1
|
Wieland B, Gunaratnam G, Pätzold L, Wadood NA, Schmartz GP, Kundu S, Kirilov NK, Krüger I, Elhawy MI, Rehner J, Heintz H, Schmitz F, Yildiz D, Krasteva-Christ G, Becker SL, Jacobs K, Bischoff M. Assessment of the biofilm formation capacities of Staphylococcus aureus strains Newman and Newman D2C in vitro and in vivo. Sci Rep 2025; 15:16132. [PMID: 40341159 PMCID: PMC12062259 DOI: 10.1038/s41598-025-00521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Staphylococcus aureus is a major cause of implant-associated infections (IAIs). The ability of this Gram-positive bacterium to cause IAIs is closely related to its capacity to attach to and to form biofilms on the implant material. Biofilm formation of S. aureus on artificial surfaces is usually mimicked in the laboratory by simple microplate-based in vitro assays and often involves type culture collection preserved laboratory strains such as SA113 (ATCC 35556), Newman (NCTC 8178), and Newman D2C (NCTC 10833, ATCC 25904). The latter two strains are phylogenetically closely related and often inadvertently indicated as strain "Newman" in publications, albeit of the fact that strain Newman D2C harbors among others mutations in the global regulatory loci agr and sae, which strongly impact the phenotypic behavior of this strain. Wondering how the genetic differences between strains Newman and Newman D2C alter the biofilm formation capacities of these two strains in vitro and in vivo, we tested here the adhesion behavior and biofilm formation capacities of both strains on different kinds of artificial surfaces (tissue culture-treated bottoms of 96-well polystyrene microplates and polyurethane-based peripheral venous catheter [PVC] tubing). Additionally, we determined their ability to cause infection in a foreign body-related murine infection model. Our studies revealed that the Newman and Newman D2C derivatives kept at Saarland University, Germany, differ significantly in their abilities to attach to microplate well bottoms and PVC tubing, and to form biofilms in various static and dynamic in vitro assays. However, when the biofilm formation capacities of both strains were determined in an in vivo infection model, rather comparable bacterial loads were observed. These findings suggest that biofilm formation capacities of S. aureus strains may differ substantially in vitro and in vivo. Additionally, researchers working with strains Newman and Newman D2C should be aware that both strains differ substantially in their phenotypic behavior, and that both strains should be indicated correctly to allow for a better comparison of data obtained with these strains in different laboratories.
Collapse
Affiliation(s)
- Ben Wieland
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Gubesh Gunaratnam
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Linda Pätzold
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Noran Abdel Wadood
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | | | - Swarnali Kundu
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | | | - Ina Krüger
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Mohamed Ibrahem Elhawy
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Jacqueline Rehner
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Hannah Heintz
- Experimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Daniela Yildiz
- Preclinical Center for Molecular Signaling, Molecular Pharmacology, Saarland University, 66421, Homburg, Germany
| | | | - Sören Leif Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Karin Jacobs
- Experimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
- Max Planck School Matter to Life, 69120, Heidelberg, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
2
|
Li M, Wang B, Chen J, Jiang L, Zhou Y, Guo G, Jiang F, Hu Y, Wang C, Yang Y, Tang J, Han P, Yu J, Shen H. Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection. NPJ Biofilms Microbiomes 2024; 10:102. [PMID: 39370453 PMCID: PMC11456606 DOI: 10.1038/s41522-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) SaeRS two-component system (TCS) regulates over 20 virulence factors. While its impact on chronic infection has been thoroughly discussed, its role in the early stage of infection remains elusive. Since macrophages serve as the primary immune defenders at the onset of infection, this study investigates the influence of SaeRS on macrophage functions and elucidates the underlying mechanisms. Macrophage expression of inflammatory and chemotactic factors, phagocytosis, and bactericidal activity against S. aureus were assessed, along with the evaluation of cellular oxidative stress. SaeRS was found to impair macrophage function. Mechanistically, SaeRS inhibited NF-κB pathway activation via toll-like receptor 2 (TLR2). Its immune-modulating effect could partially be explained by the strengthened biofilm formation. More importantly, we found SaeRS compromised macrophage immune functions at early infection stages even prior to biofilm formation. These early immune evasion effects were dependent on bacterial clumping as cytokine secretion, phagocytosis, and bactericidal activity were repaired when clumping was inhibited. We speculate that the bacterial clumping-mediated antigen mask is responsible for SaeRS-mediated immune evasion at the early infection stage. In vivo, ΔsaeRS infection was cleared earlier, accompanied by early pro-inflammatory cytokines production, and increased tissue oxidative stress. Subsequently, macrophages transitioned to an anti-inflammatory state, thereby promoting tissue repair. In summary, our findings underscore the critical role of the SaeRS TCS in S. aureus pathogenicity, particularly during early infection, which is likely initiated by SaeRS-mediated bacterial clumping.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiani Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Luhui Jiang
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yawen Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Changming Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yi Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
3
|
Wang Q, Nurxat N, Zhang L, Liu Y, Wang Y, Zhang L, Zhao N, Dai Y, Jian Y, He L, Wang H, Bae T, Li M, Liu Q. Diabetes mellitus promotes the nasal colonization of high virulent Staphylococcus aureus through the regulation of SaeRS two-component system. Emerg Microbes Infect 2023; 12:2276335. [PMID: 37882148 PMCID: PMC10796126 DOI: 10.1080/22221751.2023.2276335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Diabetic foot infections are a common complication of diabetes. Staphylococcus aureus is frequently isolated from diabetic foot infections and commonly colonizes human nares. According to the study, the nasal microbiome analysis revealed that diabetic patients had a significantly altered nasal microbial composition and diversity. Typically, the fasting blood glucose (FBG) level had an impact on the abundance and sequence type (ST) of S. aureus in diabetic patients. We observed that highly virulent S. aureus ST7 strains were more frequently colonized in diabetic patients, especially those with poorly controlled FBG, while ST59 was dominant in healthy individuals. S. aureus ST7 strains were more resistant to human antimicrobial peptides and formed stronger biofilms than ST59 strains. Critically, S. aureus ST7 strains displayed higher virulence compared to ST59 strains in vivo. The dominance of S. aureus ST7 strains in hyperglycemic environment is due to the higher activity of the SaeRS two-component system (TCS). S. aureus ST7 strains outcompeted ST59 both in vitro, and in nasal colonization model in diabetic mice, which was abolished by the deletion of the SaeRS TCS. Our data indicated that highly virulent S. aureus strains preferentially colonize diabetic patients with poorly controlled FBG through SaeRS TCS. Detection of S. aureus colonization and elimination of colonizing S. aureus are critical in the care of diabetic patients with high FBG.
