrane by MmpL3, or NCgl0228 and NCgl2769, respectively, although little is known about how this process is regulated. Here, we show that transient acetylation of the mycolyl moiety of TMCM is required for periplasmic export. A bioinformatic search identified a gene in a cell wall biosynthesis locus encoding a putative acetyltransferase (M. tuberculosis Rv0228/C. glutamicum NCgl2759) that was highly conserved in all sequenced Corynebacterineae. Deletion of C. glutamicum NCgl2759 resulted in the accumulation of TMCM, with a concomitant reduction in surface transport of this glycolipid and syntheses of cell wall trehalose dicorynomycolates. Strikingly, loss of NCgl2759 was associated with a defect in the synthesis of a minor, and previously uncharacterized, glycolipid species. This lipid was identified as trehalose monoacetylcorynomycolate (AcTMCM) by mass spectrometry and chemical synthesis of the authentic standard. The in vitro synthesis of AcTMCM was dependent on acetyl-CoA, whereas in vivo [(14)C]-acetate pulse-chase labeling showed that this lipid was rapidly synthesized and turned over in wild-type and genetically complemented bacterial strains. Significantly, the biochemical and TMCM/TDCM transport phenotype observed in the ΔNCgl2759 mutant was phenocopied by inhibition of the activities of the two C. glutamicum MmpL3 homologues. Collectively, these data suggest that NCgl2759 is a novel TMCM mycolyl acetyltransferase (TmaT) that regulates transport of TMCM and is a potential drug target in pathogenic species.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Meikle
- Metabolomics
Laboratory, Baker IDI Heart and Diabetes Institute, 75 Commercial
Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Backus KM, Dolan MA, Barry CS, Joe M, McPhie P, Boshoff HIM, Lowary TL, Davis BG, Barry CE. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions. J Biol Chem 2014; 289:25041-53. [PMID: 25028517 DOI: 10.1074/jbc.m114.581579] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.
Collapse
Affiliation(s)
- Keriann M Backus
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, and the Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| | - Michael A Dolan
- the Bioinformatics and Computational Biosciences Branch, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Conor S Barry
- the Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| | - Maju Joe
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada, and
| | - Peter McPhie
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Helena I M Boshoff
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, and
| | - Todd L Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada, and
| | - Benjamin G Davis
- the Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom,
| | - Clifton E Barry
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, and
| |
Collapse
|
17
|
Yang L, Lu S, Belardinelli J, Huc-Claustre E, Jones V, Jackson M, Zgurskaya HI. RND transporters protect Corynebacterium glutamicum from antibiotics by assembling the outer membrane. Microbiologyopen 2014; 3:484-96. [PMID: 24942069 PMCID: PMC4287177 DOI: 10.1002/mbo3.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 01/28/2023] Open
Abstract
Corynebacterium-Mycobacterium-Nocardia (CMN) group are the causative agents of a broad spectrum of diseases in humans. A distinctive feature of these Gram-positive bacteria is the presence of an outer membrane of unique structure and composition. Recently, resistance-nodulation-division (RND) transporters (nicknamed MmpLs, Mycobacterial membrane protein Large) have emerged as major contributors to the biogenesis of the outer membranes in mycobacteria and as promising drug targets. In this study, we investigated the role of RND transporters in the physiology of Corynebacterium glutamicum and analyzed properties of these proteins. Our results show that in contrast to Gram-negative species, in which RND transporters actively extrude antibiotics from cells, in C. glutamicum and relatives these transporters protect cells from antibiotics by playing essential roles in the biogenesis of the low-permeability barrier of the outer membrane. Conditional C. glutamicum mutants lacking RND proteins and with the controlled expression of either NCgl2769 (CmpL1) or NCgl0228 (CmpL4) are hypersusceptible to multiple antibiotics, have growth deficiencies in minimal medium and accumulate intracellularly trehalose monocorynomycolates, free corynomycolates, and the previously uncharacterized corynomycolate-containing lipid. Our results also suggest that similar to other RND transporters, Corynebacterial membrane proteins Large (CmpLs) functions are dependent on a proton-motive force.
