1
|
Schubert C, Unden G. Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. Microb Physiol 2024; 34:108-120. [PMID: 38432210 DOI: 10.1159/000538095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions. In addition, mutants related to carbon catabolite repression (CCR) and C4-DC regulation (DcuS-DcuR) were examined to better understand the regulatory integration of aerobic C4-DC metabolism into CCR. For initial insight into posttranslational regulation, the interaction between the aerobic C4-DC transporter DctA and EIIAGlc from the glucose-specific phosphotransferase system was investigated. METHODS The expression of dctA was characterized in the presence of various carbohydrates and regulatory mutants affecting CCR. This was accomplished by fusing the dctA promoter (PdctA) to the lacZ reporter gene. Additionally, the interaction between DctA and EIIAGlc of the glucose-specific phosphotransferase system was examined in vivo using a bacterial two-hybrid system. RESULTS The dctA promoter region contains a class I cAMP-CRP-binding site at position -81.5 and a DcuR-binding site at position -105.5. DcuR, the response regulator of the C4-DC-activated DcuS-DcuR two-component system, and cAMP-CRP stimulate dctA expression. The expression of dctA is subject to the influence of various carbohydrates via cAMP-CRP, which differently modulate cAMP levels. Here we show that EIIAGlc of the glucose-specific phosphotransferase system strongly interacts with DctA, potentially resulting in the exclusion of C4-DCs when preferred carbon substrates, such as sugars, are present. In contrast to the classical inducer exclusion known for lactose permease LacY, inhibition of C4-DC uptake into the cytoplasm affects only its role as a substrate, but not as an inducer since DcuS detects C4-DCs in the periplasmic space ("substrate exclusion"). The work shows an interplay between cAMP-CRP and the DcuS-DcuR regulatory system for the regulation of dctA at both transcriptional and posttranslational levels. CONCLUSION The study highlights a hierarchical interplay between global (cAMP-CRP) and specific (DcuS-DcuR) regulation of dctA at the transcriptional and posttranslational levels. The integration of global and specific transcriptional regulation of dctA, along with the influence of EIIAGlc on DctA, fine-tunes C4-DC catabolism in response to the availability of other preferred carbon sources. It attributes DctA a central role in the control of aerobic C4-DC catabolism and suggests a new role to EIIAGlc on transporters (control of substrate uptake by substrate exclusion).
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany,
| |
Collapse
|
2
|
Liu B, Jiang L, Liu Y, Sun H, Yan J, Kang C, Yang B. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization. Nat Commun 2023; 14:7227. [PMID: 37945607 PMCID: PMC10636207 DOI: 10.1038/s41467-023-43149-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China.
| |
Collapse
|
3
|
Turner CB, Blount ZD, Mitchell DH, Lenski RE. Evolution of a cross-feeding interaction following a key innovation in a long-term evolution experiment with Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001390. [PMID: 37650867 PMCID: PMC10482366 DOI: 10.1099/mic.0.001390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
The evolution of a novel trait can profoundly change an organism's effects on its environment, which can in turn affect the further evolution of that organism and any coexisting organisms. We examine these effects and feedbacks following the evolution of a novel function in the Long-Term Evolution Experiment (LTEE) with Escherichia coli. A characteristic feature of E. coli is its inability to grow aerobically on citrate (Cit-). Nonetheless, a Cit+ variant with this capacity evolved in one LTEE population after 31 000 generations. The Cit+ clade then coexisted stably with another clade that retained the ancestral Cit- phenotype. This coexistence was shaped by the evolution of a cross-feeding relationship based on C4-dicarboxylic acids, particularly succinate, fumarate, and malate, that the Cit+ variants release into the medium. Both the Cit- and Cit+ cells evolved to grow on these excreted resources. The evolution of aerobic growth on citrate thus led to a transition from an ecosystem based on a single limiting resource, glucose, to one with at least five resources that were either shared or partitioned between the two coexisting clades. Our findings show that evolutionary novelties can change environmental conditions in ways that facilitate diversity by altering ecosystem structure and the evolutionary trajectories of coexisting lineages.