Collapse
Affiliation(s)
- Qichen Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yingxin Dai
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Leidecker M, Bertling A, Hussain M, Bischoff M, Eble JA, Fender AC, Jurk K, Rumpf C, Herrmann M, Kehrel BE, Niemann S. Protein Disulfide Isomerase and Extracellular Adherence Protein Cooperatively Potentiate Staphylococcal Invasion into Endothelial Cells. Microbiol Spectr 2023; 11:e0388622. [PMID: 36995240 PMCID: PMC10269700 DOI: 10.1128/spectrum.03886-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Invasion of host cells is an important feature of Staphylococcus aureus. The main internalization pathway involves binding of the bacteria to host cells, e.g., endothelial cells, via a fibronectin (Fn) bridge between S. aureus Fn binding proteins and α5β1-integrin, followed by phagocytosis. The secreted extracellular adherence protein (Eap) has been shown to promote this cellular uptake pathway of not only S. aureus, but also of bacteria otherwise poorly taken up by host cells, such as Staphylococcus carnosus. The exact mechanisms are still unknown. Previously, we demonstrated that Eap induces platelet activation by stimulation of the protein disulfide isomerase (PDI), a catalyst of thiol-disulfide exchange reactions. Here, we show that Eap promotes PDI activity on the surface of endothelial cells, and that this contributes critically to Eap-driven staphylococcal invasion. PDI-stimulated β1-integrin activation followed by increased Fn binding to host cells likely accounts for the Eap-enhanced uptake of S. aureus into non-professional phagocytes. Additionally, Eap supports the binding of S. carnosus to Fn-α5β1 integrin, thereby allowing its uptake into endothelial cells. To our knowledge, this is the first demonstration that PDI is crucial for the uptake of bacteria into host cells. We describe a hitherto unknown function of Eap-the promotion of an enzymatic activity with subsequent enhancement of bacterial uptake-and thus broaden mechanistic insights into its importance as a driver of bacterial pathogenicity. IMPORTANCE Staphylococcus aureus can invade and persist in non-professional phagocytes, thereby escaping host defense mechanisms and antibiotic treatment. The intracellular lifestyle of S. aureus contributes to the development of infection, e.g., in infective endocarditis or chronic osteomyelitis. The extracellular adherence protein secreted by S. aureus promotes its own internalization as well as that of bacteria that are otherwise poorly taken up by host cells, such as Staphylococcus carnosus. In our study, we demonstrate that staphylococcal uptake by endothelial cells requires catalytic disulfide exchange activity by the cell-surface protein disulfide isomerase, and that this critical enzymatic function is enhanced by Eap. The therapeutic application of PDI inhibitors has previously been investigated in the context of thrombosis and hypercoagulability. Our results add another intriguing possibility: therapeutically targeting PDI, i.e., as a candidate approach to modulate the initiation and/or course of S. aureus infectious diseases.
Collapse
Affiliation(s)
- Marleen Leidecker
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Anne Bertling
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
| | - Muzaffar Hussain
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Anke C. Fender
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
- Institute of Pharmacology, University Hospital Essen, Essen, Germany
| | - Kerstin Jurk
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christine Rumpf
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
5
|
Adaptation of Staphylococcus aureus in a Medium Mimicking a Diabetic Foot Environment. Toxins (Basel) 2021; 13:toxins13030230. [PMID: 33810194 PMCID: PMC8005162 DOI: 10.3390/toxins13030230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections (DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a specific environment based on the wound-like medium biofilm model. The adaptation of isolates was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the four S. aureus had adapted their metabolism, with the development of small colony variants and the loss of β-hemolysin expression. The in vivo nematode model suggested a decrease of virulence, confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of environment on the adaptation switch of S. aureus to prolonged stress environmental conditions. These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.
Collapse
|
6
|
Gangwar B, Kumar S, Darokar MP. Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome. Front Microbiol 2020; 11:1779. [PMID: 33071991 PMCID: PMC7534511 DOI: 10.3389/fmicb.2020.01779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an opportunistic bacterium of the human body and a leading cause of nosocomial infections. Methicillin resistant S. aureus (MRSA) infections involving biofilm lead to higher mortality and morbidity in patients. Biofilm causes serious clinical issues, as it mitigates entry of antimicrobials to reach the etiological agents. It plays an important role in resilient chronic infections which place an unnecessary burden on antibiotics and the associated costs. To combat drug-resistant infection involving biofilm, there is a need to discover potential anti-biofilm agents. In this study, activity of polyphenolic flavonoid glabridin against biofilm formation of methicillin resistant clinical isolates of S. aureus is being reported for the first time. Crystal violet assay and scanning electron microscopy evidences shows that glabridin prevents formation of cells clusters and attachment of methicillin resistant clinical isolate (MRSA 4423) of S. aureus to the surface in a dose dependent manner. Gel free proteomic analysis of biofilm matrix by LC-ESI-QTOF confirmed the existence of several proteins known to be involved in cells adhesion. Furthermore, expression analysis of cell surface proteins revealed that glabridin significantly down regulates an abundance of several surface-associated adhesins including fibronectin binding proteins (FnbA, FnbB), serine-aspartate repeat-containing protein D (SdrD), immunoglobulin-binding protein G (Sbi), and other virulence factors which were induced by extracellular glucose in MRSA 4423. In addition, several moonlighting proteins (proteins with multiple functions) such as translation elongation factors (EF-Tu, EF-G), chaperone protein (DnaK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) were detected on the cell surface wherein their abundance was inversely proportional to surface-associated adhesins. This study clearly suggests that glabridin prevents biofilm formation in S. aureus through modulation of the cell surface proteins.
Collapse
Affiliation(s)
- Bhavana Gangwar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Santosh Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
7
|
Sultan AR, Hoppenbrouwers T, Lemmens-den Toom NA, Snijders SV, van Neck JW, Verbon A, de Maat MPM, van Wamel WJB. During the Early Stages of Staphylococcus aureus Biofilm Formation, Induced Neutrophil Extracellular Traps Are Degraded by Autologous Thermonuclease. Infect Immun 2019; 87:e00605-19. [PMID: 31527127 PMCID: PMC6867843 DOI: 10.1128/iai.00605-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus extracellular DNA (eDNA) plays a crucial role in the structural stability of biofilms during bacterial colonization; on the contrary, host immune responses can be induced by bacterial eDNA. Previously, we observed production of S. aureus thermonuclease during the early stages of biofilm formation in a mammalian cell culture medium. Using a fluorescence resonance energy transfer (FRET)-based assay, we detected thermonuclease activity of S. aureus biofilms grown in Iscove's modified Dulbecco's medium (IMDM) earlier than that of widely studied biofilms grown in tryptic soy broth (TSB). The thermonuclease found was Nuc1, confirmed by mass spectrometry and competitive Luminex assay. These results indicate that biofilm development in IMDM may not rely on eDNA for structural stability. A bacterial viability assay in combination with wheat germ agglutinin (WGA) staining confirmed the accumulation of dead cells and eDNA in biofilms grown in TSB. However, in biofilms grown in IMDM, minimal amounts of eDNA were found; instead, polysaccharide intercellular adhesin (PIA) was detected. To investigate if this early production of thermonuclease plays a role in immune modulation by biofilm, we studied the effect of thermonuclease on human neutrophil extracellular trap (NET) formation using a nuc knockout and complemented strain. We confirmed that thermonuclease produced by early-stage biofilms grown in IMDM degraded biofilm-induced NETs. Additionally, neither the presence of biofilms nor thermonuclease stimulated an increase in reactive oxygen species (ROS) production by neutrophils. Our findings indicated that S. aureus, during the early stages of biofilm formation, actively evades the host immune responses by producing thermonuclease.