Collapse
Affiliation(s)
- Liang Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019
| | | | | | | | | | | | | |
Collapse
|
18
|
Lanéelle MA, Tropis M, Daffé M. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol 2013; 97:9923-30. [PMID: 24113823 DOI: 10.1007/s00253-013-5265-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 11/29/2022]
Abstract
Corynebacterium glutamicum is the world's largest producer of glutamate and lysine. Industrial glutamate overproduction is induced by empirical processes, such as biotin limitation, supplementation with specific surfactants or addition of sublethal concentration of certain antibiotics to the culture media. Although Gram-positive bacteria, C. glutamicum and related bacterial species and genera contain, in addition to the plasma membrane, an outer permeability membrane similar to that of Gram-negative microorganisms. As the amino acids have to cross both membranes, their integrity, composition and fluidity influence the export process. While the precise mechanism of the export of the amino acids by C. glutamicum is not fully understood, the excretion of amino acids through the inner membrane involved at least a major export system mechanosensitive channel MscS family (MscCG) encoded by NCgl1221. As the various industrial treatments have been shown to affect the lipid content of the bacterial cell, it is strongly believed that defects in the hallmark of the outer membrane, 2-alkyl, 3-hydroxylated long-chain fatty acids (mycolic acids), could be key factors in the glutamate overproduction. This review aims at giving an overview of the current knowledge on mycolic acids structure, biosynthesis and transfer in C. glutamicum and their relevance for amino acid biotechnological production.
Collapse
Affiliation(s)
- Marie-Antoinette Lanéelle
- Team « Mycobacterial Cell Envelopes: Structure, Biosynthesis and Roles », Département "Mécanismes Moléculaires des Infections Mycobactériennes", Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (IPBS), UMR 5089, BP 64182, 205, Route de Narbonne, 31077, Toulouse Cedex 04, France
| | | | | |
Collapse
|
19
|
Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales. J Bacteriol 2013; 195:4121-8. [PMID: 23852866 DOI: 10.1128/jb.00285-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain α-alkyl and β-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C. glutamicum, specifically abolished the O-modification of the pore-forming proteins PorA and PorH, which is critical for their biological activity. Expectedly, complementation of the cg0413 mutant with either the wild-type gene or its orthologues from Corynebacterium diphtheriae and Rhodococcus, but not Nocardia, fully restored the O-acylation of the porins. Consistently, the three-dimensional structure of CgMytC showed the presence of a unique loop that is absent from enzymes that transfer mycoloyl residues onto both trehalose and the cell wall arabinogalactan. These data suggest the implication of this structure in the enzyme specificity for protein instead of carbohydrate.
Collapse
|
20
|
Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN MICROBIOLOGY 2013; 2013:935736. [PMID: 23724339 PMCID: PMC3658426 DOI: 10.1155/2013/935736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
Collapse
|
21
|
Jankute M, Grover S, Rana AK, Besra GS. Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets. Future Microbiol 2012; 7:129-47. [PMID: 22191451 DOI: 10.2217/fmb.11.123] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of TB, remains the leading cause of mortality from a single infectious organism. The persistence of this human pathogen is associated with its distinctive lipid-rich cell wall structure that is highly impermeable to hydrophilic chemical drugs. This highly complex and unique structure is crucial for the growth, viability and virulence of M. tuberculosis, thus representing an attractive target for vaccine and drug development. It contains a large macromolecular structure known as the mycolyl-arabinogalactan-peptidoglycan complex, as well as phosphatidyl-myo-inositol derived glycolipids with potent immunomodulatory activity, notably lipomannan and lipoarabinomannan. These cell wall components are often the targets of effective chemotherapeutic agents against TB, such as ethambutol. This review focuses on the structural details and biosynthetic pathways of both arabinogalactan and lipoarabinomannan, as well as the effects of potent drugs on these important (lipo)polysaccharides.
