1
|
Kho ZY, Azad MAK, Zhu Y, Han ML, Zhou QT, Velkov T, Naderer T, Li J. Transcriptomic interplay between Acinetobacter baumannii , human macrophage and polymyxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576770. [PMID: 38328180 PMCID: PMC10849618 DOI: 10.1101/2024.01.23.576770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Optimization of antibiotic therapy has been hindered by our dearth of understanding on the mechanism of the host-pathogen-drug interactions. Here, we employed dual RNA-sequencing to examine transcriptomic perturbations in response to polymyxin B in a co-culture infection model of Acinetobacter baumannii and human macrophages. Our findings revealed that polymyxin B treatment induced significant transcriptomic response in macrophage-interacting A. baumannii , exacerbating bacterial oxidative stress, disrupting metal homeostasis, affecting osmoadaptation, triggering stringent stress response, and influencing pathogenic factors. Moreover, infected macrophages adapt heme catabolism, coagulation cascade, and hypoxia-inducible signaling to confront bacterial invasion. Disrupting rcnB , ompW , and traR/dksA genes in A. baumannii impairs metal homeostasis, osmotic stress defense and stringent responses, thereby enhancing antibacterial killing by polymyxin. These findings shed light on the global stress adaptations at the network level during host-pathogen-drug interactions, revealing promising therapeutic targets for further investigation. IMPORTANCE In the context of the development of bacterial resistance during the course of antibiotic therapy, the role of macrophages in shaping bacterial response to antibiotic killing remains enigmatic. Herein we employed dual RNA-sequencing and an in vitro tripartite model to delve into the unexplored transcriptional networks of the Acinetobacter baumannii -macrophage-polymyxin axis. Our findings uncovered the potential synergy between macrophages and polymyxin B which appear to act in co-operation to disrupt multiple stress tolerance mechanisms in A. baumannii . Notably, we discovered the critical roles of bacterial nickel/cobalt homeostasis ( rcnB family), osmotic stress defense ( ompW family), and stringent response regulator ( traR/dksA C4-type zinc finger) in tolerating the last-line antibiotic polymyxin B. Our findings may lead to potential targets for the development of novel therapeutics against the problematic pathogen A. baumannii .
Collapse
|
2
|
Touchette MH, Seeliger JC. Transport of outer membrane lipids in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1340-1354. [PMID: 28110100 DOI: 10.1016/j.bbalip.2017.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
The complex organization of the mycobacterial cell wall poses unique challenges for the study of its assembly. Although mycobacteria are classified evolutionarily as Gram-positive bacteria, their cell wall architecture more closely resembles that of Gram-negative organisms. They possess not only an inner cytoplasmic membrane, but also a bilayer outer membrane that encloses an aqueous periplasm and includes diverse lipids that are required for the survival and virulence of pathogenic species. Questions surrounding how mycobacterial outer membrane lipids are transported from where they are made in the cytoplasm to where they function at the cell exterior are thus similar, and similarly compelling, to those that have driven the study of Gram-negative outer membrane transport pathways. However, little is understood about these processes in mycobacteria. Here we contextualize these questions by comparing our current knowledge of mycobacteria with better-defined systems in other organisms. Based on this analysis, we propose possible models and highlight continuing challenges to improving our understanding of outer membrane assembly in these medically and environmentally important bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Megan H Touchette
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
3
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
4
|
Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes. Mar Drugs 2015; 13:6566-87. [PMID: 26516868 PMCID: PMC4663542 DOI: 10.3390/md13116566] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.
