1
|
A Shift to Human Body Temperature (37°C) Rapidly Reprograms Multiple Adaptive Responses in Escherichia coli That Would Facilitate Niche Survival and Colonization. J Bacteriol 2021; 203:e0036321. [PMID: 34516284 PMCID: PMC8544407 DOI: 10.1128/jb.00363-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.
Collapse
|
2
|
Rodrigues JF, Lourenço RF, Maeda DLNF, de Jesus Cintra M, Nakao N, Mathias-Santos C, Luiz WB, de Souza Ferreira LC. Strain-specific transcriptional and posttranscriptional regulation of heat-labile toxin expression by enterotoxigenic Escherichia coli. Braz J Microbiol 2020; 51:455-465. [PMID: 32016818 PMCID: PMC7203263 DOI: 10.1007/s42770-020-00231-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/18/2020] [Indexed: 11/30/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) represents one of the most important etiological agents of diarrhea in developing countries and characteristically produces at least one of two enterotoxins: heat-labile toxin (LT) and heat-stable toxin (ST). It has been previously shown that the production and release of LT by human-derived ETEC strains are variable. Although the natural genetic polymorphisms of regulatory sequences of LT-encoding (eltAB) genes may explain the variable production of LT, the knowledge of the transcriptional and posttranscriptional aspects affecting LT expression among ETEC strains is not clear. To further understand the factors affecting LT expression, we evaluated the impact of the natural polymorphism in noncoding regulatory sequences of eltAB among clinically derived ETEC strains. Sequence analyses of seven clinically derived strains and the reference strain H10407 revealed polymorphic sites at both the promoter and upstream regions of the eltAB operon. Operon fusion assays with GFP revealed that specific nucleotide changes in the Pribnow box reduce eltAB transcription. Nonetheless, the total amounts of LT produced by the tested ETEC strains did not strictly correspond to the detected LT-specific mRNA levels. Indeed, the stability of LT varied according to the tested strain, indicating the presence of posttranscriptional mechanisms affecting LT expression. Taken together, our results indicate that the production of LT is a strain-specific process and involves transcriptional and posttranscriptional mechanisms that regulate the final amount of toxin produced and released by specific strains.
Collapse
Affiliation(s)
- Juliana Falcão Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil. .,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rogério Ferreira Lourenço
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.,Institute of Biology, The State University of Campinas, São Paulo, Brazil
| | - Denicar Lina Nascimento Fabris Maeda
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Mariana de Jesus Cintra
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Naomi Nakao
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Camila Mathias-Santos
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.,Technical-Scientific Police Superintendency, São Paulo State, Criminalistic Institute, São Paulo, Brazil
| | - Wilson Barros Luiz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.,Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
3
|
Ares MA, Abundes-Gallegos J, Rodríguez-Valverde D, Panunzi LG, Jiménez-Galicia C, Jarillo-Quijada MD, Cedillo ML, Alcántar-Curiel MD, Torres J, Girón JA, De la Cruz MA. The Coli Surface Antigen CS3 of Enterotoxigenic Escherichia coli Is Differentially Regulated by H-NS, CRP, and CpxRA Global Regulators. Front Microbiol 2019; 10:1685. [PMID: 31417507 PMCID: PMC6681793 DOI: 10.3389/fmicb.2019.01685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli produces a myriad of adhesive structures collectively named colonization factors (CFs). CS3 is a CF, which is assembled into fine wiry fibrillae encoded by the cstA-H gene cluster. In this work we evaluated the influence of environmental cues such as temperature, osmolarity, pH, and carbon source on the expression of CS3 genes. The transcription of cstH major pilin gene was stimulated by growth of the bacteria in colonization factor broth at 37°C; the presence of glycerol enhanced cstH transcription, while glucose at high concentration, high osmolarity, and the depletion of divalent cations such as calcium and magnesium repressed cstH expression. In addition, we studied the role of H-NS, CpxRA, and CRP global regulators in CS3 gene expression. H-NS and CpxRA acted as repressors and CRP as an activator of cstH expression. Under high osmolarity, H-NS, and CpxRA were required for cstH repression. CS3 was required for both, bacterial adherence to epithelial cells and biofilm formation. Our data strengthens the existence of a multi-factorial regulatory network that controls transcription of CS3 genes in which global regulators, under the influence of environmental signals, control the production of this important intestinal colonization factor.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Judith Abundes-Gallegos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leonardo G Panunzi
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - César Jiménez-Galicia
- Unidad Médica de Alta Especialidad, Laboratorio Clínico, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigacioìn en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Marìa D Alcántar-Curiel
- Unidad de Investigacioìn en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
4
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
De la Cruz MA, Ruiz-Tagle A, Ares MA, Pacheco S, Yáñez JA, Cedillo L, Torres J, Girón JA. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators. Environ Microbiol 2017; 19:1761-1775. [PMID: 27943535 DOI: 10.1111/1462-2920.13644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/31/2022]
Abstract
Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI IMSS, Mexico City, Mexico
| | | | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI IMSS, Mexico City, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI IMSS, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Department of Pediatrics, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
6