Collapse
Affiliation(s)
- Caroline B. Turner
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- Present address: Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Zachary D. Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel H. Mitchell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Present address: Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics; and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
The Histidine Kinase CckA Is Directly Inhibited by a Response Regulator-like Protein in a Negative Feedback Loop. mBio 2022; 13:e0148122. [PMID: 35876508 PMCID: PMC9430884 DOI: 10.1128/mbio.01481-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In alphaproteobacteria, the two-component system (TCS) formed by the hybrid histidine kinase CckA, the phosphotransfer protein ChpT, and the response regulator CtrA is widely distributed. In these microorganisms, this system controls diverse functions such as motility, DNA repair, and cell division. In Caulobacterales and Rhizobiales, CckA is regulated by the pseudo- histidine kinase DivL, and the response regulator DivK. However, this regulatory circuit differs for other bacterial groups. For instance, in Rhodobacterales, DivK is absent and DivL consists of only the regulatory PAS domain. In this study, we report that, in Rhodobacter sphaeroides, the kinase activity of CckA is inhibited by Osp, a single domain response regulator (SDRR) protein that directly interacts with the transmitter domain of CckA. In vitro, the kinase activity of CckA was severely inhibited with an equimolar amount of Osp, whereas the phosphatase activity of CckA was not affected. We also found that the expression of osp is activated by CtrA creating a negative feedback loop. However, under growth conditions known to activate the TCS, the increased expression of osp does not parallel Osp accumulation, indicating a complex regulation. Phylogenetic analysis of selected species of Rhodobacterales revealed that Osp is widely distributed in several genera. For most of these species, we found a sequence highly similar to the CtrA-binding site in the control region of osp, suggesting that the TCS CckA/ChpT/CtrA is controlled by a novel regulatory circuit that includes Osp in these bacteria. IMPORTANCE The two-component systems (TCS) in bacteria in its simplest architecture consist of a histidine kinase (HK) and a response regulator (RR). In response to a specific stimulus, the HK is activated and drives phosphorylation of the RR, which is responsible of generating an adaptive response. These systems are ubiquitous among bacteria and are frequently controlled by accessory proteins. In alphaproteobacteria, the TCS formed by the HK CckA, the phosphotransferase ChpT, and the RR CtrA is widely distributed. Currently, most of the information of this system and its regulatory proteins comes from findings carried out in microorganisms where it is essential. However, this is not the case in many species, and studies of this TCS and its regulatory proteins are lacking. In this study, we found that Osp, a RR-like protein, inhibits the kinase activity of CckA in a negative feedback loop since osp expression is activated by CtrA. The inhibitory role of Osp and the similar action of the previously reported FixT protein, suggests the existence of a new group of RR-like proteins whose main function is to interact with the HK and prevent its phosphorylation.
Collapse
|
5
|
Tight Complex Formation of the Fumarate Sensing DcuS-DcuR Two-Component System at the Membrane and Target Promoter Search by Free DcuR Diffusion. mSphere 2022; 7:e0023522. [PMID: 35862816 PMCID: PMC9429925 DOI: 10.1128/msphere.00235-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Signaling of two-component systems by phosphoryl transfer requires interaction of the sensor kinase with the response regulator. Interaction of the C4-dicarboxylate-responsive and membrane-integral sensor kinase DcuS with the response regulator DcuR was studied. In vitro, the cytoplasmic part of DcuS (PASC-Kin) was employed. Stable complexes were formed, when either DcuS or DcuR were phosphorylated (Kd 22 ± 11 and 28 ± 7 nM, respectively). The unphosphorylated proteins produced a more labile complex (Kd 1380 ± 395 nM). Bacterial two-hybrid studies confirm interaction of DcuR with DcuS (and PASC-Kin) in vivo. The absolute contents of DcuR (197-979 pmol mg−1 protein) in the bacteria exceeded those of DcuS by more than 1 order of magnitude. According to the Kd values, DcuS exists in complex, with phosphorylated but also unphosphorylated DcuR. In live cell imaging, the predominantly freely diffusing DcuR becomes markedly less mobile after phosphorylation and activation of DcuS by fumarate. Portions of the low mobility fraction accumulated at the cell poles, the preferred location of DcuS, and other portions within the cell, representing phosphorylated DcuR bound to promoters. In the model, acitvation of DcuS increases the affinity toward DcuR, leading to DcuS-P × DcuR formation and phosphorylation of DcuR. The complex is stable enough for phosphate-transfer, but labile enough to allow exchange between DcuR from the cytosol and DcuR-P of the complex. Released DcuR-P diffuses to target promoters and binds. Uncomplexed DcuR-P in the cytosol binds to nonactivated DcuS and becomes dephosphorylated. The lower affinity between DcuR and DcuS avoids blocking of DcuS and allows rapid exchange of DcuR. IMPORTANCE Complex formation of membrane-bound sensor kinases with the response regulators represents an inherent step of signaling from the membrane to the promoters on the DNA. In the C4-dicarboxylate-sensing DcuS-DcuR two-component system, complex formation is strengthened by activation (phosphorylation) in vitro and in vivo, with trapping of the response regulator DcuR at the membrane. Single-molecule tracking of DcuR in the bacterial cell demonstrates two populations of DcuR with decreased mobility in the bacteria after activation: one at the membrane, but a second in the cytosol, likely representing DNA-bound DcuR. The data suggest a model with binding of DcuR to DcuS-P for phosphorylation, and of DcuR-P to DcuS for dephosphorylation, allowing rapid adaptation of the DcuR phosphorylation state. DcuR-P is released and transferred to DNA by 3D diffusion.