Collapse
Affiliation(s)
- Monika Jankute
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
22
|
Mihoub M, Aloui A, EL May A, Sethom MM, Ben Ammar A, Jaafoura MH, Kacem R, Landoulsi A. Effects of garlic extract on cell wall of Corynebacterium glutamicum. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Huc E, Meniche X, Benz R, Bayan N, Ghazi A, Tropis M, Daffé M. O-mycoloylated proteins from Corynebacterium: an unprecedented post-translational modification in bacteria. J Biol Chem 2010; 285:21908-12. [PMID: 20508265 DOI: 10.1074/jbc.c110.133033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-acylation of proteins was known only in a few eukaryotic proteins but never in bacteria. We demonstrate, using a combination of protein chemistry and mass spectrometry, the occurrence of three O-acylated polypeptides in Corynebacterium glutamicum, PorA, PorH, and an unknown small protein. The three polypeptides are O-substituted by mycolic acids, long chain alpha-alkyl and beta-hydroxy fatty acids specifically produced by members of the Corynebacterineae suborder. To date these acids were described only as esterifying trehalose and arabinogalactan, and less frequently glycerol, important components of the highly impermeable outer barrier of Corynebacterineae. We show that the post-translational mycoloylation of PorA occurs at Ser-15 and is necessary for the pore-forming activity of C. glutamicum.
Collapse
Affiliation(s)
- Emilie Huc
- Centre National de la Recherche Scientifique, Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse Cedex 04, France
| | | | | | | | | | | | | |
Collapse
|
24
|
A deficiency in arabinogalactan biosynthesis affects Corynebacterium glutamicum mycolate outer membrane stability. J Bacteriol 2010; 192:2691-700. [PMID: 20363942 DOI: 10.1128/jb.00009-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal beta(1 --> 2)-linked Araf residues. Here we show that Delta aftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a Delta aftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the Delta aftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum.
Collapse
|
25
|
The regulator RamA influences cmytA transcription and cell morphology of Corynebacterium ammoniagenes. Curr Microbiol 2010; 61:92-100. [PMID: 20107993 DOI: 10.1007/s00284-010-9580-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/04/2010] [Indexed: 01/05/2023]
Abstract
RamA plays a regulatory role for acetate utilization and S-layer biosynthesis in Corynebacterium glutamicum. Looking for any additional role, the function of RamA was analyzed in Corynebacterium ammoniagenes, which is closely related to C. glutamicum. In this study, we showed that the DeltaramA mutant constructed by a markerless knockout strategy possessed increased cell surface hydrophobicity, leading to the formation of aggregated cell masses in liquid media. In addition, the mutant exhibited an elongated cell shape as observed by SEM, suggesting that cell wall-associated proteins might be influenced. Furthermore, cell surface proteome analysis revealed that the expression of cmytA gene encoding corynomycoloyl transferase required for cell wall biosynthesis was down-regulated in the mutant, supporting the regulatory role of RamA in cell wall assembly. These studies support a novel regulatory role of RamA in inducing the expression of proteins required for cell wall assembly.
Collapse
|
26
|
Kuyukina MS, Ivshina IB. Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 2009; 8:43. [PMID: 19646286 PMCID: PMC2728707 DOI: 10.1186/1475-2859-8-43] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/03/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In silico genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were validated using data from culture experiments performed at different oxygen uptake rates. RESULTS The reconstructed genome-scale metabolic model of C. glutamicum contains 502 reactions and 423 metabolites. We collected the reactions and biomass components from the database and literatures, and made the model available for the flux balance analysis by filling gaps in the reaction networks and removing inadequate loop reactions. Using the framework of FBA and our genome-scale metabolic model, we first simulated the changes in the metabolic flux profiles that occur on changing the oxygen uptake rate. The predicted production yields of carbon dioxide and organic acids agreed well with the experimental data. The metabolic profiles of amino acid production phases were also investigated. A comprehensive gene deletion study was performed in which the effects of gene deletions on metabolic fluxes were simulated; this helped in the identification of several genes whose deletion resulted in an improvement in organic acid production. CONCLUSION The genome-scale metabolic model provides useful information for the evaluation of the metabolic capabilities and prediction of the metabolic characteristics of C. glutamicum. This can form a basis for the in silico design of C. glutamicum metabolic networks for improved bioproduction of desirable metabolites.