Collapse
Affiliation(s)
- Andi R Sultan
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Tamara Hoppenbrouwers
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | | - Susan V Snijders
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Johan W van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Herzog S, Dach F, de Buhr N, Niemann S, Schlagowski J, Chaves-Moreno D, Neumann C, Goretzko J, Schwierzeck V, Mellmann A, Dübbers A, Küster P, Schültingkemper H, Rescher U, Pieper DH, von Köckritz-Blickwede M, Kahl BC. High Nuclease Activity of Long Persisting Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis Patients Protects Against NET-Mediated Killing. Front Immunol 2019; 10:2552. [PMID: 31772562 PMCID: PMC6849659 DOI: 10.3389/fimmu.2019.02552] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is one of the first and most prevalent pathogens cultured from the airways of cystic fibrosis (CF) patients, which can persist there for extended periods. Airway infections in CF patients are characterized by a strong inflammatory response of highly recruited neutrophils. One killing mechanism of neutrophils is the formation of neutrophil extracellular traps (NETs), which capture and eradicate bacteria by extracellular fibers of neutrophil chromatin decorated with antimicrobial granule proteins. S. aureus secretes nuclease, which can degrade NETs. We hypothesized, that S. aureus adapts to the airways of CF patients during persistent infection by escaping from NET-mediated killing via an increase of nuclease activity. Sputum samples of CF patients with chronic S. aureus infection were visualized by confocal microscopy after immuno-fluorescence staining for NET-specific markers, S. aureus bacteria and overall DNA structures. Nuclease activity was analyzed in sequential isogenic long persisting S. aureus isolates, as confirmed by whole genome sequencing, from an individual CF patient using a FRET-based nuclease activity assay. Additionally, some of these isolates were selected and analyzed by qRT-PCR to determine the expression of nuc1 and regulators of interest. NET-killing assays were performed with clinical S. aureus isolates to evaluate killing and bacterial survival depending on nuclease activity. To confirm the role of nuclease during NET-mediated killing, a clinical isolate with low nuclease activity was transformed with a nuclease expression vector (pCM28nuc). Furthermore, two sputa from an individual CF patient were subjected to RNA-sequence analysis to evaluate the activity of nuclease in vivo. In sputa, S. aureus was associated to extracellular DNA structures. Nuclease activity in clinical S. aureus isolates increased in a time-and phenotype-dependent manner. In the clinical isolates, the expression of nuc1 was inversely correlated to the activity of agr and was independent of saeS. NET-mediated killing was significantly higher in S. aureus isolates with low compared to isolates with high nuclease activity. Importantly, transformation of the clinical isolate with low nuclease activity with pCM28nuc conferred protection against NET-mediated killing confirming the beneficial role of nuclease for protection against NETs. Also, nuclease expression in in vivo sputa was high, which underlines the important role of nuclease within the highly inflamed CF airways. In conclusion, our data show that S. aureus adapts to the neutrophil-rich environment of CF airways with increasing nuclease expression most likely to avoid NET-killing during long-term persistence.
Collapse
Affiliation(s)
- Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Felix Dach
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Nicole de Buhr
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jannik Schlagowski
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | - Claudia Neumann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jonas Goretzko
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Angelika Dübbers
- Department of Pediatrics, University Hospital Münster, Münster, Germany
| | - Peter Küster
- Department of Pediatrics, Clemenshospital, Münster, Germany
| | | | - Ursula Rescher
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Dietmar H. Pieper
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
9
|
Hannachi N, Habib G, Camoin-Jau L. Aspirin Effect on Staphylococcus aureus-Platelet Interactions During Infectious Endocarditis. Front Med (Lausanne) 2019; 6:217. [PMID: 31681776 PMCID: PMC6803506 DOI: 10.3389/fmed.2019.00217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Infectious endocarditis (IE) is a rare disease associated with high mortality and morbidity rate. The platelet-bacterial interaction presents the cornerstone of the development of endocardial vegetation. The epidemiology of IE has undergone profound changes between the last and the new decade, with Staphylococcus aureus becoming the main incriminated species. Despite improvements in antibiotic and surgical therapies, embolic disorders remain highly associated with IE that can be fatal. Antiplatelet drugs have been widely proposed to overcome embolic events associated with IE. This proposal has been supported by numerous in vitro, experimental, and clinical studies. However, other studies have yielded conflicting results. In this review, we focus on the effect of aspirin on the genesis of S. aureus endocarditic vegetation, as well as on the management of embolic and hemorrhagic events related to it, starting by its influence on the platelet-bacteria interaction.
Collapse
Affiliation(s)
- Nadji Hannachi
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Gilbert Habib
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
- Département de Cardiologie, Hôpital de la Timone, AP-HM, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
- Laboratoire d'Hématologie, Hôpital de la Timone, APHM, Marseille, France
| |
Collapse
|
10
|
Abstract
We developed a new approach that couples Southwestern blotting and mass spectrometry to discover proteins that bind extracellular DNA (eDNA) in bacterial biofilms. Using Staphylococcus aureus as a model pathogen, we identified proteins with known DNA-binding activity and uncovered a series of lipoproteins with previously unrecognized DNA-binding activity. We demonstrated that expression of these lipoproteins results in an eDNA-dependent biofilm enhancement. Additionally, we found that while deletion of lipoproteins had a minimal impact on biofilm accumulation, these lipoprotein mutations increased biofilm porosity, suggesting that lipoproteins and their associated interactions contribute to biofilm structure. For one of the lipoproteins, SaeP, we showed that the biofilm phenotype requires the lipoprotein to be anchored to the outside of the cellular membrane, and we further showed that increased SaeP expression correlates with more retention of high-molecular-weight DNA on the bacterial cell surface. SaeP is a known auxiliary protein of the SaeRS system, and we also demonstrated that the levels of SaeP correlate with nuclease production, which can further impact biofilm development. It has been reported that S. aureus biofilms are stabilized by positively charged cytoplasmic proteins that are released into the extracellular environment, where they make favorable electrostatic interactions with the negatively charged cell surface and eDNA. In this work we extend this electrostatic net model to include secreted eDNA-binding proteins and membrane-attached lipoproteins that can function as anchor points between eDNA in the biofilm matrix and the bacterial cell surface.IMPORTANCE Many bacteria are capable of forming biofilms encased in a matrix of self-produced extracellular polymeric substances (EPS) that protects them from chemotherapies and the host defenses. As a result of these inherent resistance mechanisms, bacterial biofilms are extremely difficult to eradicate and are associated with chronic wounds, orthopedic and surgical wound infections, and invasive infections, such as infective endocarditis and osteomyelitis. It is therefore important to understand the nature of the interactions between the bacterial cell surface and EPS that stabilize biofilms. Extracellular DNA (eDNA) has been recognized as an EPS constituent for many bacterial species and has been shown to be important in promoting biofilm formation. Using Staphylococcus aureus biofilms, we show that membrane-attached lipoproteins can interact with the eDNA in the biofilm matrix and promote biofilm formation, which suggests that lipoproteins are potential targets for novel therapies aimed at disrupting bacterial biofilms.
Collapse
|
11
|
Redundant and Distinct Roles of Secreted Protein Eap and Cell Wall-Anchored Protein SasG in Biofilm Formation and Pathogenicity of Staphylococcus aureus. Infect Immun 2019. [PMID: 30670553 DOI: 10.1128/iai00894-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Chronic and fatal infections caused by Staphylococcus aureus are sometimes associated with biofilm formation. Secreted proteins and cell wall-anchored proteins (CWAPs) are important for the development of polysaccharide-independent biofilms, but functional relationships between these proteins are unclear. In the present study, we report the roles of the extracellular adherence protein Eap and the surface CWAP SasG in S. aureus MR23, a clinical methicillin-resistant isolate that forms a robust protein-dependent biofilm and accumulates a large amount of Eap in the extracellular matrix. Double deletion of eap and sasG, but not single eap or sasG deletion, reduced the biomass of the formed biofilm. Mutational analysis demonstrated that cell wall anchorage is essential for the role of SasG in biofilm formation. Confocal laser scanning microscopy revealed that MR23 formed a rugged and thick biofilm; deletion of both eap and sasG reduced biofilm ruggedness and thickness. Although sasG deletion did not affect either of these features, eap deletion reduced the ruggedness but not the thickness of the biofilm. This indicated that Eap contributes to the rough irregular surface structure of the MR23 biofilm and that both Eap and SasG play roles in biofilm thickness. The level of pathogenicity of the Δeap ΔsasG strain in a silkworm larval infection model was significantly lower (P < 0.05) than those of the wild type and single-deletion mutants. Collectively, these findings highlight the redundant and distinct roles of a secreted protein and a CWAP in biofilm formation and pathogenicity of S. aureus and may inform new strategies to control staphylococcal biofilm infections.