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Molecular Characterization of the Vacuolating Autotransporter Toxin in Uropathogenic Escherichia coli. J Bacteriol 2016; 198:1487-98. [PMID: 26858103 DOI: 10.1128/jb.00791-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The vacuolating autotransporter toxin (Vat) contributes to uropathogenic Escherichia coli (UPEC) fitness during systemic infection. Here, we characterized Vat and investigated its regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat gene corresponded to three major E. coli sequence types (ST12, ST73, and ST95), and these strains secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene located directly downstream of vat that encodes a putative MarR-like transcriptional regulator; we termed this gene vatX The vat-vatX genes were present in the UPEC reference strain CFT073, and reverse transcriptase PCR (RT-PCR) revealed that the two genes are cotranscribed. Overexpression of vatX in CFT073 led to a 3-fold increase in vat gene transcription. The vat promoter region contained three putative nucleation sites for the global transcriptional regulator histone-like nucleoid structuring protein (H-NS); thus, the hns gene was mutated in CFT073 (to generate CFT073 hns). Western blot analysis using a Vat-specific antibody revealed a significant increase in Vat expression in CFT073 hns compared to that in wild-type CFT073. Direct H-NS binding to the vat promoter region was demonstrated using purified H-NS in combination with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating that Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly prevalent and tightly regulated immunogenic serine protease autotransporter protein of Enterobacteriaceae (SPATE) secreted by UPEC during infection. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the major cause of hospital- and community-acquired urinary tract infections. The vacuolating autotransporter toxin (Vat) is a cytotoxin known to contribute to UPEC fitness during murine sepsis infection. In this study, Vat was found to be highly conserved and prevalent among a collection of urosepsis clinical isolates and was expressed at human core body temperature. Regulation of vat was demonstrated to be directly repressed by the global transcriptional regulator H-NS and upregulated by the downstream gene vatX (encoding a new MarR-type transcriptional regulator). Additionally, increased Vat-specific IgG titers were detected in plasma from corresponding urosepsis patients infected with vat-positive isolates. Hence, Vat is a highly conserved and tightly regulated urosepsis-associated virulence factor.
Collapse
|
8
|
The Histone-Like Nucleoid Structuring Protein (H-NS) Is a Negative Regulator of the Lateral Flagellar System in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Appl Environ Microbiol 2016; 82:2388-2398. [PMID: 26873312 DOI: 10.1128/aem.00297-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. Anhns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhnsexhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the "binding and spreading" model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility.
Collapse
|
9
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
10
|
Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 2015; 4. [PMID: 25594903 PMCID: PMC4337669 DOI: 10.7554/elife.04970] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
Bacterial H-NS forms nucleoprotein filaments that spread on DNA and bridge distant DNA sites. H-NS filaments co-localize with sites of Rho-dependent termination in Escherichia coli, but their direct effects on transcriptional pausing and termination are untested. In this study, we report that bridged H-NS filaments strongly increase pausing by E. coli RNA polymerase at a subset of pause sites with high potential for backtracking. Bridged but not linear H-NS filaments promoted Rho-dependent termination by increasing pause dwell times and the kinetic window for Rho action. By observing single H-NS filaments and elongating RNA polymerase molecules using atomic force microscopy, we established that bridged filaments surround paused complexes. Our results favor a model in which H-NS-constrained changes in DNA supercoiling driven by transcription promote pausing at backtracking-susceptible sites. Our findings provide a mechanistic rationale for H-NS stimulation of Rho-dependent termination in horizontally transferred genes and during pervasive antisense and noncoding transcription in bacteria.
Collapse
Affiliation(s)
- Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Beth A Boudreau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
11
|
Haycocks JRJ, Sharma P, Stringer AM, Wade JT, Grainger DC. The molecular basis for control of ETEC enterotoxin expression in response to environment and host. PLoS Pathog 2015; 11:e1004605. [PMID: 25569153 PMCID: PMC4287617 DOI: 10.1371/journal.ppat.1004605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/05/2014] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhoea in humans and neonatal farm animals. Annually, 380,000 human deaths, and multi-million dollar losses in the farming industry, can be attributed to ETEC infections. Illness results from the action of enterotoxins, which disrupt signalling pathways that manage water and electrolyte homeostasis in the mammalian gut. The resulting fluid loss is treated by oral rehydration. Hence, aqueous solutions of glucose and salt are ingested by the patient. Given the central role of enterotoxins in disease, we have characterised the regulatory trigger that controls toxin production. We show that, at the molecular level, the trigger is comprised of two gene regulatory proteins, CRP and H-NS. Strikingly, this renders toxin expression sensitive to both conditions encountered on host cell attachment and the components of oral rehydration therapy. For example, enterotoxin expression is induced by salt in an H-NS dependent manner. Furthermore, depending on the toxin gene, expression is activated or repressed by glucose. The precise sensitivity of the regulatory trigger to glucose differs because of variations in the regulatory setup for each toxin encoding gene.
Collapse
Affiliation(s)
- James R. J. Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, United States of America
| | - David C. Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Sengupta C, Ray S, Chowdhury R. Fine tuning of virulence regulatory pathways in enteric bacteria in response to varying bile and oxygen concentrations in the gastrointestinal tract. Gut Pathog 2014; 6:38. [PMID: 25349633 PMCID: PMC4209513 DOI: 10.1186/s13099-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/10/2022] Open
Abstract
After entering the gastrointestinal (GI) tract on the way to their physiological site of infection, enteric bacteria encounter a remarkable diversity in environmental conditions. There are gross differences in the physico-chemical parameters in different sections of the GI tract e.g. between the stomach, small intestine and large intestine. Furthermore, even within a certain anatomical site, there are subtle differences in the microenvironment e.g. between the lumen, mucous layer and epithelial surface. Enteric pathogens must not only survive passage through the rapidly changing environments encountered at different niches of the GI tract but must also appropriately coordinate expression of virulence determinants in response to environmental cues at different stages of infection. There are some common themes in the responses of enteric pathogens to environmental cues, there are also distinct differences that may reflect differences in basic pathogenesis mechanisms. The role of bile and oxygen concentration in spatiotemporal regulation of virulence genes in selected enteric pathogens has been reviewed.