Collapse
|
6
|
Price EE, Román-Rodríguez F, Boyd JM. Bacterial approaches to sensing and responding to respiration and respiration metabolites. Mol Microbiol 2021; 116:1009-1021. [PMID: 34387370 DOI: 10.1111/mmi.14795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Bacterial respiration of diverse substrates is a primary contributor to the diversity of life. Respiration also drives alterations in the geosphere and tethers ecological nodes together. It provides organisms with a means to dissipate reductants and generate potential energy in the form of an electrochemical gradient. Mechanisms have evolved to sense flux through respiratory pathways and sense the altered concentrations of respiration substrates or byproducts. These genetic regulatory systems promote efficient utilization of respiration substrates, as well as fine tune metabolism to promote cellular fitness and negate the accumulation of toxic byproducts. Many bacteria can respire one or more chemicals, and these regulatory systems promote the prioritization of high energy metabolites. Herein we focus on regulatory paradigms and discuss systems that sense the concentrations of respiration substrates and flux through respiratory pathways. This is a broad field of study, and therefore we focus on key fundamental and recent developments and highlight specific systems that capture the diversity of sensing mechanisms.
Collapse
Affiliation(s)
- Erin E Price
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Franklin Román-Rodríguez
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
7
|
Sánchez-Ortiz VJ, Domenzain C, Poggio S, Dreyfus G, Camarena L. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2021; 167. [PMID: 33620307 DOI: 10.1099/mic.0.001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rhodobacter sphaeroides can use C4-dicarboxylic acids to grow heterotrophically or photoheterotropically, and it was previously demonstrated in Rhodobacter capsulatus that the DctPQM transporter system is essential to support growth using these organic acids under heterotrophic but not under photoheterotrophic conditions. In this work we show that in R. sphaeroides this transporter system is essential for photoheterotrophic and heterotrophic growth, when C4-dicarboxylic acids are used as a carbon source. We also found that over-expression of dctPQM is detrimental for photoheterotrophic growth in the presence of succinic acid in the culture medium. In agreement with this, we observed a reduction of the dctPQM promoter activity in cells growing under these conditions, indicating that the amount of DctPQM needs to be reduced under photoheterotrophic growth. It has been reported that the two-component system DctS and DctR activates the expression of dctPQM. Our results demonstrate that in the absence of DctR, dctPQM is still expressed albeit at a low level. In this work, we have found that the periplasmic component of the transporter system, DctP, has a role in both transport and in signalling the DctS/DctR two-component system.
Collapse
Affiliation(s)
- Veronica Jazmín Sánchez-Ortiz
- Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Clelia Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
8
|
Phosphoregulated orthogonal signal transduction in mammalian cells. Nat Commun 2020; 11:3085. [PMID: 32555187 PMCID: PMC7303213 DOI: 10.1038/s41467-020-16895-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells. TCSs are the most abundant multi-component signal-processing units in bacteria, but are not found in the animal kingdom. The presented phosphoregulated orthogonal signal transduction (POST) system uses induced nanobody dimerization to regulate the trans-autophosphorylation activity of engineered histidine kinases. Engineered response regulators use the phosphohistidine residue as a substrate to autophosphorylate an aspartate residue, inducing their own homodimerization. We verify this approach by demonstrating control of gene expression with engineered, dimerization-dependent transcription factors and propose a phosphoregulated relay system of protein dimerization as a basic building block for next-generation protein circuits. Phosphoregulation is a key mechanism of signal processing. Here the authors build a phosphoregulated relay system in mammalian cells for orthogonal signal transduction.
Collapse
|
9
|
Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proc Natl Acad Sci U S A 2020; 117:13248-13255. [PMID: 32467170 DOI: 10.1073/pnas.1919816117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metal detoxification is essential for bacteria's survival in adverse environments and their pathogenesis in hosts. Understanding the underlying mechanisms is crucial for devising antibacterial treatments. In the Gram-negative bacterium Escherichia coli, membrane-bound sensor CusS and its response regulator CusR together regulate the transcription of the cus operon that plays important roles in cells' resistance to copper/silver, and they belong to the two-component systems (TCSs) that are ubiquitous across various organisms and regulate diverse cellular functions. In vitro protein reconstitution and associated biochemical/physical studies have provided significant insights into the functions and mechanisms of CusS-CusR and related TCSs. Such studies are challenging regarding multidomain membrane proteins like CusS and also lack the physiological environment, particularly the native spatial context of proteins inside a cell. Here, we use stroboscopic single-molecule imaging and tracking to probe the dynamic behaviors of both CusS and CusR in live cells, in combination with protein- or residue-specific genetic manipulations. We find that copper stress leads to a cellular protein concentration increase and a concurrent mobilization of CusS out of clustered states in the membrane. We show that the mobilized CusS has significant interactions with CusR for signal transduction and that CusS's affinity toward CusR switches on upon sensing copper at the interfacial metal-binding sites in CusS's periplasmic sensor domains, prior to ATP binding and autophosphorylation at CusS's cytoplasmic kinase domain(s). The observed CusS mobilization upon stimulation and its surprisingly early interaction with CusR likely ensure an efficient signal transduction by providing proper conformation and avoiding futile cross talks.