Collapse
|
12
|
Redundant and Distinct Roles of Secreted Protein Eap and Cell Wall-Anchored Protein SasG in Biofilm Formation and Pathogenicity of Staphylococcus aureus. Infect Immun 2019; 87:IAI.00894-18. [PMID: 30670553 DOI: 10.1128/iai.00894-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/12/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic and fatal infections caused by Staphylococcus aureus are sometimes associated with biofilm formation. Secreted proteins and cell wall-anchored proteins (CWAPs) are important for the development of polysaccharide-independent biofilms, but functional relationships between these proteins are unclear. In the present study, we report the roles of the extracellular adherence protein Eap and the surface CWAP SasG in S. aureus MR23, a clinical methicillin-resistant isolate that forms a robust protein-dependent biofilm and accumulates a large amount of Eap in the extracellular matrix. Double deletion of eap and sasG, but not single eap or sasG deletion, reduced the biomass of the formed biofilm. Mutational analysis demonstrated that cell wall anchorage is essential for the role of SasG in biofilm formation. Confocal laser scanning microscopy revealed that MR23 formed a rugged and thick biofilm; deletion of both eap and sasG reduced biofilm ruggedness and thickness. Although sasG deletion did not affect either of these features, eap deletion reduced the ruggedness but not the thickness of the biofilm. This indicated that Eap contributes to the rough irregular surface structure of the MR23 biofilm and that both Eap and SasG play roles in biofilm thickness. The level of pathogenicity of the Δeap ΔsasG strain in a silkworm larval infection model was significantly lower (P < 0.05) than those of the wild type and single-deletion mutants. Collectively, these findings highlight the redundant and distinct roles of a secreted protein and a CWAP in biofilm formation and pathogenicity of S. aureus and may inform new strategies to control staphylococcal biofilm infections.
Collapse
|
13
|
Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence. Nat Commun 2019; 10:775. [PMID: 30770821 PMCID: PMC6377658 DOI: 10.1038/s41467-019-08724-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus is a significant cause of human infection. Here, we demonstrate that mutations in the transcriptional repressor of purine biosynthesis, purR, enhance the pathogenic potential of S. aureus. Indeed, systemic infection with purR mutants causes accelerated mortality in mice, which is due to aberrant up-regulation of fibronectin binding proteins (FnBPs). Remarkably, purR mutations can arise upon exposure of S. aureus to stress, such as an intact immune system. In humans, naturally occurring anti-FnBP antibodies exist that, while not protective against recurrent S. aureus infection, ostensibly protect against hypervirulent S. aureus infections. Vaccination studies support this notion, where anti-Fnb antibodies in mice protect against purR hypervirulence. These findings provide a novel link between purine metabolism and virulence in S. aureus.
Collapse
|
14
|
Wang FD, Wu PF, Chen SJ. Distribution of virulence genes in bacteremic methicillin-resistant Staphylococcus aureus isolates from various sources. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:426-432. [PMID: 30686615 DOI: 10.1016/j.jmii.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) can encode proteins which directly bind bacteria to many tissues and medical devices or catheters to trigger pathogenesis. However, the relationship between genetic backgrounds and virulent factors in MRSA isolates remained incompletely understood yet. METHODS MRSA isolates were collected from blood cultures of patients with infective endocarditis, bone/joint infection, skin/soft tissue infection, or catheter-related bacteremia in hemodialysis at a tertiary medical center between 2005 and 2011. MRSA isolates were characterized by the methods of spa, multilocus sequence, and staphylococcal cassette chromosome mec (SCCmec) typing. Identification of virulence gene expression was measured by Power SYBR Green PCR Master Mix. RESULTS Overall collected were 136 MRSA bacteremic isolates, including those from the cases of infective endocarditis (n = 23), bone/joint infection (n = 49), skin/soft tissue infection (n = 20), or catheter-related bacteremia in patients with acute kidney injury or end-stage renal stage receiving hemodialysis (n = 54). CC8-ST239-MRSA-SCCmec type III-spa type t037 was the most prevalent type observed in all of 136 MRSA bacteremic isolates. The prevalent genes in the group of infective endocarditis were clfA, clfB, fnbA, ebpS, eap, emp, sae, and eno; bone/joint infections clfA, emp, sae, and eno; skin/soft tissue infection eno; hemodialysis catheter-related bacteremia clfA and sae. The distribution of each gene was not statically different among four groups. CONCLUSIONS A major MRSA lineage, CC8-ST239-MRSA-SCCmec type III-spa type t037, is noted among bacteremic MRSA isolates. No disease-specific virulent genes can be identified.
Collapse
Affiliation(s)
- Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ping-Feng Wu
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Su-Jung Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
15
|
Trivedi U, Madsen JS, Everett J, Fell C, Russel J, Haaber J, Crosby HA, Horswill AR, Burmølle M, Rumbaugh KP, Sørensen SJ. Staphylococcus aureus coagulases are exploitable yet stable public goods in clinically relevant conditions. Proc Natl Acad Sci U S A 2018; 115:E11771-E11779. [PMID: 30463950 PMCID: PMC6294911 DOI: 10.1073/pnas.1804850115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coagulation is an innate defense mechanism intended to limit blood loss and trap invading pathogens during infection. However, Staphylococcus aureus has the ability to hijack the coagulation cascade and generate clots via secretion of coagulases. Although many S. aureus have this characteristic, some do not. The population dynamics regarding this defining trait have yet to be explored. We report here that coagulases are public goods that confer protection against antimicrobials and immune factors within a local population or community, thus promoting growth and virulence. By utilizing variants of a methicillin-resistant S. aureus we infer that the secretion of coagulases is a cooperative trait, which is subject to exploitation by invading mutants that do not produce the public goods themselves. However, overexploitation, "tragedy of the commons," does not occur at clinically relevant conditions. Our micrographs indicate this is due to spatial segregation and population viscosity. These findings emphasize the critical role of coagulases in a social evolution context and provide a possible explanation as to why the secretion of these public goods is maintained in mixed S. aureus communities.
Collapse
Affiliation(s)
- Urvish Trivedi
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jake Everett
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Cody Fell
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Jakob Russel
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jakob Haaber
- Department of Veterinary and Animal Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| | - Heidi A Crosby
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Alexander R Horswill
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| |
Collapse
|
16
|
Nagel A, Michalik S, Debarbouille M, Hertlein T, Gesell Salazar M, Rath H, Msadek T, Ohlsen K, van Dijl JM, Völker U, Mäder U. Inhibition of Rho Activity Increases Expression of SaeRS-Dependent Virulence Factor Genes in Staphylococcus aureus, Showing a Link between Transcription Termination, Antibiotic Action, and Virulence. mBio 2018; 9:e01332-18. [PMID: 30228237 PMCID: PMC6143737 DOI: 10.1128/mbio.01332-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus causes various diseases ranging from skin and soft tissue infections to life-threatening infections. Adaptation to the different host niches is controlled by a complex network of transcriptional regulators. Global profiling of condition-dependent transcription revealed adaptation of S. aureus HG001 at the levels of transcription initiation and termination. In particular, deletion of the gene encoding the Rho transcription termination factor triggered a remarkable overall increase in antisense transcription and gene expression changes attributable to indirect regulatory effects. The goal of the present study was a detailed comparative analysis of S. aureus HG001 and its isogenic rho deletion mutant. Proteome analysis revealed significant differences in cellular and extracellular protein profiles, most notably increased amounts of the proteins belonging to the SaeR regulon in the Rho-deficient strain. The SaeRS two-component system acts as a major regulator of virulence gene expression in staphylococci. Higher levels of SaeRS-dependent virulence factors such as adhesins, toxins, and immune evasion proteins in the rho mutant resulted in higher virulence in a murine bacteremia model, which was alleviated in a rho complemented strain. Inhibition of Rho activity by bicyclomycin, a specific inhibitor of Rho activity, also induced the expression of SaeRS-dependent genes, at both the mRNA and protein levels, to the same extent as observed in the rho mutant. Taken together, these findings indicate that activation of the Sae system in the absence of Rho is directly linked to Rho's transcription termination activity and establish a new link between antibiotic action and virulence gene expression in S. aureusIMPORTANCE The major human pathogen Staphylococcus aureus is a widespread commensal bacterium but also the most common cause of nosocomial infections. It adapts to the different host niches through a complex gene regulatory network. We show here that the Rho transcription termination factor, which represses pervasive antisense transcription in various bacteria, including S. aureus, plays a role in controlling SaeRS-dependent virulence gene expression. A Rho-deficient strain produces larger amounts of secreted virulence factors in vitro and shows increased virulence in mice. We also show that treatment of S. aureus with the antibiotic bicyclomycin, which inhibits Rho activity and is effective against Gram-negative bacteria, induces the same changes in the proteome as observed in the Rho-deficient strain. Our results reveal for the first time a link between transcription termination and virulence regulation in S. aureus, which implies a novel mechanism by which an antibiotic can modulate the expression of virulence factors.