Collapse
|
5
|
Tiwari KB, Birlingmair J, Wilkinson BJ, Jayaswal RK. Role of the twin-arginine translocase (tat) system in iron uptake in Listeria monocytogenes. Microbiology (Reading) 2015; 161:264-271. [DOI: 10.1099/mic.0.083642-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kiran B. Tiwari
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Jacob Birlingmair
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Brian J. Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | |
Collapse
|
6
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
7
|
Monteferrante CG, Miethke M, van der Ploeg R, Glasner C, van Dijl JM. Specific targeting of the metallophosphoesterase YkuE to the bacillus cell wall requires the twin-arginine translocation system. J Biol Chem 2012; 287:29789-800. [PMID: 22767609 DOI: 10.1074/jbc.m112.378190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is dedicated to the transport of fully folded proteins across the cytoplasmic membranes of many bacteria and the chloroplast thylakoidal membrane. Accordingly, Tat-dependently translocated proteins are known to be delivered to the periplasm of Gram-negative bacteria, the growth medium of Gram-positive bacteria, and the thylakoid lumen. Here, we present the first example of a protein, YkuE of Bacillus subtilis, that is specifically targeted by the Tat pathway to the cell wall of a Gram-positive bacterium. The cell wall binding of YkuE is facilitated by electrostatic interactions. Interestingly, under particular conditions, YkuE can also be targeted to the cell wall in a Tat-independent manner. The biological function of YkuE was so far unknown. Our present studies show that YkuE is a metal-dependent phosphoesterase that preferentially binds manganese and zinc.
Collapse
Affiliation(s)
- Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Szirák K, Keserű J, Biró S, Schmelczer I, Barabás G, Penyige A. Disruption of SCO5461 gene coding for a mono-ADP-ribosyltransferase enzyme produces a conditional pleiotropic phenotype affecting morphological differentiation and antibiotic production in Streptomyces coelicolor. J Microbiol 2012; 50:409-18. [PMID: 22752904 DOI: 10.1007/s12275-012-1440-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
The SCO5461 gene of Streptomyces coelicolor A3(2) codes for an ADP-ribosyltransferase enzyme that is predicted to be a transmembrane protein with an extracellular catalytic domain. PCR-targeted disruption of the gene resulted in a mutant that differentiated normally on complex SFM medium; however, morphological differentiation in minimal medium was significantly delayed and this phenotype was even more pronounced on osmotically enhanced minimal medium. The mutant did not sporulate when it was grown on R5 medium, however the normal morphological differentiation was restored when the strain was cultivated beside the wild-type S. coelicolor M145 strain. Comparison of the pattern of ADP-ribosylated proteins showed a difference between the mutant and the wild type, fewer modified proteins were present in the cellular crude extract of the mutant strain. These results support our previous suggestions that protein ADP-ribosylation is involved in the regulation of differentiation and antibiotic production and secretion in Streptomyces.
Collapse
Affiliation(s)
- Krisztina Szirák
- Department of Human Genetics, Medical and Health Science Center, University of Debrecen, Debrecen, Nagyerdei krt 98, H-4032, Hungary
| | | | | | | | | | | |
Collapse
|
9
|
Recombinant protein production and streptomycetes. J Biotechnol 2012; 158:159-67. [DOI: 10.1016/j.jbiotec.2011.06.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/21/2022]
|
10
|
Vockenhuber MP, Suess B. Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region. MICROBIOLOGY-SGM 2011; 158:424-435. [PMID: 22075028 DOI: 10.1099/mic.0.054205-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcriptional regulation of primary and secondary metabolism is well-studied in Streptomyces coelicolor, a model organism for antibiotic production and cell differentiation. In contrast, little is known about post-transcriptional regulation and the potential functions of small non-coding RNAs (sRNAs) in this Gram-positive, GC-rich soil bacterium. Here, we report the identification and characterization of scr5239, an sRNA highly conserved in the genus Streptomyces. The sRNA is 159 nt long, composed of five stem-loops, and encoded in the intergenic region between SCO5238 and SCO5239. scr5239 expression is constitutive under several stress and growth conditions but dependent on the nitrogen supply. scr5239 decreases the production of the antibiotic actinorhodin, and represses expression of the extracellular agarase dagA at the post-transcriptional level by direct base pairing to the coding region 33 nt downstream of the ribosome-binding site.