Collapse
|
10
|
Fumarate dependent protein composition under aerobic and anaerobic growth conditions in Escherichia coli. J Proteomics 2020; 212:103583. [DOI: 10.1016/j.jprot.2019.103583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022]
|
11
|
McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO. Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial Perturbation of the Transcriptome. Front Microbiol 2018; 9:1793. [PMID: 30131786 PMCID: PMC6090065 DOI: 10.3389/fmicb.2018.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has emerged as a new approach with which to pursue fundamental biological inquiries and, in particular, new insights into the systemic function of a gene product. Two E. coli knockout strains were constructed: one that blocked the Pentose Phosphate Pathway (gnd KO) and one that decoupled the TCA cycle from electron transport (sdhCDAB KO). Despite major perturbations in central metabolism, minimal growth rate changes were found in the two knockout strains. More surprisingly, many similarities were found in their initial transcriptomic states that could be traced to similarly perturbed metabolites despite the differences in the network location of the gene perturbations and concomitant re-routing of pathway fluxes around these perturbations. However, following ALE, distinct metabolomic and transcriptomic states were realized. These included divergent flux and gene expression profiles in the gnd and sdhCDAB KOs to overcome imbalances in NADPH production and nitrogen/sulfur assimilation, respectively, that were not obvious limitations of growth in the unevolved knockouts. Therefore, this work demonstrates that ALE provides a productive approach to reveal novel insights of gene function at a systems level that cannot be found by observing the fresh knockout alone.
Collapse
Affiliation(s)
- Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
Arnold JW, Simpson JB, Roach J, Kwintkiewicz J, Azcarate-Peril MA. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential. Front Microbiol 2018; 9:242. [PMID: 29515537 PMCID: PMC5826259 DOI: 10.3389/fmicb.2018.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022] Open
Abstract
Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the characterization of bacterial strains is critical for the development of novel probiotics, as variability between strains can dramatically alter bacterial physiology and functionality.
Collapse
Affiliation(s)
- Jason W. Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua B. Simpson
- Department of Chemistry, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - Jakub Kwintkiewicz
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Genetic and Mechanistic Analyses of the Periplasmic Domain of the Enterohemorrhagic Escherichia coli QseC Histidine Sensor Kinase. J Bacteriol 2017; 199:JB.00861-16. [PMID: 28138098 DOI: 10.1128/jb.00861-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
The histidine sensor kinase (HK) QseC senses autoinducer 3 (AI-3) and the adrenergic hormones epinephrine and norepinephrine. Upon sensing these signals, QseC acts through three response regulators (RRs) to regulate the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). The QseB, QseF, and KdpE RRs that are phosphorylated by QseC constitute a tripartite signaling cascade having different and overlapping targets, including flagella and motility, the type three secretion system encoded by the locus of enterocyte effacement (LEE), and Shiga toxin. We modeled the tertiary structure of QseC's periplasmic sensing domain and aligned the sequences from 12 different species to identify the most conserved amino acids. We selected eight amino acids conserved in all of these QseC homologues. The corresponding QseC site-directed mutants were expressed and still able to autophosphorylate; however, four mutants demonstrated an increased basal level of phosphorylation. These mutants have differential flagellar, motility, LEE, and Shiga toxin expression phenotypes. We selected four mutants for more in-depth analyses and found that they differed in their ability to phosphorylate QseB, KdpE, and QseF. This suggests that these mutations in the periplasmic sensing domain affected the region downstream of the QseC signaling cascade and therefore can influence which pathway QseC regulates.IMPORTANCE In the foodborne pathogen EHEC, QseC senses AI-3, epinephrine, and norepinephrine, increases its autophosphorylation, and then transfers its phosphate to three RRs: QseB, QseF, and KdpE. QseB controls expression of flagella and motility, KdpE controls expression of the LEE region, and QseF controls the expression of Shiga toxin. This tripartite signaling pathway must be tightly controlled, given that flagella and the type three secretion system (T3SS) are energetically expensive appendages and Shiga toxin expression leads to bacterial cell lysis. Our data suggest that mutations in the periplasmic sensing loop of QseC differentially affect the expression of the three arms of this signaling cascade. This suggests that these point mutations may change QseC's phosphotransfer preferences for its RRs.
Collapse
|
14
|
Unden G, Strecker A, Kleefeld A, Kim OB. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth. EcoSal Plus 2016; 7. [PMID: 27415771 PMCID: PMC11575717 DOI: 10.1128/ecosalplus.esp-0021-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/06/2023]
Abstract
C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.