Collapse
Affiliation(s)
- Chirantana Sengupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sreejana Ray
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India ; Academy for Scientific and Innovative Research, CSIR-IICB Campus, Kolkata 700032, India
| |
Collapse
|
13
|
Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein. PLoS One 2013; 8:e79038. [PMID: 24244411 PMCID: PMC3828302 DOI: 10.1371/journal.pone.0079038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/18/2013] [Indexed: 01/11/2023] Open
Abstract
The Gram-negative bacterial pathogen Klebsiella pneumoniae forms biofilms to facilitate colonization of biotic and abiotic surfaces. The formation of biofilms by K. pneumoniae requires the expression of type 3 fimbriae: elongate proteinaceous filaments extruded by a chaperone-usher system in the bacterial outer membrane. The expression of the mrkABCDF cluster that encodes this fimbrial system is strongly positively regulated by MrkH, a transcriptional activator that responds to the second messenger, c-di-GMP. In this study, we analyzed the mechanism by which the MrkH protein activates transcriptional initiation from the mrkA promoter. A mutational analysis supported by electrophoretic mobility shift assays demonstrated that a 12-bp palindromic sequence (the MrkH box) centered at -78.5 is the binding site of MrkH. Deletion of half a turn, but not a full turn, of DNA located between the MrkH box and the mrkA promoter destroyed the ability of MrkH to activate mrkA transcription. In addition, a 10-bp AT-rich sequence (the UP element) centered at -63.5 contributed significantly to MrkH-dependent mrkA transcription. In vivo analysis of rpoA mutants showed that the R265 and E273 determinants in the C-terminal domain of RNA polymerase α subunit are needed for MrkH-mediated activation of mrkA transcription. Furthermore, results from mutagenesis of the mrkH gene suggest that the N-terminal region of the protein is involved in transcriptional activation. Taken together, our results suggest that MrkH activates mrkA expression by interacting directly with RNA polymerase, to overcome the inefficient transcriptional initiation caused by the presence of defective core promoter elements.
Collapse
|
14
|
Srikhanta YN, Hocking DM, Wakefield MJ, Higginson E, Robins-Browne RM, Yang J, Tauschek M. Control of bacterial virulence by the RalR regulator of the rabbit-specific enteropathogenic Escherichia coli strain E22. Infect Immun 2013; 81:4232-43. [PMID: 24002063 PMCID: PMC3811808 DOI: 10.1128/iai.00710-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/24/2013] [Indexed: 11/20/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) causes endemic diarrhea, diarrheal outbreaks, and persistent diarrhea in humans, but the mechanism by which aEPEC causes disease is incompletely understood. Virulence regulators and their associated regulons, which often include adhesins, play key roles in the expression of virulence factors in enteric pathogenic bacteria. In this study we identified a transcriptional regulator, RalR, in the rabbit-specific aEPEC strain, E22 (O103:H2) and examined its involvement in the regulation of virulence. Microarray analysis and quantitative real-time reverse transcription-PCR demonstrated that RalR enhances the expression of a number of genes encoding virulence-associated factors, including the Ral fimbria, the Aap dispersin, and its associated transport system, and downregulates several housekeeping genes, including fliC. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins and by adherence and motility assays. To investigate the mechanism of RalR-mediated activation, we focused on its most highly upregulated target operons, ralCDEFGHI and aap. By using primer extension, electrophoretic mobility shift assay, and mutational analysis, we identified the promoter and operator sequences for these two operons. By employing promoter-lacZ reporter systems, we demonstrated that RalR activates the expression of its target genes by binding to one or more 8-bp palindromic sequences (with the consensus of TGTGCACA) located immediately upstream of the promoter core regions. Importantly, we also demonstrated that RalR is essential for virulence since infection of rabbits with E22 carrying a knockout mutation in the ralR gene completely abolished its ability to cause disease.
Collapse
Affiliation(s)
- Yogitha N. Srikhanta
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Ellen Higginson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
RegR virulence regulon of rabbit-specific enteropathogenic Escherichia coli strain E22. Infect Immun 2013; 81:1078-89. [PMID: 23340312 DOI: 10.1128/iai.01325-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.
Collapse
|
16
|
Involvement of PatE, a prophage-encoded AraC-like regulator, in the transcriptional activation of acid resistance pathways of enterohemorrhagic Escherichia coli strain EDL933. Appl Environ Microbiol 2012; 78:5083-92. [PMID: 22582067 DOI: 10.1128/aem.00617-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a lethal human intestinal pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome. EHEC is transmitted by the fecal-oral route and has a lower infectious dose than most other enteric bacterial pathogens in that fewer than 100 CFU are able to cause disease. This low infectious dose has been attributed to the ability of EHEC to survive in the acidic environment of the human stomach. In silico analysis of the genome of EHEC O157:H7 strain EDL933 revealed a gene, patE, for a putative AraC-like regulatory protein within the prophage island, CP-933H. Transcriptional analysis in E. coli showed that the expression of patE is induced during stationary phase. Data from microarray assays demonstrated that PatE activates the transcription of genes encoding proteins of acid resistance pathways. In addition, PatE downregulated the expression of a number of genes encoding heat shock proteins and the type III secretion pathway of EDL933. Transcriptional analysis and electrophoretic mobility shift assays suggested that PatE also activates the transcription of the gene for the acid stress chaperone hdeA by binding to its promoter region. Finally, assays of acid tolerance showed that increasing the expression of PatE in EHEC greatly enhanced the ability of the bacteria to survive in different acidic environments. Together, these findings indicate that EHEC strain EDL933 carries a prophage-encoded regulatory system that contributes to acid resistance.