Collapse
Affiliation(s)
- Yohei Shinfuku
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Natee Sorpitiporn
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Chikara Furusawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- ERATO Complex Systems Biology Project, JST, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Hirasawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. MICROBIOLOGY-SGM 2009; 155:741-750. [PMID: 19246745 DOI: 10.1099/mic.0.024075-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Systematic screening of secretion proteins using an approach based on the completely sequenced genome of Corynebacterium glutamicum R revealed 405 candidate signal peptides, 108 of which were able to heterologously secrete an active-form alpha-amylase derived from Geobacillus stearothermophilus. These comprised 90 general secretory (Sec)-type, 10 twin-arginine translocator (Tat)-type and eight Sec-type with presumptive lipobox peptides. Only Sec- and Tat-type signals directed high-efficiency secretion. In two assays, 11 of these signals resulted in 50- to 150-fold increased amounts of secreted alpha-amylase compared with the well-known corynebacterial secretory protein PS2. While the presence of an AXA motif at the cleavage sites was readily apparent, it was the presence of a glutamine residue adjacent to the cleavage site that may affect secretion efficiency.
Collapse
Affiliation(s)
- Keiro Watanabe
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Yoshiki Tsuchida
- Honda R&D Co., Ltd, 1-4-1 Chuo Wako, Saitama 351-0193, Japan.,Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Naoko Okibe
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Haruhiko Teramoto
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Nobuaki Suzuki
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
29
|
Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 2009; 82:491-500. [DOI: 10.1007/s00253-008-1786-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
30
|
Lea-Smith DJ, Martin KL, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK. Analysis of a new mannosyltransferase required for the synthesis of phosphatidylinositol mannosides and lipoarbinomannan reveals two lipomannan pools in corynebacterineae. J Biol Chem 2008; 283:6773-82. [PMID: 18178556 DOI: 10.1074/jbc.m707139200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell walls of the Corynebacterineae, which includes the important human pathogen Mycobacterium tuberculosis, contain two major lipopolysaccharides, lipoarabinomannan (LAM) and lipomannan (LM). LAM is assembled on a subpool of phosphatidylinositol mannosides (PIMs), whereas the identity of the LM lipid anchor is less well characterized. In this study we have identified a new gene (Rv2188c in M. tuberculosis and NCgl2106 in Corynebacterium glutamicum) that encodes a mannosyltransferase involved in the synthesis of the early dimannosylated PIM species, acyl-PIM2, and LAM. Disruption of the C. glutamicum NCgl2106 gene resulted in loss of synthesis of AcPIM2 and accumulation of the monomannosylated precursor, AcPIM1. The synthesis of a structurally unrelated mannolipid, Gl-X, was unaffected. The synthesis of AcPIM2 in C. glutamicum DeltaNCgl2106 was restored by complementation with M. tuberculosis Rv2188c. In vivo labeling of the mutant with [3H]Man and in vitro labeling of membranes with GDP-[3H]Man confirmed that NCgl2106/Rv2188c catalyzed the second mannose addition in PIM biosynthesis, a function previously ascribed to PimB/Rv0557. The C. glutamicum Delta NCgl2106 mutant lacked mature LAM but unexpectedly still synthesized the major pool of LM. Biochemical analyses of the LM core indicated that this lipopolysaccharide was assembled on Gl-X. These data suggest that NCgl2106/Rv2188c and the previously studied PimB/Rv0557 transfer mannose residues to distinct mannoglycolipids that act as precursors for LAM and LM, respectively.
Collapse
Affiliation(s)
- David J Lea-Smith
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Victorian Bioinformatics Consortium, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Barry CE, Crick DC, McNeil MR. Targeting the formation of the cell wall core of M. tuberculosis. Infect Disord Drug Targets 2007; 7:182-202. [PMID: 17970228 PMCID: PMC4747060 DOI: 10.2174/187152607781001808] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mycobacteria have a unique cell wall, which is rich in drug targets. The cell wall core consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide connecting them. The detailed structure of the cell wall core is largely, although not completely, understood and will be presented. The biosynthetic pathways of all three components reveal significant drug targets that are the basis of present drugs and/or have potential for new drugs. These pathways will be reviewed and include enzymes involved in polyisoprene biosynthesis, soluble arabinogalactan precursor production, arabinogalactan polymerization, fatty acid synthesis, mycolate maturation, and soluble peptidoglycan precursor formation. Information relevant to targeting all these enzymes will be presented in tabular form. Selected enzymes will then be discussed in more detail. It is thus hoped this chapter will aid in the selection of targets for new drugs to combat tuberculosis.