Collapse
Affiliation(s)
- Gottfried Unden
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexander Strecker
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexandra Kleefeld
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
15
|
Abstract
C4-dicarboxylates, like succinate, fumarate, L- and D-malate, tartrate, and the C4-dicarboxylic amino acid aspartate, support aerobic and anaerobic growth of Escherichia coli and related bacteria and can serve as carbon and energy sources. In aerobic growth, the C4-dicarboxylates are oxidized in the citric acid cycle. Due to the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of the C4-dicarboxylates depends on fumarate reduction to succinate. In some related bacteria (e.g., Klebsiella), degradation of C4-dicarboxylates, like tartrate, uses a different mechanism and pathway. It requires the functioning of an Na+-dependent and membrane-associated oxaloacetate decarboxylase. Due to the incomplete function of the citric acid cycle in anaerobic growth, succinate supports only aerobic growth of E. coli. This chapter describes the pathways of and differences in aerobic and anaerobic C4-dicarboxylate metabolism and the physiological consequences. The citric acid cycle, fumarate respiration, and fumarate reductase are discussed here only in the context of aerobic and anaerobic C4-dicarboxylate metabolism. Some recent aspects of C4-dicarboxylate metabolism, such as transport and sensing of C4-dicarboxylates, and their relationships are treated in more detail.
Collapse
|
16
|
Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V. Fucose sensing regulates bacterial intestinal colonization. Nature 2012; 492:113-7. [PMID: 23160491 PMCID: PMC3518558 DOI: 10.1038/nature11623] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022]
Abstract
The mammalian gastrointestinal tract provides a complex and competitive environment for the microbiota. Successful colonization by pathogens requires scavenging nutrients, sensing chemical signals, competing with the resident bacteria and precisely regulating the expression of virulence genes. The gastrointestinal pathogen enterohaemorrhagic Escherichia coli (EHEC) relies on inter-kingdom chemical sensing systems to regulate virulence gene expression. Here we show that these systems control the expression of a novel two-component signal transduction system, named FusKR, where FusK is the histidine sensor kinase and FusR the response regulator. FusK senses fucose and controls expression of virulence and metabolic genes. This fucose-sensing system is required for robust EHEC colonization of the mammalian intestine. Fucose is highly abundant in the intestine. Bacteroides thetaiotaomicron produces multiple fucosidases that cleave fucose from host glycans, resulting in high fucose availability in the gut lumen. During growth in mucin, B. thetaiotaomicron contributes to EHEC virulence by cleaving fucose from mucin, thereby activating the FusKR signalling cascade, modulating the virulence gene expression of EHEC. Our findings suggest that EHEC uses fucose, a host-derived signal made available by the microbiota, to modulate EHEC pathogenicity and metabolism.
Collapse
Affiliation(s)
- Alline R. Pacheco
- Depts. of Microbiology and Biochemistry, UT Southwestern Medical Center, Dallas TX, USA, 75390-9048
| | - Meredith M. Curtis
- Depts. of Microbiology and Biochemistry, UT Southwestern Medical Center, Dallas TX, USA, 75390-9048
| | - Jennifer M. Ritchie
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Diana Munera
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristiano G. Moreira
- Depts. of Microbiology and Biochemistry, UT Southwestern Medical Center, Dallas TX, USA, 75390-9048
| | - Vanessa Sperandio
- Depts. of Microbiology and Biochemistry, UT Southwestern Medical Center, Dallas TX, USA, 75390-9048
| |
Collapse
|
17
|
CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo. J Bacteriol 2011; 194:636-45. [PMID: 22101843 DOI: 10.1128/jb.06345-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Citrate fermentation by Escherichia coli requires the function of the citrate/succinate antiporter CitT (citT gene) and of citrate lyase (citCDEFXG genes). Earlier experiments suggested that the two-component system CitA/CitB, consisting of the membrane-bound sensor kinase CitA and the response regulator CitB, stimulates the expression of the genes in the presence of citrate, similarly to CitA/CitB of Klebsiella pneumoniae. In this study, the expression of a chromosomal citC-lacZ gene fusion was shown to depend on CitA/CitB and citrate. CitA/CitB is related to the DcuS/DcuR two-component system which induces the expression of genes for fumarate respiration in response to C(4)-dicarboxylates and citrate. Unlike DcuS, CitA required none of the cognate transporters (CitT, DcuB, or DcuC) for function, and the deletion of the corresponding genes showed no effect on the expression of citC-lacZ. The citAB operon is preceded by a DcuR binding site. Phosphorylated DcuR bound specifically to the promoter region, and the deletion of dcuS or dcuR reduced the expression of citC. The data indicate the presence of a regulatory cascade consisting of DcuS/DcuR modulating citAB expression (and CitA/CitB levels) and CitA/CitB controlling the expression of the citCDEFXGT gene cluster in response to citrate. In vivo fluorescence resonance energy transfer (FRET) and the bacterial two-hybrid system (BACTH) showed interaction between the DcuS and CitA proteins. However, BACTH and expression studies demonstrated the lack of interaction and cross-regulation between CitA and DcuR or DcuS and CitB. Therefore, there is only linear phosphoryl transfer (DcuS→DcuR and CitA→CitB) without cross-regulation between DcuS/DcuR and CitA/CitB.