Collapse
|
17
|
The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infect Immun 2012; 80:2042-52. [PMID: 22451516 DOI: 10.1128/iai.06160-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.
Collapse
|
18
|
Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA, Chuah MLC, Liang ZX, Wijburg OL, Jenney AW, Lithgow T, Strugnell RA. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 2011; 7:e1002204. [PMID: 21901098 PMCID: PMC3161979 DOI: 10.1371/journal.ppat.1002204] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/24/2011] [Indexed: 12/17/2022] Open
Abstract
Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices. Biofilms are surface-associated communities of microorganisms. Biofilm-associated bacteria are protected from host defenses and antibiotics and are the cause of many infections. Klebsiella pneumoniae is primarily a hospital-acquired bacterial pathogen that causes pneumonia, urinary tract infections and septicemia. Its success is related to its ability to form biofilms on medical devices, such as catheters. In K. pneumoniae, biofilm formation is mediated by type 3 fimbriae – hair-like, protein appendages extending out from the cell surface that adhere to surfaces. This study investigated how K. pneumoniae regulates the expression of these fimbriae. We identified a protein, MrkH, which behaves as a “biofilm switch” that turns on the expression of genes responsible for producing type 3 fimbriae. MrkH works by binding to regulatory regions of DNA nearby to these genes and initiates their expression. Importantly, MrkH binds to DNA strongly only when the protein is stimulated by a small molecule, c-di-GMP. Furthermore, we identified bacterial enzymes that either produce or break down c-di-GMP to control its concentration within the cell, and thus modulate MrkH activity. Understanding the molecular basis for these processes may lead to the development of therapeutic compounds, possibly for incorporation into medical device materials to inhibit biofilm formation and pathogenesis.
Collapse
Affiliation(s)
- Jonathan J Wilksch
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Regulatory control of the Escherichia coli O157:H7 lpf1 operon by H-NS and Ler. J Bacteriol 2011; 193:1622-32. [PMID: 21278287 DOI: 10.1128/jb.01082-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long polar fimbriae 1 (Lpf1) of Escherichia coli O157:H7 is a tightly regulated adhesin, with H-NS silencing the transcriptional expression of the lpf1 operon while Ler (locus of enterocyte effacement-encoded regulator) acts as an antisilencer. We mapped the minimal regulatory region of lpf1 required for H-NS- and Ler-mediated regulation and found that it is 79% AT rich. Three putative sites for H-NS binding were identified. Two of them, named silencer regulatory sequence 1 (SRS1) and SRS2, are located on a region that covers both of the lpf1 promoters (P1 and P2). The third putative H-NS binding site is located within the lpfA1 gene in a region extending from +258 bp to +545 bp downstream of ATG; however, this site does not seem to play a role in lpfA1 regulation under the conditions tested in this work. Ler was also found to interact with Ler binding sites (LBSs). Ler binding site 1 (LBS1) and LBS2 are located upstream of the two promoters. LBS1 overlaps SRS1, while LBS3 overlaps the P1 promoter and SRS2. Based on the experimental data, we propose that H-NS silences lpf1 expression by binding to both of the SRSs on the promoter region, forming an SRS-H-NS complex that prevents RNA polymerase-mediated transcription. A model of the regulation of the lpfA1 operon of E. coli O157:H7 by H-NS and Ler is discussed.
Collapse
|
20
|
Abstract
Expression of the ctx and tcp genes, which encode cholera toxin and the toxin coregulated pilus, the Vibrio cholerae O1 virulence determinants having the largest contribution to cholera disease, is repressed by the nucleoid-associated protein H-NS and activated by the AraC-like transcriptional regulator ToxT. To elucidate the molecular mechanism by which H-NS controls transcription of the ctxAB operon, H-NS repression and binding were characterized by using a promoter truncation series, gel mobility shift assays, and DNase I footprinting. Promoter regions found to be important for H-NS repression correlated with in vitro binding. Four main H-NS binding regions are present at ctx. One region overlaps the high-affinity ToxT binding site and extends upstream, another overlaps the ToxT low-affinity binding site around the -35 element, and the remaining two are located adjacent to one another downstream of the transcriptional start site. Competition for binding to the overlapping H-NS/ToxT binding sites was observed in gel mobility shift assays, where ToxT was found to displace H-NS from the ctx promoter region. In addition, regulatory differences between the ctx and tcpA promoters were examined. H-NS was found to have a higher relative binding affinity for the ctx promoter than for the tcpA promoter in vitro. In contrast to ToxT-dependent activation of the tcpA promoter, ToxT activation of ctx did not require the C-terminal domain of the α-subunit of RNA polymerase. These findings demonstrate that transcriptional regulation of ctx and tcpA by H-NS and ToxT is mechanistically distinct, and this may lead to important differences in the expression of these coregulated genes.