Collapse
Affiliation(s)
- Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Host Defense, NIAID, NIH, Twinbrook 2, Room 239, 12441 Parklawn Drive, Rockville, MD 20852
| | - Dean C. Crick
- Mycobacterial Research Laboratories, Dept. of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1682
| | - Michael R. McNeil
- Mycobacterial Research Laboratories, Dept. of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1682
| |
Collapse
|
32
|
Tateno T, Fukuda H, Kondo A. Production of l-Lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 2007; 74:1213-20. [PMID: 17216452 DOI: 10.1007/s00253-006-0766-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
We engineered a Corynebacterium glutamicum strain displaying alpha-amylase from Streptococcus bovis 148 (AmyA) on its cell surface to produce amino acids directly from starch. We used PgsA from Bacillus subtilis as an anchor protein, and the N-terminus of alpha-amylase was fused to the PgsA. The genes of the fusion protein were integrated into the homoserine dehydrogenase gene locus on the chromosome by homologous recombination. L-Lysine fermentation was carried out using C. glutamicum displaying AmyA in the growth medium containing 50 g/l soluble starch as the sole carbon source. We performed L-lysine fermentation at various temperatures (30-40 degrees C) and pHs (6.0-7.0), as the optimal temperatures and pHs of AmyA and C. glutamicum differ significantly. The highest L-lysine yield was recorded at 30 degrees C and pH 7.0. The amount of soluble starch was reduced to 18.29 g/l, and 6.04 g/l L-lysine was produced in 24 h. The L-lysine yield obtained using soluble starch as the sole carbon source was higher than that using glucose as the sole carbon source after 24 h when the same amount of substrates was added. The results shown in the current study demonstrate that C. glutamicum displaying alpha-amylase has a potential to directly convert soluble starch to amino acids.
Collapse
Affiliation(s)
- Toshihiro Tateno
- Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | |
Collapse
|
33
|
Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2005; 6:317-33. [PMID: 16428067 DOI: 10.1016/j.intimp.2005.10.005] [Citation(s) in RCA: 882] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/28/2005] [Accepted: 10/03/2005] [Indexed: 11/26/2022]
Abstract
Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
34
|
Alderwick LJ, Radmacher E, Seidel M, Gande R, Hitchen PG, Morris HR, Dell A, Sahm H, Eggeling L, Besra GS. Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J Biol Chem 2005; 280:32362-71. [PMID: 16040600 DOI: 10.1074/jbc.m506339200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis has a complex ultrastructure that consists of mycolic acids connected to peptidoglycan via arabinogalactan (AG) and abbreviated as the mAGP complex. The mAGP complex is crucial for the survival and pathogenicity of M. tuberculosis and is the target of several anti-tubercular agents. Apart from sharing a similar mAGP and the availability of the complete genome sequence, Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes essential for viability. Here we examined the effects of particular genes involved in AG polymerization by gene deletion in C. glutamicum. The anti-tuberculosis drug ethambutol is thought to target a set of arabinofuranosyltransferases (Emb) that are involved in arabinan polymerization. Deletion of emb in C. glutamicum results in a slow growing mutant with profound morphological changes. Chemical analysis revealed a dramatic reduction of arabinose resulting in a novel truncated AG structure possessing only terminal arabinofuranoside (t-Araf) residues with a corresponding loss of cell wall bound mycolic acids. Treatment of wild-type C. glutamicum with ethambutol and subsequent cell wall analyses resulted in an identical phenotype comparable to the C. glutamicum emb deletion mutant. Additionally, disruption of ubiA in C. glutamicum, the first enzyme involved in the biosynthesis of the sugar donor decaprenol phosphoarabinose (DPA), resulted in a complete loss of cell wall arabinan. Herein, we establish for the first time, (i) that in contrast to M. tuberculosis embA and embB mutants, deletion of C. glutamicum emb leads to a highly truncated AG possessing t-Araf residues, (ii) the exact site of attachment of arabinan chains in AG, and (iii) DPA is the only Araf sugar donor in AG biosynthesis suggesting the presence of a novel enzyme responsible for "priming" the galactan domain for further elaboration by Emb, resulting in the final maturation of the native AG polysaccharide.