Collapse
|
18
|
Schelder S, Zaade D, Litsanov B, Bott M, Brocker M. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS One 2011; 6:e22143. [PMID: 21799779 PMCID: PMC3140484 DOI: 10.1371/journal.pone.0022143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022] Open
Abstract
Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress.
Collapse
Affiliation(s)
- Stephanie Schelder
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Daniela Zaade
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Boris Litsanov
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Melanie Brocker
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
19
|
Garcia PP, Bringhurst RM, Arango Pinedo C, Gage DJ. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 2010; 192:5725-35. [PMID: 20817764 PMCID: PMC2953702 DOI: 10.1128/jb.00629-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/25/2010] [Indexed: 01/13/2023] Open
Abstract
When they are available, Sinorhizobium meliloti utilizes C(4)-dicarboxylic acids as preferred carbon sources for growth while suppressing the utilization of some secondary carbon sources such as α- and β-galactosides. The phenomenon of using succinate as the sole carbon source in the presence of secondary carbon sources is termed succinate-mediated catabolite repression (SMCR). Genetic screening identified the gene sma0113 as needed for strong SMCR when S. meliloti was grown in succinate plus lactose, maltose, or raffinose. sma0113 and the gene immediately downstream, sma0114, encode the proteins Sma0113, an HWE histidine kinase with five PAS domains, and Sma0114, a CheY-like response regulator lacking a DNA-binding domain. sma0113 in-frame deletion mutants show a relief of catabolite repression compared to the wild type. sma0114 in-frame deletion mutants overproduce polyhydroxybutyrate (PHB), and this overproduction requires sma0113. Sma0113 may use its five PAS domains for redox level or energy state monitoring and use that information to regulate catabolite repression and related responses.
Collapse
Affiliation(s)
- Preston P. Garcia
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| | - Ryan M. Bringhurst
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| | - Catalina Arango Pinedo
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| | - Daniel J. Gage
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| |
Collapse
|
20
|
Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V. The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog 2009; 5:e1000553. [PMID: 19696934 PMCID: PMC2726761 DOI: 10.1371/journal.ppat.1000553] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/23/2009] [Indexed: 12/22/2022] Open
Abstract
The ability to respond to stress is at the core of an organism's survival. The hormones epinephrine and norepinephrine play a central role in stress responses in mammals, which require the synchronized interaction of the whole neuroendocrine system. Mammalian adrenergic receptors are G-coupled protein receptors (GPCRs); bacteria, however, sense these hormones through histidine sensor kinases (HKs). HKs autophosphorylate in response to signals and transfer this phosphate to response regulators (RRs). Two bacterial adrenergic receptors have been identified in EHEC, QseC and QseE, with QseE being downstream of QseC in this signaling cascade. Here we mapped the QseC signaling cascade in the deadly pathogen enterohemorrhagic E. coli (EHEC), which exploits this signaling system to promote disease. Through QseC, EHEC activates expression of metabolic, virulence and stress response genes, synchronizing the cell response to these stress hormones. Coordination of these responses is achieved by QseC phosphorylating three of the thirty-two EHEC RRs. The QseB RR, which is QseC's cognate RR, activates the flagella regulon which controls bacteria motility and chemotaxis. The QseF RR, which is also phosphorylated by the QseE adrenergic sensor, coordinates expression of virulence genes involved in formation of lesions in the intestinal epithelia by EHEC, and the bacterial SOS stress response. The third RR, KdpE, controls potassium uptake, osmolarity, and also the formation of lesions in the intestine. Adrenergic regulation of bacterial gene expression shares several parallels with mammalian adrenergic signaling having profound effects in the whole organism. Understanding adrenergic regulation of a bacterial cell is a powerful approach for studying the underlying mechanisms of stress and cellular survival. Bacterial cells respond to the human stress hormones epinephrine (adrenaline) and norepinephrine (noradrenaline). These hormones are sensed by a bacterial receptor named QseC, which is a sensor kinase in the membrane that increases its autophosphorylation upon binding to these host signals. In addition to recognizing these signals, QseC also responds to a bacterial hormone-like molecule named autoinducer-3 (AI-3) that is produced by the human intestinal microbial flora. In this manuscript we have mapped genetically and biochemically the QseC signaling cascade in the deadly pathogen enterohemorrhagic E. coli (EHEC) O157:H7. EHEC uses this signaling system to activate expression of virulence genes. We show that the QseC signaling cascade is very complex so it can precisely modulate when different virulence traits are expressed. Because these sensor kinases are being evaluated as drug targets, a profound understanding of this signaling pathway is important for the development of novel therapeutic strategies to combat bacterial infections.