Collapse
Affiliation(s)
- Michael-Paul Vockenhuber
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Beatrix Suess
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Ghinet MG, Roy S, Poulin-Laprade D, Lacombe-Harvey MÈ, Morosoli R, Brzezinski R. Chitosanase from Streptomyces coelicolor A3(2): biochemical properties and role in protection against antibacterial effect of chitosan. Biochem Cell Biol 2011; 88:907-16. [PMID: 21102653 DOI: 10.1139/o10-109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chitosan, an N-deacetylated derivative of chitin, has attracted much attention as an antimicrobial agent against fungi, bacteria, and viruses. Chitosanases, the glycoside hydrolases responsible for chitosan depolymerisation, are intensively studied as tools for biotechnological transformation of chitosan. The chitosanase CsnA (SCO0677) from Streptomyces coelicolor A3(2) was purified and characterized. CsnA belongs to the GH46 family of glycoside hydrolases. However, it is secreted efficiently by the Tat translocation pathway despite its similarity to the well-studied chitosanase from Streptomyces sp. N174 (CsnN174), which is preferentially secreted through the Sec pathway. Melting point determination, however, revealed substantial differences between these chitosanases, both in the absence and in the presence of chitosan. We further assessed the role of CsnA as a potential protective enzyme against the antimicrobial effect of chitosan. A Streptomyces lividans TK24 strain in which the csnA gene was inactivated by gene disruption was more sensitive to chitosan than the wild-type strain or a chitosanase-overproducing strain. This is the first genetic evidence for the involvement of chitosanases in the protection of bacteria against the antimicrobial effect of chitosan.
Collapse
Affiliation(s)
- Mariana Gabriela Ghinet
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.
Collapse
|
13
|
Joshi MV, Mann SG, Antelmann H, Widdick DA, Fyans JK, Chandra G, Hutchings MI, Toth I, Hecker M, Loria R, Palmer T. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Mol Microbiol 2010; 77:252-71. [PMID: 20487278 DOI: 10.1111/j.1365-2958.2010.07206.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.
Collapse
Affiliation(s)
- Madhumita V Joshi
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl Environ Microbiol 2008; 75:1211-4. [PMID: 19098221 DOI: 10.1128/aem.02139-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a novel negative selection system for actinobacteria based on cytosine deaminase (CodA). We constructed vectors that include a synthetic gene encoding the CodA protein from Escherichia coli optimized for expression in Streptomyces species. Gene disruption and the introduction of an unmarked in-frame deletion were successfully achieved with these vectors.
Collapse
|
15
|
Yikmis M, Arenskötter M, Rose K, Lange N, Wernsmann H, Wiefel L, Steinbüchel A. Secretion and transcriptional regulation of the latex-clearing protein, Lcp, by the rubber-degrading bacterium Streptomyces sp. strain K30. Appl Environ Microbiol 2008; 74:5373-82. [PMID: 18606806 PMCID: PMC2546624 DOI: 10.1128/aem.01001-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/25/2008] [Indexed: 11/20/2022] Open
Abstract