Collapse
Affiliation(s)
- Anna Nagel
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michel Debarbouille
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tarek Msadek
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Eisenbeis J, Saffarzadeh M, Peisker H, Jung P, Thewes N, Preissner KT, Herrmann M, Molle V, Geisbrecht BV, Jacobs K, Bischoff M. The Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Protein Capable of Blocking Neutrophil Extracellular Trap Formation. Front Cell Infect Microbiol 2018; 8:235. [PMID: 30038902 PMCID: PMC6047304 DOI: 10.3389/fcimb.2018.00235] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
The extracellular adherence protein (Eap) of Staphylococcus aureus is a secreted protein known to exert a number of adhesive and immunomodulatory properties. Here we describe the intrinsic DNA binding activity of this multifunctional secretory factor. By using atomic force microscopy, we provide evidence that Eap can bind and aggregate DNA. While the origin of the DNA substrate (e.g., eukaryotic, bacterial, phage, and artificial DNA) seems to not be of major importance, the DNA structure (e.g., linear or circular) plays a critical role with respect to the ability of Eap to bind and condense DNA. Further functional assays corroborated the nature of Eap as a DNA binding protein, since Eap suppressed the formation of "neutrophil extracellular traps" (NETs), composed of DNA-histone scaffolds, which are thought to function as a neutrophil-mediated extracellular trapping mechanism. The DNA binding and aggregation activity of Eap may thereby protect S. aureus against a specific anti-microbial defense reaction from the host.
Collapse
Affiliation(s)
- Janina Eisenbeis
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Mona Saffarzadeh
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Henrik Peisker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Nicolas Thewes
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Centre National de la Recherche Scientifique, UMR 5235, Université de Montpellier, Montpellier, France
| | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Tuchscherr L, Korpos È, van de Vyver H, Findeisen C, Kherkheulidze S, Siegmund A, Deinhardt-Emmer S, Bach O, Rindert M, Mellmann A, Sunderkötter C, Peters G, Sorokin L, Löffler B. Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts. Int J Med Microbiol 2018; 308:761-769. [PMID: 29843979 DOI: 10.1016/j.ijmm.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
| | - Èva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hélène van de Vyver
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Clais Findeisen
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Salome Kherkheulidze
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Olaf Bach
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | - Martin Rindert
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | | | - Cord Sunderkötter
- Department of Translational Dermatoinfectiology, University of Muenster, Muenster and Department of Dermatology, University Hospital of Halle, Halle, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
19
|
A Vaginal Tract Signal Detected by the Group B Streptococcus SaeRS System Elicits Transcriptomic Changes and Enhances Murine Colonization. Infect Immun 2018; 86:IAI.00762-17. [PMID: 29378799 DOI: 10.1128/iai.00762-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) can colonize the human vaginal tract, leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using transcriptome sequencing (RNA-Seq), the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being upregulated in vivo One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, is shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acts as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.
Collapse
|
20
|
The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci Rep 2017; 7:13665. [PMID: 29057978 PMCID: PMC5651841 DOI: 10.1038/s41598-017-14168-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.
Collapse
|
21
|
Kubistova L, Dvoracek L, Tkadlec J, Melter O, Licha I. Environmental Stress Affects the Formation of Staphylococcus aureus Persisters Tolerant to Antibiotics. Microb Drug Resist 2017; 24:547-555. [PMID: 28813617 DOI: 10.1089/mdr.2017.0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to form persisters has been observed in many microorganisms, including Staphylococcus aureus, mainly in the context of chronic infections and the pathogenicity of these microbes. In our research, we have demonstrated that salt or oxidative stress could play a role in the formation of S. aureus persisters outside the host's intracellular interface. We pre-exposed planktonic growing bacterial culture to an oxidative or salt stress and monitored the dynamics of persister formation after ciprofloxacin and gentamicin treatment. In parallel, using the quantitative PCR (qPCR) approach, we determined the expression level of the stress sigma factor SigB. The pre-exposure of bacteria to salt stress caused a 1-2.5 order of magnitude increase in persister formation in the bacterial population after antibiotic exposure, depending on the type and concentration of the antibiotic used. In contrast, oxidative stress only minimally influenced the formation of persisters, without correlation to the antibiotic type and concentration. We have demonstrated that both stress and antibiotic exposure increase the expression of sigB in bacterial populations from very early on. And that the expression level of sigB differs with the type of antibiotic and stress, but no correlation was observed between persister formation and sigB expression. The method used could be helpful in testing the ability that strains can have, to form persisters.
Collapse
Affiliation(s)
- Lucie Kubistova
- 1 Department of Genetics and Microbiology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Lukas Dvoracek
- 1 Department of Genetics and Microbiology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Jan Tkadlec
- 2 Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University , Prague, Czech Republic .,3 Department of Medical Microbiology, Motol University Hospital , Prague, Czech Republic
| | - Oto Melter
- 2 Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University , Prague, Czech Republic .,3 Department of Medical Microbiology, Motol University Hospital , Prague, Czech Republic
| | - Irena Licha
- 1 Department of Genetics and Microbiology, Faculty of Science, Charles University , Prague, Czech Republic
| |
Collapse
|
22
|
Rewiring of the FtsH regulatory network by a single nucleotide change in saeS of Staphylococcus aureus. Sci Rep 2017; 7:8456. [PMID: 28814746 PMCID: PMC5559551 DOI: 10.1038/s41598-017-08774-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, the membrane-bound ATP-dependent metalloprotease FtsH plays a critical role in resistance to various stressors. However, the molecular mechanism of the FtsH functions is not known. Here, we identified core FtsH target proteins in S. aureus. In the strains Newman and USA300, the abundance of 33 proteins were altered in both strains, of which 11 were identified as core FtsH substrate protein candidates. In the strain Newman and some other S. aureus strains, the sensor histidine kinase SaeS has an L18P (T53C in saeS) substitution, which transformed the protein into an FtsH substrate. Due to the increase of SaeS L18P in the ftsH mutant, Eap, a sae-regulon protein, was also increased in abundance, causing the Newman-specific cell-aggregation phenotype. Regardless of the strain background, however, the ftsH mutants showed lower virulence and survival in a murine infection model. Our study illustrates the elasticity of the bacterial regulatory network, which can be rewired by a single substitution mutation.
Collapse
|
23
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
24
|
Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:286. [PMID: 28713774 PMCID: PMC5491559 DOI: 10.3389/fcimb.2017.00286] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.
Collapse
Affiliation(s)
- Fermin E Guerra
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Delisha M Patel
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Eli W Sward
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
25
|
Fan X, Zhang X, Zhu Y, Niu L, Teng M, Sun B, Li X. Structure of the DNA-binding domain of the response regulator SaeR fromStaphylococcus aureus. ACTA ACUST UNITED AC 2015; 71:1768-76. [DOI: 10.1107/s1399004715010287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/28/2015] [Indexed: 01/01/2023]
Abstract
The SaeR/S two-component regulatory system is essential for controlling the expression of many virulence factors inStaphylococcus aureus. SaeR, a member of the OmpR/PhoB family, is a response regulator with an N-terminal regulatory domain and a C-terminal DNA-binding domain. In order to elucidate how SaeR binds to the promoter regions of target genes, the crystal structure of the DNA-binding domain of SaeR (SaeRDBD) was solved at 2.5 Å resolution. The structure reveals that SaeRDBDexists as a monomer and has the canonical winged helix–turn–helix module. EMSA experiments suggested that full-length SaeR can bind to the P1 promoter and that the binding affinity is higher than that of its C-terminal DNA-binding domain. Five key residues on the winged helix–turn–helix module were verified to be important for binding to the P1 promoterin vitroand for the physiological function of SaeRin vivo.