Collapse
|
35
|
Tropis M, Meniche X, Wolf A, Gebhardt H, Strelkov S, Chami M, Schomburg D, Krämer R, Morbach S, Daffé M. The Crucial Role of Trehalose and Structurally Related Oligosaccharides in the Biosynthesis and Transfer of Mycolic Acids in Corynebacterineae. J Biol Chem 2005; 280:26573-85. [PMID: 15901732 DOI: 10.1074/jbc.m502104200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trehalose (alpha-D-glucopyranosyl-alpha'-D-glucopyranoside) is essential for the growth of the human pathogen Mycobacterium tuberculosis but not for the viability of the phylogenetically related corynebacteria. To determine the role of trehalose in the physiology of these bacteria, the so-called Corynebacterineae, mutant strains of Corynebacterium glutamicum unable to synthesize trehalose due to the knock-out of the genes of the three pathways of trehalose biosynthesis, were biochemically analyzed. We demonstrated that the synthesis of trehalose under standard conditions is a prerequisite for the production of mycolates, major and structurally important constituents of the cell envelope of Corynebacterineae. Consistently, the trehalose-less cells also lack the cell wall fracture plane that typifies mycolate-containing bacteria. Importantly, however, the mutants were able to synthesize mycolates when grown on glucose, maltose, and maltotriose but not on other carbon sources known to be used for the production of internal glucose phosphate such as fructose, acetate, and pyruvate. The mycoloyl residues synthesized by the mutants grown on alpha-D-glucopyranosyl-containing oligosaccharides were transferred both onto the cell wall and free sugar acceptors. A combination of chemical analytical approaches showed that the newly synthesized glycolipids consisted of 1 mol of mycolate located on carbon 6 of the non reducing glucopyranosyl unit. Additionally, experiments with radioactively labeled trehalose showed that the transfer of mycoloyl residues onto sugars occurs outside the plasma membrane. Finally, and in contradiction to published data, we demonstrated that trehalose 6-phosphate has no impact on mycolate synthesis in vivo.
Collapse
Affiliation(s)
- Marielle Tropis
- Department of Molecular Mechanisms of Mycobacterial Infections, Institut de Pharmacologie et Biologie Structurale (UMR 5089 du CNRS et de l'Université Paul Sabatier) 205, route de Narbonne, 31077 Toulouse cedex 04, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gande R, Gibson KJC, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 2004; 279:44847-57. [PMID: 15308633 DOI: 10.1074/jbc.m408648200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis possess several unique and structurally diverse lipids, including the genus-specific mycolic acids. Although the function of a number of genes involved in fatty acid and mycolic acid biosynthesis is known, information relevant to the initial steps within these biosynthetic pathways is relatively sparse. Interestingly, the genomes of Corynebacterianeae possess a high number of accD genes, whose gene products resemble the beta-subunit of the acetyl-CoA carboxylase of Escherichia coli, providing the activated intermediate for fatty acid synthesis. We present here our studies on four putative accD genes found in C. glutamicum. Although growth of the accD4 mutant remained unchanged, growth of the accD1 mutant was strongly impaired and partially recovered by the addition of exogenous oleic acid. Overexpression of accD1 and accBC, encoding the carboxylase alpha-subunit, resulted in an 8-fold increase in malonyl-CoA formation from acetyl-CoA in cell lysates, providing evidence that accD1 encodes a carboxyltransferase involved in the biosynthesis of malonyl-CoA. Interestingly, fatty acid profiles remained unchanged in both our accD2 and accD3 mutants, but a complete loss of mycolic acids, either as organic extractable trehalose and glucose mycolates or as cell wall-bound mycolates, was observed. These two carboxyltransferases are also retained in all Corynebacterianeae, including Mycobacterium leprae, constituting two distinct groups of orthologs. Furthermore, carboxyl fixation assays, as well as a study of a Cg-pks deletion mutant, led us to conclude that accD2 and accD3 are key to mycolic acid biosynthesis, thus providing a carboxylated intermediate during condensation of the mero-chain and alpha-branch directed by the pks-encoded polyketide synthase. This study illustrates that the high number of accD paralogs have evolved to represent specific variations on the well known basic theme of providing carboxylated intermediates in lipid biosynthesis.
Collapse
Affiliation(s)
- Roland Gande
- Institute for Biotechnology, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|