Collapse
|
21
|
Mudrak B, Kuehn MJ. Heat-labile enterotoxin: beyond G(m1) binding. Toxins (Basel) 2010; 2:1445-70. [PMID: 22069646 PMCID: PMC3153253 DOI: 10.3390/toxins2061445] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/22/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions.
Collapse
Affiliation(s)
- Benjamin Mudrak
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meta J. Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-684-2545; Fax: +1-919-684-8885
| |
Collapse
|
22
|
Transcriptional analysis of the grlRA virulence operon from Citrobacter rodentium. J Bacteriol 2010; 192:3722-34. [PMID: 20472788 DOI: 10.1128/jb.01540-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The locus for enterocyte effacement (LEE) is the virulence hallmark of the attaching-and-effacing (A/E) intestinal pathogens, namely, enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium. The LEE carries more than 40 genes that are arranged in several operons, e.g., LEE1 to LEE5. Expression of the various transcriptional units is subject to xenogeneic silencing by the histone-like protein H-NS. The LEE1-encoded regulator, Ler, plays a key role in relieving this repression at several major LEE promoters, including LEE2 to LEE5. To achieve appropriate intracellular concentrations of Ler in different environments, A/E pathogens have evolved a sophisticated regulatory network to control ler expression. For example, the LEE-encoded GrlA and GrlR proteins work as activator and antiactivator, respectively, of ler transcription. Thus, control of the transcriptional activities of the LEE1 (ler) promoter and the grlRA operon determines the rate of transcription of all of the LEE-encoded virulence factors. To date, only a single promoter has been identified for the grlRA operon. In this study, we showed that the non-LEE-encoded AraC-like regulatory protein RegA of C. rodentium directly stimulates transcription of the grlRA promoter by binding to an upstream region in the presence of bicarbonate ions. In addition, in vivo and in vitro transcription assays revealed a sigma(70) promoter that is specifically responsible for transcription of grlA. Expression from this promoter was strongly repressed by H-NS and its paralog StpA but was activated by Ler. DNase I footprinting demonstrated that Ler binds to a region upstream of the grlA promoter, whereas H-NS interacts specifically with a region extending from the grlA core promoter into its coding sequence. Together, these findings provide new insights into the environmental regulation and differential expressions of the grlR and grlA genes of C. rodentium.
Collapse
|
23
|
Morin N, Tirling C, Ivison SM, Kaur AP, Nataro JP, Steiner TS. Autoactivation of the AggR regulator of enteroaggregativeEscherichia coli in vitroandin vivo. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1574-695x.2009.00645.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Arimitsu H, Tsukamoto K, Ochi S, Sasaki K, Kato M, Taniguchi K, Oguma K, Tsuji T. Lincomycin-induced over-expression of mature recombinant cholera toxin B subunit and the holotoxin in Escherichia coli. Protein Expr Purif 2009; 67:96-103. [PMID: 19410003 DOI: 10.1016/j.pep.2009.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
Cholera toxin (CT) B subunit (CTB) was overproduced using a novel expression system in Escherichia coli. An expression plasmid was constructed by inserting the gene encoding the full-length CTB and the Shine-Dalgarno (SD) sequence derived from CTB or from the heat-labile enterotoxin B subunit (LTB) of enterotoxigenic E. coli into the lacZalpha gene fragment in the pBluescript SK(+) vector. The E. coli strain MV1184 was transformed with each plasmid and then cultured in CAYE broth containing lincomycin. Recombinant CTB (rCTB) was purified from each cell extract. rCTB was overproduced in both transformants without obvious toxicity and was structurally and biologically identical to that of CT purified from Vibrio cholerae, indicating that the original SD and CTB signal sequences were also sufficient to express rCTB in E. coli. Lincomycin-induced rCTB expression was inhibited by mutating the lac promoter, suggesting that lincomycin affects the lactose operon. Based on these findings, we constructed a plasmid that contained the wild-type CT operon and successfully overproduced CT (rCT) using the same procedure for rCTB. Although rCT had an intact A subunit, the amino-terminal modifications and biological properties of the A and B subunits of rCT were identical to those of CT. These results suggest that this novel rCTB over-expression system would also be useful to generate both wild-type and mutant CT proteins that will facilitate further studies on the characteristics of CT, such as mucosal adjuvant activity.
Collapse
Affiliation(s)
- Hideyuki Arimitsu
- Department of Microbiology, Fujita Health University, School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu M, Naka H, Crosa JH. HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6. Mol Microbiol 2009; 72:491-505. [PMID: 19320834 PMCID: PMC2704492 DOI: 10.1111/j.1365-2958.2009.06664.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Vibrio vulnificus, HlyU upregulates the expression of the large RTX toxin gene. In this work we identified the binding site of HlyU to -417 to -376 bp of the rtxA1 operon transcription start site. lacZ fusions for a series of progressive deletions from the rtxA1 operon promoter showed that transcriptional activity increased independently of HlyU when its binding site was absent. Thus HlyU must regulate the rtxA1 operon expression by antagonizing a negative regulator. Concomitantly we found that an hns mutant resulted in an increase in the expression of the rtxA1 operon genes. Multiple copies of HlyU can increase the promoter activity only in the presence of H-NS underscoring the hypothesis that HlyU must alleviate the repression by this protein. H-NS binds to a region that extends upstream and downstream of the rtxA1 operon promoter. In the upstream region it binds to five AT-rich sites of which two overlap the HlyU binding site. Competitive footprinting and gel shift data demonstrate HlyU's higher affinity as compared with H-NS resulting in the de-repression and a corresponding increased expression of the rtxA1 operon.