About 22,000 1-methyl-3-nitro-1-nitrosoguanidine- and UV-induced mutants of the rubber-degrading bacterium Streptomyces sp. strain K30 were characterized for the ability to produce clear zones on natural rubber latex overlay agar plates. Thirty-five mutants were defective solely in cleavage of rubber and were phenotypically complemented with the wild-type lcp (latex clearing protein) gene. Sixty-nine mutants exhibited a pleiotropic phenotype and were impaired in utilization of rubber and xylan, indicating that the enzymes responsible for the initial cleavage of these polymers are exported by the same secretion pathway (Q. K. Beg, M. Kapoor, L. Mahajan, and G. S. Hoondal, Appl. Microbiol. Biotechnol. 56:326-3381, 2001; U. K. Laemmli, Nature 227:680-685, 1970). Analysis of the amino acid sequence encoded by lcp revealed a twin-arginine motif, indicating that Lcp is a substrate of the twin-arginine translocation (Tat) pathway (K. Dilks, W. Rose, E. Hartmann, and M. Pohlschröder, J. Bacteriol. 185:1478-1483, 2003). A tatC disruption mutant of Streptomyces lividans 10-164 harboring lcp from Streptomyces sp. strain K30 was not capable of forming clear zones on rubber overlay agar plates. Moreover, Lcp and enhanced green fluorescent protein fusion proteins were detected in the supernatant. Using Escherichia coli having the twin-arginine motif in the signal peptide upstream of Lcp, clear evidence that Lcp is secreted was obtained. Transcriptional analysis revealed basal expression of Lcp in glucose-grown cells and that transcription of lcp is obviously induced in the presence of poly(cis-1,4-isoprene). In contrast, oxiB and oxiA, which are located directly downstream of lcp and putatively encode a heteromultimeric aldehyde dehydrogenase oxidizing the primary cleavage products generated by Lcp from poly(cis-1,4-isoprene), were expressed only in the presence of poly(cis-1,4-isoprene). Expression of lcp at a low level is thus required for sensing the polymer in the medium. Rubber degradation products may then induce the transcription of genes coding for enzymes catalyzing the later steps of poly(cis-1,4-isoprene) degradation and the transcription of lcp itself. lcp, oxiB, and oxiA seem to constitute an operon, as a polycistronic mRNA comprising these three genes was detected. The transcriptional start site of lcp was mapped 400 bp upstream of the lcp start codon.
Collapse
Affiliation(s)
- Meral Yikmis
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Guimond J, Morosoli R. Identification of Streptomyces lividans proteins secreted by the twin-arginine translocation pathway following growth with different carbon sources. Can J Microbiol 2008; 54:549-58. [DOI: 10.1139/w08-041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome-based signal peptide predictions classified Streptomyces coelicolor as the microorganism that secretes the most proteins through the twin-arginine translocation (Tat)-dependent secretion pathway. Availability of a ΔtatC mutant of the closely related strain Streptomyces lividans impaired Tat-dependent protein secretion and enabled identification of many extracellular proteins that are secreted via the Tat pathway. Proteomic techniques were applied to analyze proteins from the supernatants of log-phase cultures. Since the bacterial secretome depends mainly on the carbon sources available during growth, xylose, glucose, chitin, and soil extracts were used. A total of 63 proteins were identified, among which 7 were predicted by the TATscan program, and 20 were not predicted but contained a potential Tat signal motif. Thirteen proteins having no signal sequence could be co-transported by Tat-dependent proteins because the genes that encode these proteins are in close proximity in the genome. Finally, the presence of 23 proteins lacking signal peptides was difficult to explain. More secreted proteins could be identified as Tat substrates in varying carbon sources.