Collapse
Affiliation(s)
- David T. Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Marcie B. Clarke
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kaneyoshi Yamamoto
- Department of Agricultural Chemistry, Kinki University, Nakamachi, Nara, Japan
| | - David A. Rasko
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Institute for Genome Sciences & Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (DAR); (VS)
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (DAR); (VS)
| |
Collapse
|
21
|
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 2009; 191:5480-8. [PMID: 19581365 DOI: 10.1128/jb.00640-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transporters of the dicarboxylate amino acid-cation symporter family often mediate uptake of C(4)-dicarboxylates, such as succinate or l-malate, in bacteria. A member of this family, dicarboxylate transporter A (DctA) from Corynebacterium glutamicum, was characterized to catalyze uptake of the C(4)-dicarboxylates succinate, fumarate, and l-malate, which was inhibited by oxaloacetate, 2-oxoglutarate, and glyoxylate. DctA activity was not affected by sodium availability but was dependent on the electrochemical proton potential. Efficient growth of C. glutamicum in minimal medium with succinate, fumarate, or l-malate as the sole carbon source required high dctA expression levels due either to a promoter-up mutation identified in a spontaneous mutant or to ectopic overexpression. Mutant analysis indicated that DctA and DccT, a C(4)-dicarboxylate divalent anion/sodium symporter-type transporter, are the only transporters for succinate, fumarate, and l-malate in C. glutamicum.
Collapse
|
22
|
Kleefeld A, Ackermann B, Bauer J, Kra Mer J, Unden G. The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression. J Biol Chem 2008; 284:265-275. [PMID: 18957436 DOI: 10.1074/jbc.m807856200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DcuB of Escherichia coli catalyzes C4-dicarboxylate/succinate antiport during growth by fumarate respiration. The expression of genes of fumarate respiration, including the genes for DcuB (dcuB) and fumarate reductase (frdABCD) is transcriptionally activated by C4-dicarboxylates via the DcuS-DcuR two-component system, comprising the sensor kinase DcuS, which contains a periplasmic sensing domain for C4-dicarboxylates. Deletion or inactivation of dcuB caused constitutive expression of DcuS-regulated genes in the absence of C4-dicarboxylates. The effect was specific for DcuB and not observed after inactivation of the homologous DcuA or the more distantly related DcuC transporter. Random and site-directed mutation identified three point mutations (T394I, D398N, and K353A) in DcuB that caused a similar derepression as dcuB deletion, whereas the transport activity of the DcuB mutants was retained. Constitutive expression in the dcuB mutants depended on the presence of a functional DcuS-DcuR two-component system. Mutation of residues E79A, R83A, and R127A of DcuB, on the other hand, inactivated growth by fumarate respiration and transport of [14C]succinate, whereas the expression of dcuB'-'lacZ was not affected. Therefore, the antiporter DcuB is a bifunctional protein and has a regulatory function that is independent from transport, and sites for transport and regulation can be differentiated.
Collapse
Affiliation(s)
- Alexandra Kleefeld
- Institut fu¨r Mikrobiologie und Weinforschung, University of Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Bianca Ackermann
- Institut fu¨r Mikrobiologie und Weinforschung, University of Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Julia Bauer
- Institut fu¨r Mikrobiologie und Weinforschung, University of Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Jens Kra Mer
- Institut fu¨r Mikrobiologie und Weinforschung, University of Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Gottfried Unden
- Institut fu¨r Mikrobiologie und Weinforschung, University of Mainz, Becherweg 15, 55099 Mainz, Germany.
| |
Collapse
|
23
|
Scheu P, Sdorra S, Liao YF, Wegner M, Basché T, Unden G, Erker W. Polar accumulation of the metabolic sensory histidine kinases DcuS and CitA in Escherichia coli. Microbiology (Reading) 2008; 154:2463-2472. [DOI: 10.1099/mic.0.2008/018614-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Patrick Scheu
- Institute of Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Sven Sdorra
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Yun-Feng Liao
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Maria Wegner
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Thomas Basché
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Gottfried Unden
- Institute of Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Wolfgang Erker
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| |
Collapse
|
24
|
Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 2006; 103:10420-10425. [PMID: 16803956 PMCID: PMC1482837 DOI: 10.1073/pnas.0604343103] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing is a cell-to-cell signaling mechanism in which bacteria respond to hormone-like molecules called autoinducers (AIs). The AI-3 quorum-sensing system is also involved in interkingdom signaling with the eukaryotic hormones epinephrine/norepinephrine. This signaling activates transcription of virulence genes in enterohemorrhagic Escherichia coli O157:H7. However, this signaling system has never been shown to be involved in virulence in vivo, and the bacterial receptor for these signals had not been identified. Here, we show that the QseC sensor kinase is a bacterial receptor for the host epinephrine/norepinephrine and the AI-3 produced by the gastrointestinal microbial flora. We also found that an alpha-adrenergic antagonist can specifically block the QseC response to these signals. Furthermore, we demonstrated that a qseC mutant is attenuated for virulence in a rabbit animal model, underscoring the importance of this signaling system in virulence in vivo. Finally, an in silico search found that the periplasmic sensing domain of QseC is conserved among several bacterial species. Thus, QseC is a bacterial adrenergic receptor that activates virulence genes in response to interkingdom cross-signaling. We anticipate that these studies will be a starting point in understanding bacterial-host hormone signaling at the biochemical level. Given the role that this system plays in bacterial virulence, further characterization of this unique signaling mechanism may be important for developing novel classes of antimicrobials.