Collapse
Affiliation(s)
- Moqing Liu
- Department of Molecular Microbiology and Immunology Oregon Health and Science University
| | - Hiroaki Naka
- Department of Molecular Microbiology and Immunology Oregon Health and Science University
| | - Jorge H. Crosa
- Department of Molecular Microbiology and Immunology Oregon Health and Science University
| |
Collapse
|
26
|
Bodero MD, Munson GP. Cyclic AMP receptor protein-dependent repression of heat-labile enterotoxin. Infect Immun 2009; 77:791-8. [PMID: 19075028 PMCID: PMC2632052 DOI: 10.1128/iai.00928-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/02/2008] [Accepted: 12/03/2008] [Indexed: 01/10/2023] Open
Abstract
Enterotoxigenic Escherichia coli is a major cause of acute diarrheal illness worldwide and is responsible for high infant and child mortality rates in developing nations. Two types of enterotoxins, one heat labile and the other heat stable, are known to cause diarrhea. The expression of soluble heat-labile toxin is subject to catabolite (glucose) activation, and three binding sites for cAMP receptor protein (CRP or CAP) were identified upstream and within the toxin promoter by DNase I footprinting. One CRP operator is centered at -31.5, thus encompassing the promoter's -35 hexamer. Potassium permanganate footprinting revealed that the occupancy of this operator prevents RNA polymerase from forming an open complex in vitro. However, the operator centered at -31.5 is not sufficient for full repression in vivo because the deletion of the other two CRP binding sites partially relieved the CRP-dependent repression of the heat-labile toxin promoter. In contrast to heat-labile toxin, CRP positively regulates the expression of heat-stable toxin. Thus, the conditions for the optimal expression of one enterotoxin limit the expression of the other. Since glucose inhibits the activity of CRP by suppressing the pathogen's synthesis of cyclic AMP (cAMP), the concentration of glucose in the lumen of the small intestine may determine which enterotoxin is maximally expressed. In addition, our results suggest that the host may also modulate enterotoxin expression because cells intoxicated with heat-labile toxin overproduce and release cAMP.
Collapse
Affiliation(s)
- Maria D Bodero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL 33101, USA
| | | |
Collapse
|
27
|
Genome-wide identification of H-NS-controlled, temperature-regulated genes in Escherichia coli K-12. J Bacteriol 2008; 191:1106-10. [PMID: 19011022 DOI: 10.1128/jb.00599-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA microarrays demonstrate that H-NS controls 69% of the temperature regulated genes in Escherichia coli K-12. H-NS is shown to be a common regulator of multiple iron and other nutrient acquisition systems preferentially expressed at 37 degrees C and of general stress response, biofilm formation, and cold shock genes highly expressed at 23 degrees C.
Collapse
|
28
|
Fang FC, Rimsky S. New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 2008; 11:113-20. [PMID: 18387844 PMCID: PMC2394665 DOI: 10.1016/j.mib.2008.02.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 11/25/2022]
Abstract
H-NS, a nucleoid-associated DNA-binding protein of enteric bacteria, was discovered 35 years ago and subsequently found to exert widespread and highly pleiotropic effects on gene regulation. H-NS binds to high-affinity sites and spreads along adjacent AT-rich DNA to silence transcription. Preferential binding to sequences with higher AT-content than the resident genome allows H-NS to repress the expression of foreign DNA in a process known as 'xenogeneic silencing.' Counter-silencing by a variety of mechanisms facilitates the evolutionary acquisition of horizontally transferred genes and their integration into pre-existing regulatory networks. This review will highlight recent insights into the mechanism and biological importance of H-NS-DNA interactions.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357242, Seattle, WA 98195-7242 USA.
| | | |
Collapse
|
29
|
Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S, Stella S, Babu MM, Travers A. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 2007; 35:6330-7. [PMID: 17881364 PMCID: PMC2094087 DOI: 10.1093/nar/gkm712] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/22/2007] [Accepted: 08/24/2007] [Indexed: 01/03/2023] Open
Abstract
The global transcriptional regulator H-NS selectively silences bacterial genes associated with pathogenicity and responses to environmental insults. Although there is ample evidence that H-NS binds preferentially to DNA containing curved regions, we show here that a major basis for this selectivity is the presence of a conserved sequence motif in H-NS target transcriptons. We further show that there is a strong tendency for the H-NS binding sites to be clustered, both within operons and in genes contained in the pathogenicity-associated islands. In accordance with previously published findings, we show that these motifs occur in AT-rich regions of DNA. On the basis of these observations, we propose that H-NS silences extensive regions of the bacterial chromosome by binding first to nucleating high-affinity sites and then spreading along AT-rich DNA. This spreading would be reinforced by the frequent occurrence of the motif in such regions. Our findings suggest that such an organization enables the silencing of extensive regions of the genetic material, thereby providing a coherent framework that unifies studies on the H-NS protein and a concrete molecular basis for the genetic control of H-NS transcriptional silencing.