Collapse
|
26
|
Zapotoczna M, McCarthy H, Rudkin JK, O'Gara JP, O'Neill E. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections. J Infect Dis 2015; 212:1883-93. [PMID: 26044292 DOI: 10.1093/infdis/jiv319] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
High-level resistance to antimicrobial drugs is a major factor in the pathogenesis of chronic Staphylococcus aureus biofilm-associated, medical device-related infections. Antimicrobial susceptibility analysis revealed that biofilms grown for ≤ 24 hours on biomaterials conditioned with human plasma under venous shear in iron-free cell culture medium were significantly more susceptible to antistaphylococcal antibiotics. Biofilms formed under these physiologically relevant conditions were regulated by SaeRS and dependent on coagulase-catalyzed conversion of fibrinogen into fibrin. In contrast, SarA-regulated biofilms formed on uncoated polystyrene in nutrient-rich bacteriological medium were mediated by the previously characterized biofilm factors poly-N-acetyl glucosamine, fibronectin-binding proteins, or autolytic activity and were antibiotic resistant. Coagulase-mediated biofilms exhibited increased antimicrobial resistance over time (>48 hours) but were always susceptible to dispersal by the fibrinolytic enzymes plasmin or nattokinase. Biofilms recovered from infected central venous catheters in a rat model of device-related infection were dispersed by nattokinase, supporting the important role of the biofilm phenotype and identifying a potentially new therapeutic approach with antimicrobials and fibrinolytic drugs, particularly during the early stages of device-related infection.
Collapse
Affiliation(s)
- Marta Zapotoczna
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland
| | - Hannah McCarthy
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Justine K Rudkin
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland Department of Microbiology, Connolly Hospital, Dublin
| |
Collapse
|
27
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
28
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
29
|
The effect of skin fatty acids on Staphylococcus aureus. Arch Microbiol 2014; 197:245-67. [PMID: 25325933 PMCID: PMC4326651 DOI: 10.1007/s00203-014-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/19/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.
Collapse
|
30
|
Yan J, Liu Y, Gao Y, Dong J, Mu C, Li D, Yang G. RNAIII suppresses the expression of LtaS via acting as an antisense RNA inStaphylococcus aureus. J Basic Microbiol 2014; 55:255-61. [DOI: 10.1002/jobm.201400313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Jun Yan
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Chunhua Mu
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Di Li
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| |
Collapse
|
31
|
Herrmann M. Antimicrobial Effects Promoting Biofilm Formation and Persistent Disease: The Role of a DNA-Binding Regulator, SarA, in Staphylococcal Endocarditis. J Infect Dis 2014; 209:1153-5. [DOI: 10.1093/infdis/jiu008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Jenkins R, Burton N, Cooper R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother 2013; 69:603-15. [PMID: 24176984 PMCID: PMC3922154 DOI: 10.1093/jac/dkt430] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen. Its resistance to multiple antibiotics and its prevalence in healthcare establishments make it a serious threat to human health that requires novel interventions. Manuka honey is a broad-spectrum antimicrobial agent that is gaining acceptance in the topical treatment of wounds. Because its mode of action is only partially understood, proteomic and genomic analysis was used to investigate the effects of manuka honey on MRSA at a molecular level. Methods Two-dimensional gel electrophoresis with dual-channel imaging was combined with matrix-assisted laser desorption ionization–time of flight mass spectrometry to determine the identities of differentially expressed proteins. The expression of the corresponding genes was investigated by quantitative PCR. Microarray analysis provided an overview of alterations in gene expression across the MRSA genome. Results Genes with increased expression following exposure to manuka honey were associated with glycolysis, transport and biosynthesis of amino acids, proteins and purines. Those with decreased expression were involved in the tricarboxylic acid cycle, cell division, quorum sensing and virulence. The greatest reductions were seen in genes conferring virulence (sec3, fnb, hlgA, lip and hla) and coincided with a down-regulation of global regulators, such as agr, sae and sarV. A model to illustrate these multiple effects was constructed and implicated glucose, which is one of the major sugars contained in honey. Conclusions A decreased expression of virulence genes in MRSA will impact on its pathogenicity and needs to be investigated in vivo.
Collapse
Affiliation(s)
- Rowena Jenkins
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | |
Collapse
|
33
|
Schmitt J, Joost I, Skaar EP, Herrmann M, Bischoff M. Haemin represses the haemolytic activity of Staphylococcus aureus in an Sae-dependent manner. MICROBIOLOGY (READING, ENGLAND) 2012; 158:2619-2631. [PMID: 22859613 PMCID: PMC4083625 DOI: 10.1099/mic.0.060129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/29/2012] [Accepted: 07/26/2012] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus is a major human pathogen and a common cause of nosocomial infections. This facultative pathogen produces a large arsenal of virulence factors, including the haemolysins, which allow the bacterium to lyse erythrocytes and thereby release large amounts of the haem-containing haemoglobin. The released haem is thought to be the main iron source of this organism during the course of infection, and is considered to be crucial for bacterial proliferation in vivo. High concentrations of haem and its degradation products, on the other hand, are known to be toxic for S. aureus, making it essential for the pathogen to tightly control haem release from red blood cells. Here we show that S. aureus responds to haemin by downregulating the expression of haemolysins. Subinhibitory concentrations of haemin were found to significantly reduce transcription of the haemolysin genes hlb (encoding β-haemolysin) and hlgA (encoding the S-class component of γ-haemolysin), while hla (encoding α-haemolysin) and RNAIII (encoding δ-haemolysin) transcription did not appear to be affected. The presence of haemin also reduced the haemolytic potential of the supernatants of S. aureus LS1 cultures. Inactivation of the sae locus in LS1 abolished the haemin effect on the transcription of haemolysin genes, indicating that the two-component regulatory system is required for this regulatory effect. Iron limitation, on the other hand, was found to induce the expression of haemolysins, and this effect was again abolished in the sae mutant, indicating that S. aureus modulates its haemolysin production in response to iron and haem availability in an Sae-dependent manner.
Collapse
Affiliation(s)
- Julia Schmitt
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| | - Insa Joost
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| | - Eric P. Skaar
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| |
Collapse
|
34
|
Edwards AM, Bowden MG, Brown EL, Laabei M, Massey RC. Staphylococcus aureus extracellular adherence protein triggers TNFα release, promoting attachment to endothelial cells via protein A. PLoS One 2012; 7:e43046. [PMID: 22905199 PMCID: PMC3419684 DOI: 10.1371/journal.pone.0043046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/16/2012] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.
Collapse
Affiliation(s)
- Andrew M. Edwards
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Maria Gabriela Bowden
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Eric L. Brown
- Center for Infectious Disease, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ruth C. Massey
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus. J Bacteriol 2012; 194:2865-76. [PMID: 22447906 DOI: 10.1128/jb.06771-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.