Collapse
Affiliation(s)
- Marcie B Clarke
- *Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048; and
| | - David T Hughes
- *Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048; and
| | - Chengru Zhu
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Edgar C Boedeker
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Vanessa Sperandio
- *Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048; and
| |
Collapse
|
25
|
Clarke MB, Sperandio V. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol 2005; 58:441-55. [PMID: 16194231 DOI: 10.1111/j.1365-2958.2005.04819.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell-to-cell communication system referred to as quorum sensing (QS) is based on the principle that bacteria secrete hormone-like compounds referred to as autoinducers. Upon reaching a threshold concentration, these autoinducers interact with transcription factors to regulate gene expression. We previously reported that enterohaemorrhagic Escherichia coli (EHEC), which is responsible for outbreaks of bloody diarrhoea, utilizes a QS system to regulate gene transcription. We have also previously shown that the quorum sensing E. coli regulators B and C (QseBC) may act as a two-component system to transcriptionally regulate the expression of flagella and motility. Here, using a reverse transcription polymerase chain reaction (RT-PCR), we show that qseBC are transcribed in an operon. Furthermore, using a qseBC::lacZ transcriptional fusion, we observed that QseB autoactivates its own transcription. In addition, the transcriptional start site of the qseBC promoter responsive to QseBC was mapped, and single-copy and multicopy deletion analyses were performed to determine the minimal region necessary for QseB transcriptional activation. These data allowed us to map an additional transcriptional start site for the qseBC promoter which may allow for a basal level of QseBC expression. Finally, electrophoretic mobility shift assays, competition experiments and DNase I footprints were performed and demonstrated that QseB directly binds to two sites in its own promoter. These results indicate that QseB may act to autoregulate its own transcription through binding to low- and high-affinity sites found in its promoter.
Collapse
Affiliation(s)
- Marcie B Clarke
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
26
|
Abstract
To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.
Collapse
Affiliation(s)
- Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
27
|
Kneuper H, Janausch IG, Vijayan V, Zweckstetter M, Bock V, Griesinger C, Unden G. The Nature of the Stimulus and of the Fumarate Binding Site of the Fumarate Sensor DcuS of Escherichia coli. J Biol Chem 2005; 280:20596-603. [PMID: 15781452 DOI: 10.1074/jbc.m502015200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DcuS is a membrane-associated sensory histidine kinase of Escherichia coli specific for C(4) -dicarboxylates. The nature of the stimulus and its structural prerequisites were determined by measuring the induction of DcuS-dependent dcuB'-'lacZ gene expression. C(4)-dicarboxylates without or with substitutions at C2/C3 by hydrophilic (hydroxy, amino, or thiolate) groups stimulated gene expression in a similar way. When one carboxylate was replaced by sulfonate, methoxy, or nitro groups, only the latter (3-nitropropionate) was active. Thus, the ligand of DcuS has to carry two carboxylate or carboxylate/nitro groups 3.1-3.8 A apart from each other. The effector concentrations for half-maximal induction of dcuB'-'lacZ expression were 2-3 mm for the C(4)-dicarboxylates and 0.5 mm for 3-nitropropionate or d-tartrate. The periplasmic domain of DcuS contains a conserved cluster of positively charged or polar amino acid residues (Arg(107)-X(2)-His(110)-X(9)-Phe(120)-X(26)-Arg(147)-X-Phe(149)) that were essential for fumarate-dependent transcriptional regulation. The presence of fumarate or d-tartrate caused sharpening of peaks or chemical shift changes in HSQC NMR spectra of the isolated C(4)-dicarboylate binding domain. The amino acid residues responding to fumarate or d-tartrate were in the region comprising residues 89-150 and including the supposed binding site. DcuS(R147A) mutant with an inactivated binding site was isolated and reconstituted in liposomes. The protein showed the same (activation-independent) kinase activity as DcuS, but autophosphorylation of DcuS was no longer stimulated by C(4)-dicarboxylates. Therefore, the R147A mutation affected signal perception and transfer to the kinase but not the kinase activity per se.
Collapse
Affiliation(s)
- Holger Kneuper
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|