Collapse
Affiliation(s)
- Benjamin Lang
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Nicolas Blot
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Emeline Bouffartigues
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Malcolm Buckle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Marcel Geertz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Claudio O. Gualerzi
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Ramesh Mavathur
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Georgi Muskhelishvili
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Cynthia L. Pon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Sylvie Rimsky
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stefano Stella
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
30
|
Olekhnovich IN, Kadner RJ. Role of nucleoid-associated proteins Hha and H-NS in expression of Salmonella enterica activators HilD, HilC, and RtsA required for cell invasion. J Bacteriol 2007; 189:6882-90. [PMID: 17675384 PMCID: PMC2045230 DOI: 10.1128/jb.00905-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coordinate expression of Salmonella enterica invasion genes on Salmonella pathogenicity island 1 is under the control of the complex circuits of regulation that involve the AraC/XylS family transcriptional activators HilD, HilC, and RtsA and nucleoid-associated proteins. Single-copy transcription fusions were used to assess the effects of nucleoid-associated proteins Hha and H-NS on hilD, hilC, and rtsA expression. The data show that all three genes, hilD, hilC, and rtsA, were repressed by H-NS and/or Hha. The repression of rtsA was the highest among tested genes. The level of rtsA-lac was equally elevated in hns and hha mutants and was further enhanced in the hns hha double mutant under low-osmolarity conditions. Electrophoretic mobility shift experiments showed that H-NS and Hha directly bind to the rtsA promoter. In addition to the negative control that was exerted by H-NS/Hha under low-osmolarity conditions, the homologous virulence activators HilD, HilC, and RtsA (Hil activators) induced rtsA-lac expression in a high-salt medium. A DNase footprinting assay of the rtsA promoter revealed one common DNA-binding site for all three Hil activators centered at position -54 relative to the transcriptional start site. In the absence of Hha and H-NS, however, osmoregulation of the rtsA promoter was lost, and Hil activators were not required for rtsA transcription. These results taken together suggest that the HilD, HilC, and RtsA proteins induce the transcription of the rtsA promoter by counteracting H-NS/Hha-mediated repression.
Collapse
Affiliation(s)
- Igor N Olekhnovich
- Department of Microbiology, University of Virginia School of Medicine, PO Box 800734, Charlottesville, VA 22908-0734, USA.
| | | |
Collapse
|
31
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
32
|
Yang J, Baldi DL, Tauschek M, Strugnell RA, Robins-Browne RM. Transcriptional regulation of the yghJ-pppA-yghG-gspCDEFGHIJKLM cluster, encoding the type II secretion pathway in enterotoxigenic Escherichia coli. J Bacteriol 2006; 189:142-50. [PMID: 17085567 PMCID: PMC1797218 DOI: 10.1128/jb.01115-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene cluster gspCDEFGHIJKLM codes for various structural components of the type II secretion pathway which is responsible for the secretion of heat-labile enterotoxin by enterotoxigenic Escherichia coli (ETEC). In this work, we used a variety of molecular approaches to elucidate the transcriptional organization of the ETEC type II secretion system and to unravel the mechanisms by which the expression of these genes is controlled. We showed that the gspCDEFGHIJKLM cluster and three other upstream genes, yghJ, pppA, and yghG, are cotranscribed and that a promoter located in the upstream region of yghJ plays a major role in the expression of this 14-gene transcriptional unit. Transcription of the yghJ promoter was repressed 168-fold upon a temperature downshift from 37 degrees C to 22 degrees C. This temperature-induced repression was mediated by the global regulatory proteins H-NS and StpA. Deletion mutagenesis showed that the promoter region encompassing positions -321 to +301 relative to the start site of transcription of yghJ was required for full repression. The yghJ promoter region is predicted to be highly curved and bound H-NS or StpA directly. The binding of H-NS or StpA blocked transcription initiation by inhibiting promoter open complex formation. Unraveling the mechanisms of regulation of type II secretion by ETEC enhances our understanding of the pathogenesis of ETEC and other pathogenic varieties of E. coli.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
33
|
Wolf T, Janzen W, Blum C, Schnetz K. Differential dependence of StpA on H-NS in autoregulation of stpA and in regulation of bgl. J Bacteriol 2006; 188:6728-38. [PMID: 16980475 PMCID: PMC1595503 DOI: 10.1128/jb.00586-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
StpA has functional similarity to its homologue, the nucleoid structuring protein H-NS. It binds to AT-rich, planar, bent DNA and constrains DNA supercoils. In addition, StpA acts as an RNA chaperone. StpA and H-NS also form heterodimers. However, cellular levels of StpA are low due to repression of stpA by H-NS and negative autoregulation. Here we show that effective (30-fold) repression of stpA transcription requires a downstream regulator element located within the stpA coding region. In addition, we show that StpA represses stpA threefold in an hns null mutant. In contrast, repression of the bgl operon, another H-NS-repressed system, is not achieved by StpA alone. It becomes StpA dependent in the presence of a fusion protein encompassing the N-terminal 37 amino acids of H-NS, which comprise the core of the dimerization domain. StpA also effectively complements H-NS-I119T, a mutant defective in specific DNA binding, in repression of the bgl operon. Thus, StpA complements H-NS proteins defective in DNA binding to repress bgl, while in autoregulation of stpA it acts autonomously, indicating a difference in the mechanisms of repression.