Collapse
|
36
|
Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 2012; 8:e1002434. [PMID: 22253592 PMCID: PMC3257306 DOI: 10.1371/journal.ppat.1002434] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/27/2011] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a pyogenic abscess-forming facultative pathogenic microorganism expressing a large set of virulence-associated factors. Among these, secreted proteins with binding capacity to plasma proteins (e.g. fibrinogen binding proteins Eap and Emp) and prothrombin activators such as Coagulase (Coa) and vWbp are involved in abscess formation. By using a three-dimensional collagen gel (3D-CoG) supplemented with fibrinogen (Fib) we studied the growth behavior of S. aureus strain Newman and a set of mutants as well as their interaction with mouse neutrophils by real-time confocal microscopy. In 3D-CoG/Fib, S. aureus forms microcolonies which are surrounded by an inner pseudocapsule and an extended outer dense microcolony-associated meshwork (MAM) containing fibrin. Coa is involved in formation of the pseudocapsule whereas MAM formation depends on vWbp. Moreover, agr-dependent dispersal of late stage microcolonies could be observed. Furthermore, we demonstrate that the pseudocapsule and the MAM act as mechanical barriers against neutrophils attracted to the microcolony. The thrombin inhibitor argatroban is able to prevent formation of both pseudocapsule and MAM and supports access of neutrophils to staphylococci. Taken together, this model can simulate specific stages of S. aureus abscess formation by temporal dissection of bacterial growth and recruitment of immune cells. It can complement established animal infection models in the development of new treatment options. Staphylococcus aureus is one of the most frequent pathogens causing divers localized and metastatic abscess-forming infections. Here we studied the role of the staphylocoagulases Coa and vWbp in the formation of microcolony-associated fibrin structures. By using a three-dimensional collagen gel (3D-CoG) supplemented with human fibrinogen as a growth environment for staphylococci and as a neutrophil migration matrix, we were able to demonstrate that Coa is involved in producing a fibrin-containing pseudocapsule wrapping the staphylococcal microcolony whereas vWbp is required for establishing an extended outer fibrin meshwork. The pseudocapsule and the outer meshwork hinder neutrophils from attacking the staphylococci. Addition of the thrombin inhibitor argatroban prevents conversion of fibrinogen to fibrin and thus abolishes barrier formation. This in vitro model provides us with new options to study formation as well as prevention of staphylococcal abscesses under tissue-like conditions.
Collapse
Affiliation(s)
- Christoph Guggenberger
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julie A. Morrissey
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Jürgen Heesemann
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- * E-mail:
| |
Collapse
|
37
|
Cafiso V, Bertuccio T, Spina D, Purrello S, Campanile F, Di Pietro C, Purrello M, Stefani S. Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains. PLoS One 2012; 7:e29573. [PMID: 22253738 PMCID: PMC3253798 DOI: 10.1371/journal.pone.0029573] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/30/2011] [Indexed: 11/21/2022] Open
Abstract
Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF.
Collapse
Affiliation(s)
- Viviana Cafiso
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Taschia Bertuccio
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Daniela Spina
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Simona Purrello
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Floriana Campanile
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Unit of Genome and Molecular Complex Systems BioMedicine G Sichel, Department Gian Filippo Ingrassia, Catania, Italy
| | - Michele Purrello
- Unit of Genome and Molecular Complex Systems BioMedicine G Sichel, Department Gian Filippo Ingrassia, Catania, Italy
| | - Stefania Stefani
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| |
Collapse
|
38
|
Rasigade JP, Moulay A, Lhoste Y, Tristan A, Bes M, Vandenesch F, Etienne J, Lina G, Laurent F, Dumitrescu O. Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus. BMC Microbiol 2011; 11:263. [PMID: 22168812 PMCID: PMC3264541 DOI: 10.1186/1471-2180-11-263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022] Open
Abstract
Background Staphylococcus aureus is a well-armed pathogen prevalent in severe infections such as endocarditis and osteomyelitis. Fibronectin-binding proteins A and B, encoded by fnbA/B, are major pathogenesis determinants in these infections through their involvement in S. aureus adhesion to and invasion of host cells. Sub-minimum inhibitory concentrations (sub-MICs) of antibiotics, frequently occurring in vivo because of impaired drug diffusion at the infection site, can alter S. aureus phenotype. We therefore investigated their impact on S. aureus fibronectin-mediated adhesiveness and invasiveness. Methods After in vitro challenge of S. aureus 8325-4 and clinical isolates with sub-MICs of major anti-staphylococcal agents, we explored fnbA/B transcription levels, bacterial adhesiveness to immobilised human fibronectin and human osteoblasts in culture, and bacterial invasion of human osteoblasts. Results Oxacillin, moxifloxacin and linezolid led to the development of a hyper-adhesive phenotype in the fibronectin adhesion assay that was consistent with an increase in fnbA/B transcription. Conversely, rifampin treatment decreased fibronectin binding in all strains tested without affecting fnbA/B transcription. Gentamicin and vancomycin had no impact on fibronectin binding or fnbA/B transcription levels. Only oxacillin-treated S. aureus displayed a significantly increased adhesion to cultured osteoblasts, but its invasiveness did not differ from that of untreated controls. Conclusion Our findings demonstrate that several antibiotics at sub-MICs modulate fibronectin binding in S. aureus in a drug-specific fashion. However, hyper- and hypo- adhesive phenotypes observed in controlled in vitro conditions were not fully confirmed in whole cell infection assays. The relevance of adhesion modulation during in vivo infections is thus still uncertain and requires further investigations.
Collapse
|
39
|
Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression. Microbes Infect 2011; 13:1073-80. [PMID: 21714946 DOI: 10.1016/j.micinf.2011.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/24/2022]
Abstract
One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.
Collapse
|
40
|
Liu Y, Dong J, Wu N, Gao Y, Zhang X, Mu C, Shao N, Fan M, Yang G. The production of extracellular proteins is regulated by ribonuclease III via two different pathways in Staphylococcus aureus. PLoS One 2011; 6:e20554. [PMID: 21655230 PMCID: PMC3105085 DOI: 10.1371/journal.pone.0020554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/05/2011] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus ribonuclease III belongs to the enzyme family known to degrade double-stranded RNAs. It has previously been reported that RNase III cannot influence cell growth but regulates virulence gene expression in S. aureus. Here we constructed an RNase III inactivation mutant (Δrnc) from S. aureus 8325-4. It was found that the extracellular proteins of Δrnc were decreased. Furthermore, we explored how RNase III regulated the production of the extracellular proteins in S. aureus. We found during the lag phase of the bacterial growth cycle RNase III could influence the extracellular protein secretion via regulating the expression of secY2, one component of accessory secretory (sec) pathway. After S. aureus cells grew to exponential phase, RNase III can regulate the expression of extracellular proteins by affecting the level of RNAIII. Further investigation showed that the mRNA stability of secY2 and RNAIII was affected by RNase III. Our results suggest that RNase III could regulate the pathogenicity of S. aureus by influencing the level of extracellular proteins via two different ways respectively at different growth phases.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Na Wu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Chunhua Mu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ming Fan
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
41
|
Watkins RL, Pallister KB, Voyich JM. The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection. PLoS One 2011; 6:e19939. [PMID: 21603642 PMCID: PMC3094403 DOI: 10.1371/journal.pone.0019939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin (IL)-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-γ production during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes a relationship between a bacterial global regulator of virulence and the production of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Robert L. Watkins
- Department of Immunology/Infectious Diseases, Montana State University-Bozeman, Bozeman, Montana, United States of America
| | - Kyler B. Pallister
- Department of Immunology/Infectious Diseases, Montana State University-Bozeman, Bozeman, Montana, United States of America
| | - Jovanka M. Voyich
- Department of Immunology/Infectious Diseases, Montana State University-Bozeman, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
42
|
RNAIII activates map expression by forming an RNA-RNA complex in Staphylococcus aureus. FEBS Lett 2011; 585:899-905. [PMID: 21349272 DOI: 10.1016/j.febslet.2011.02.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is a gram-positive pathogen responsible for a wide variety of diseases. RNAIII is the key effector of the accessory gene regulator (agr) system. It is a regulatory RNA (514 nucleotides long) that acts at both transcription and translation level to regulate the production of numerous toxins, enzymes and cell surface proteins. Here, we reveal that map (major histocompatibility complex class II analogous protein) is positively regulated by RNAIII. Our further study indicates that the 108-135nt fragment of RNAIII acts as an antisense RNA and anneals to map mRNA, forming RNA duplexes. The interaction between RNAIII and map mRNA may activate translation initiation. This may be helpful for understanding the regulation of virulence in S. aureus.