Collapse
Affiliation(s)
- Julien Guimond
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Rolf Morosoli
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
17
|
Roy S, Fortin M, Gagnon J, Ghinet MG, Lehoux JG, Dupuis G, Brzezinski R. Quantitative fluorometric analysis of the protective effect of chitosan on thermal unfolding of catalytically active native and genetically-engineered chitosanases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:975-84. [PMID: 17644457 DOI: 10.1016/j.bbapap.2007.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/17/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
We have taken advantage of the intrinsic fluorescence properties of chitosanases to rapidly and quantitatively evaluate the protective effect of chitosan against thermal denaturation of chitosanases. The studies were done using wild type chitosanases N174 produced by Streptomyces sp. N174 and SCO produced by Streptomyces coelicolor A3(2). In addition, two mutants of N174 genetically engineered by single amino acid substitutions (A104L and K164R) and one "consensus" (N174-CONS) chitosanase designed by multiple amino acid substitutions of N174 were analyzed. Chitosan used had a weight average molecular weight (Mw) of 220 kDa and was 85% deacetylated. Results showed a pH and concentration-dependent protective effect of chitosan in all the cases. However, the extent of thermal protection varied depending on chitosanases, suggesting that key amino acid residues contributed to resistance to heat denaturation. The transition temperatures (T(m)) of N174 were 54 degrees C and 69.5 degrees C in the absence and presence (6 g/l) of chitosan, respectively. T(m) were increased by 11.6 degrees C (N174-CONS), 13.8 degrees C (CSN-A104L), 15.6 degrees C (N174-K164R) and 25.2 degrees C (SCO) in the presence of chitosan (6 g/l). The thermal protective effect was attributed to an enzyme-ligand thermostabilization mechanism since it was not mimicked by the presence of anionic (carboxymethyl cellulose, heparin) or cationic (polyethylene imine) polymers, polyhydroxylated (glycerol, sorbitol) compounds or inorganic salts. Furthermore, the data from fluorometry experiments were in agreement with those obtained by analysis of reaction time-courses performed at 61 degrees C in which case CSN-A104L was rapidly inactivated whereas N174, N174-CONS and N174-K164R remained active over a reaction time of 90 min. This study presents evidence that (1) the fluorometric determination of T(m) in the presence of chitosan is a reliable technique for a rapid assessment of the thermal behavior of chitosanases, (2) it is applicable to structure-function studies of mutant chitosanases and, (3) it can be useful to provide an insight into the mechanism by which mutations can influence chitosanase stability.
Collapse
Affiliation(s)
- Sébastien Roy
- Diversified Natural Products Research Laboratory, Institut de Pharmacologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The cyanobacterial plasma membrane is an essential cell barrier with functions such as the control of taxis, nutrient uptake and secretion. These functions are carried out by integral membrane proteins, which are difficult to identify using standard proteomic methods. In this study, integral proteins were enriched from purified plasma membranes of Synechocystis sp. PCC 6803 using urea wash followed by protein resolution in 1D SDS/PAGE. In total, 51 proteins were identified by peptide mass fingerprinting using MALDI-TOF MS. More than half of the proteins were predicted to be integral with 1-12 transmembrane helices. The majority of the proteins had not been identified previously, and include members of metalloproteases, chemotaxis proteins, secretion proteins, as well as type 2 NAD(P)H dehydrogenase and glycosyltransferase. The obtained results serve as a useful reference for further investigations of the address codes for targeting of integral membrane proteins in cyanobacteria.
Collapse
Affiliation(s)
- Tatiana Pisareva
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
19
|
Abstract
The twin-arginine translocation (Tat) pathway is responsible for the export of folded proteins across the cytoplasmic membrane of bacteria. Substrates for the Tat pathway include redox enzymes requiring cofactor insertion in the cytoplasm, multimeric proteins that have to assemble into a complex prior to export, certain membrane proteins, and proteins whose folding is incompatible with Sec export. These proteins are involved in a diverse range of cellular activities including anaerobic metabolism, cell envelope biogenesis, metal acquisition and detoxification, and virulence. The Escherichia coli translocase consists of the TatA, TatB, and TatC proteins, but little is known about the precise sequence of events that leads to protein translocation, the energetic requirements, or the mechanism that prevents the export of misfolded proteins. Owing to the unique characteristics of the pathway, it holds promise for biotechnological applications.