Collapse
Affiliation(s)
- Tinka Wolf
- Institut für Genetik, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
34
|
Sjöling A, Qadri F, Nicklasson M, Begum YA, Wiklund G, Svennerholm AM. In vivo expression of the heat stable (estA) and heat labile (eltB) toxin genes of enterotoxigenic Escherichia coli (ETEC). Microbes Infect 2006; 8:2797-802. [PMID: 17045506 DOI: 10.1016/j.micinf.2006.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/21/2006] [Accepted: 08/24/2006] [Indexed: 01/10/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonize the intestine and adhere to the epithelium by means of different host specific colonization factors (CFs). Colonizing ETEC produce one or both of two enterotoxins; the heat stable (ST) and heat labile (LT) toxins which are both able to cause diarrhoea. The regulation of virulence genes in ETEC during infection of the human intestine is mainly unknown. In this study we analysed the level of mRNA expression of estA, coding for ST, and eltB, coding for the B subunit of LT, during human infection. The expressions of the toxins in ETEC strains expressing both ST and LT were investigated in bacteria isolated directly from patient stool without sub-culturing, (in vivo) and compared to the expression pattern of the corresponding ST/LT strains grown in liquid broth (in vitro) by quantitative competitive RT-PCR using fluorescent primers. We found that estA and eltB are expressed in the in vivo samples but no significant up-or down regulation of the expression levels of either estA or eltB could be determined in vivo as compared to in vitro.
Collapse
Affiliation(s)
- Asa Sjöling
- Institute of Biomedicine, Department of Microbiology and Immunology, Göteborg University, Box 435, 405 30 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006; 313:236-8. [PMID: 16763111 DOI: 10.1126/science.1128794] [Citation(s) in RCA: 566] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Horizontal gene transfer plays a major role in microbial evolution. However, newly acquired sequences can decrease fitness unless integrated into preexisting regulatory networks. We found that the histone-like nucleoid structuring protein (H-NS) selectively silences horizontally acquired genes by targeting sequences with GC content lower than the resident genome. Mutations in hns are lethal in Salmonella unless accompanied by compensatory mutations in other regulatory loci. Thus, H-NS provides a previously unrecognized mechanism of bacterial defense against foreign DNA, enabling the acquisition of DNA from exogenous sources while avoiding detrimental consequences from unregulated expression of newly acquired genes. Characteristic GC/AT ratios of bacterial genomes may facilitate discrimination between a cell's own DNA and foreign DNA.
Collapse
|
36
|
Olekhnovich IN, Kadner RJ. Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J Mol Biol 2006; 357:373-86. [PMID: 16443238 DOI: 10.1016/j.jmb.2006.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 12/22/2005] [Accepted: 01/05/2006] [Indexed: 11/17/2022]
Abstract
The hilA gene on the Salmonella enterica pathogenicity island-1 encodes the key transcriptional regulator of host cell invasion. Transcription of hilA is regulated by numerous physiological signals, including repression under low osmolarity conditions. To investigate the osmotic control of hilA transcription, promoter truncations that remove sequences flanking the hilA promoter were examined. Expression of the minimal hilA core promoter (-55 to +90, relative to the transcription start site) was 57-times higher than the intact promoter (-242 to +505) in the absence of osmotic stress. Both flanking sequences contributed to the strong silencing effect, which was greatly relieved by the simultaneous loss of the two nucleoid-structuring proteins, H-NS and Hha. Mobility-shift assays revealed the presence of binding sites for the H-NS and Hha proteins, both upstream and downstream of the promoter. Either flanking region depressed expression when it was placed downstream of the lacUV5 promoter, and this inhibition was increased when the other flanking sequence was present upstream of the promoter. These results show that the hilA promoter is highly active without other transcription regulators. Its high activity is strongly depressed in low osmolarity conditions by the nucleoid-structuring proteins H-NS and Hha, possibly by formation of a repressive DNA loop. The hilA activators, HilD and HilC appear to overcome effects of downstream silencing region and disrupt repressive DNA loop. Action of activators requires contact with RNA polymerase from their DNA binding site, centered at position -77, relative to the hilA transcription start site.
Collapse
Affiliation(s)
- Igor N Olekhnovich
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| | | |
Collapse
|
37
|
Hildebrand M, Aldridge P, Geider K. Characterization of hns genes from Erwinia amylovora. Mol Genet Genomics 2006; 275:310-9. [PMID: 16404571 DOI: 10.1007/s00438-005-0085-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/05/2005] [Indexed: 12/16/2022]
Abstract
The small basic histone-like protein H-NS is known for bacteria to attenuate virulence of several animal pathogens. An hns homologue from E. amylovora was identified by complementing an E. coli hns-mutant strain with a cosmid library from E. amylovora. A 1.6 kb EcoRI-fragment complemented the mucoid phenotype and repressed the ss-glucosidase activity of E. coli PD32. The open reading frame encoding an H-NS-like protein of 134 amino acid was later shown to be located on plasmid pEA29 (McGhee and Jones 2000). A chromosomal hns gene was amplified with PCR consensus primers and localized near galU of E. amylovora. E. amylovora mutants were created by insertion of a resistance cassette, and the intact gene was inserted into a high copy number plasmid for constitutive expression. Purified chromosomal H-NS protein preferentially bound to a DNA fragment from the lsc region and bending was predicted for an adjacent fragment with the rlsB-promoter. Levan production was significantly increased by hns mutations. Synthesis of the capsular exopolysaccharide amylovoran and of levan were reduced, when hns from the E. amylovora plasmid was overexpressed. A mutation in chromosomal hns of E. amylovora increased amylovoran synthesis, and both mutations retarded symptom formation on immature pears.
Collapse
Affiliation(s)
- M Hildebrand
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | |
Collapse
|