Collapse
Affiliation(s)
- Philip A Lee
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, University of Texas, Austin, Texas 78712-0231, USA.
| | | | | |
Collapse
|
20
|
Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschröder M, Palmer T. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 2006; 103:17927-32. [PMID: 17093047 PMCID: PMC1693849 DOI: 10.1073/pnas.0607025103] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is a protein transport system for the export of folded proteins. Substrate proteins are targeted to the Tat translocase by N-terminal signal peptides harboring a distinctive R-R-x-Phi-Phi "twin-arginine" amino acid motif. Using a combination of proteomic techniques, the protein contents from the cell wall of the model Gram-positive bacterium Streptomyces coelicolor were identified and compared with that of mutant strains defective in Tat transport. The proteomic experiments pointed to 43 potentially Tat-dependent extracellular proteins. Of these, 25 were verified as bearing bona fide Tat-targeting signal peptides after independent screening with a facile, rapid, and sensitive reporter assay. The identified Tat substrates, among others, include polymer-degrading enzymes, phosphatases, and binding proteins as well as enzymes involved in secondary metabolism. Moreover, in addition to predicted extracellular substrates, putative lipoproteins were shown to be Tat-dependent. This work provides strong experimental evidence that the Tat system is used as a major general export pathway in Streptomyces.
Collapse
Affiliation(s)
- David A. Widdick
- Departments of *Molecular Microbiology and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; and
| | - Kieran Dilks
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Andrew Bottrill
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Mike Naldrett
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Tracy Palmer
- Departments of *Molecular Microbiology and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Whittaker MM, Whittaker JW. Streptomyces coelicolor oxidase (SCO2837p): A new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2). Arch Biochem Biophys 2006; 452:108-18. [PMID: 16884677 DOI: 10.1016/j.abb.2006.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/10/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022]
Abstract
The SCO2837 open-reading frame is located within the conserved central core region of the Streptomyces coelicolor A3(2) genome, which contains genes required for essential cellular functions. SCO2837 protein (SCO2837p) expressed by Pichia pastoris is a copper metalloenzyme, catalyzing the oxidation of simple alcohols to aldehydes and reduction of dioxygen to hydrogen peroxide. Distinct optical absorption spectra are observed for oxidized and one-electron reduced holoenzyme, and a free radical EPR signal is present in the oxidized apoprotein, characteristic of the Tyr-Cys redox cofactor previously reported for fungal secretory radical copper oxidases, galactose oxidase and glyoxal oxidase, with which it shares weak sequence similarity. SCO2837p was detected in the growth medium of both S. coelicolor and a recombinant expression host (Streptomyces lividans TK64) by Western blotting, with the expression level dependent on the nature of the carbon source. This represents the first characterized example of a prokaryotic radical copper oxidase.
Collapse
Affiliation(s)
- Mei M Whittaker
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, OR 97006-8291, USA
| | | |
Collapse
|
22
|
Li H, Faury D, Morosoli R. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C fromStreptomyces lividans. FEMS Microbiol Lett 2006; 255:268-74. [PMID: 16448505 DOI: 10.1111/j.1574-6968.2005.00081.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Xylanase C (XlnC) is a cofactorless protein secreted through the twin arginine translocation (Tat)-dependent secretion pathway by Streptomyces lividans. Its signal peptide contains the SRRGFLG sequence, which is similar to the twin-arginine consensus motif. The 49 amino acid-long signal peptide was analyzed by random, site-directed and site-saturation mutagenesis and the effect of these mutations on XlnC secretion determined. None of the mutations abolished XlnC production and the decreased yields were attributed to the low processing rate of precursors ranging from 2 to 5 h instead of 11 min for the wild-type precursor. Replacement of phenylalanine in the consensus motif by other amino acid residues decreased XlnC secretion by 75%, except for a tryptophan substitution which demonstrated a 50% decrease. Charge distribution in the n-domain of the signal peptide was more important than the net charge. Replacement of the signal peptidase recognition site A-H-A by either A-H-E, V-D-S or R-L-E did not affect precursor processing, indicating that the presence of the conserved residues found in the signal peptidase recognition site is not a prerequisite for the processing of Tat-substrates as it is for the processing of Sec-substrates in S. lividans.
Collapse
Affiliation(s)
- Haiming Li
- INRS-Institut Armand-Frappier, Université du Québec, Ville de Laval, Québec, Canada
| | | | | |
Collapse
|