Collapse
|
43
|
Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS. J Bacteriol 2010; 193:686-94. [PMID: 21131496 DOI: 10.1128/jb.00987-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ClpC is an ATPase chaperone found in most Gram-positive low-GC bacteria. It has been recently reported that ClpC affected virulence gene expression in Staphylococcus aureus. Here we report that ClpC regulates transcription of the cap operon and accumulation of capsule, a major virulence factor for S. aureus. As virulence genes are regulated by a complex regulatory network in S. aureus, we have used capsule as a model to understand this regulation. By microarray analyses of strain Newman, we found that ClpC strongly activates transcription of the sae operon, whose products are known to negatively regulate capsule synthesis in this strain. Further studies indicated that ClpC repressed capsule production by activating the sae operon in strain Newman. Interestingly, the clpC gene cloned into a multiple-copy plasmid vector exhibited an activation phenotype, suggesting that ClpC overexpression has a net positive effect. In the absence of sae function, by either deletion or correction of a native mutation within saeS, we found that ClpC had a positive effect on capsule production. Indeed, in the UAMS-1 strain, which does not have the saeS mutation, ClpC functioned as an activator of capsule production. Our microarray analyses of strain Newman also revealed that CodY, a repressor of capsule production, was repressed by ClpC. Using genetic approaches, we showed that CodY functioned downstream of ClpC, leading to capsule activation both in Newman and in UAMS-1. Thus, ClpC functions in two opposite pathways in capsule regulation in strain Newman but functions as a positive activator in strain UAMS-1.
Collapse
|
44
|
Sever-Chroneos Z, Krupa A, Davis J, Hasan M, Yang CH, Szeliga J, Herrmann M, Hussain M, Geisbrecht BV, Kobzik L, Chroneos ZC. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A. J Biol Chem 2010; 286:4854-70. [PMID: 21123169 DOI: 10.1074/jbc.m110.125567] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.
Collapse
Affiliation(s)
- Zvjezdana Sever-Chroneos
- Center of Biomedical Research, University of Texas Health Science Center, Tyler, Texas 75708-3154, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Johnson M, Sengupta M, Purves J, Tarrant E, Williams PH, Cockayne A, Muthaiyan A, Stephenson R, Ledala N, Wilkinson BJ, Jayaswal RK, Morrissey JA. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int J Med Microbiol 2010; 301:44-52. [PMID: 20705504 DOI: 10.1016/j.ijmm.2010.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/26/2010] [Accepted: 05/09/2010] [Indexed: 01/05/2023] Open
Abstract
Our previous studies showed that both Sae and Fur are required for the induction of eap and emp expression in low iron. In this study, we show that expression of sae is also iron-regulated, as sae expression is activated by Fur in low iron. We also demonstrate that both Fur and Sae are required for full induction of the oxidative stress response and expression of non-covalently bound surface proteins in low-iron growth conditions. In addition, Sae is required for the induced expression of the important virulence factors isdA and isdB in low iron. Our studies also indicate that Fur is required for the induced expression of the global regulators Agr and Rot in low iron and a number of extracellular virulence factors such as the haemolysins which are also Sae- and Agr-regulated. Hence, we show that Fur is central to a complex regulatory network that is required for the induced expression of a number of important S. aureus virulence determinants in low iron.
Collapse
Affiliation(s)
- Miranda Johnson
- Dept. of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pantrangi M, Singh VK, Wolz C, Shukla SK. Staphylococcal superantigen-like genes, ssl5 and ssl8, are positively regulated by Sae and negatively by Agr in the Newman strain. FEMS Microbiol Lett 2010; 308:175-84. [PMID: 20528938 DOI: 10.1111/j.1574-6968.2010.02012.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some of the staphylococcal superantigen-like (SSL) proteins SSL5, SSL7, SSL9, and SSL11 act as immunomodulatory proteins in Staphylococcus aureus. However, little is known about their regulatory mechanisms. We determined the expression levels of ssl5 and ssl8 in seven clinically important S. aureus strains and their regulatory mechanisms in the Newman strain, which had the highest ssl5 and ssl8 expression. Independent comparisons of ssl5 or ssl8 coding and upstream sequences in these strains identified multiple haplotypes that did not correlate with the differential expression of ssl5 and ssl8, suggesting the role of additional regulatory elements. Using knockout mutant strains of known S. aureus global regulators such as Agr, Sae, and SigB in the Newman strain, we showed that both ssl5 and ssl8 were induced by Sae and repressed by Agr, suggesting that Sae and Agr are the positive and the negative regulators, respectively, of these two ssl genes. Moreover, we observed upregulation of sae in the agr mutant and upregulation of agr in the sae mutant compared with the isogenic Newman strain, suggesting that the Agr and Sae may be inhibiting each other. The SigB mutation did not affect ssl5 and ssl8 expression, but they were downregulated in the agr/sigB double mutant, indicating that SigB probably acts synergistically with Agr in their upregulation.
Collapse
Affiliation(s)
- Madhulatha Pantrangi
- Molecular Microbiology Laboratory, Marshfield Clinic Research Foundation, Marshfield, WI 54449, USA
| | | | | | | |
Collapse
|
47
|
In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. J Bacteriol 2010; 192:2111-27. [PMID: 20172998 DOI: 10.1128/jb.01524-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length SaeR could be restored by sensor kinase SaeS-induced phosphorylation. Phosphorylated SaeR is more resistant to digestion by trypsin, suggesting conformational changes. DNase I footprinting assays revealed that the SaeR protection region in the P1 promoter contains a direct repeat sequence (GTTAAN(6)GTTAA [where N is any nucleotide]). This sequence is critical to the binding of phosphorylated SaeR. Mutational changes in the repeat sequence greatly reduced both the in vitro binding of SaeR and the in vivo function of the P1 promoter. From these results, we concluded that SaeR recognizes the direct repeat sequence as a binding site and that binding requires phosphorylation by SaeS.
Collapse
|
48
|
Thompson KM, Abraham N, Jefferson KK. Staphylococcus aureus extracellular adherence protein contributes to biofilm formation in the presence of serum. FEMS Microbiol Lett 2010; 305:143-7. [PMID: 20199571 DOI: 10.1111/j.1574-6968.2010.01918.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus extracellular adherence protein (EAP) is secreted, but it can redock on the bacterial cell surface via neutral phosphatase (Nptase). EAP binds to certain blood proteins and to itself, and through these affinities, it contributes to adherence and aggregation. It has been demonstrated previously that EAP expression is iron regulated and it contributes to biofilm formation under iron-deplete conditions. In this study, we found that EAP and Nptase also play a role in biofilm formation under iron-replete conditions in the presence of human serum.
Collapse
Affiliation(s)
- Karl M Thompson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23928, USA
| | | | | |
Collapse
|
49
|
Differential target gene activation by the Staphylococcus aureus two-component system saeRS. J Bacteriol 2009; 192:613-23. [PMID: 19933357 DOI: 10.1128/jb.01242-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The saePQRS system of Staphylococcus aureus controls the expression of major virulence factors and encodes a histidine kinase (SaeS), a response regulator (SaeR), a membrane protein (SaeQ), and a lipoprotein (SaeP). The widely used strain Newman is characterized by a single amino acid change in the sensory domain of SaeS (Pro18 in strain Newman [SaeS(P)], compared with Leu18 in other strains [SaeS(L)]). SaeS(P) determines activation of the class I sae target genes (coa, fnbA, eap, sib, efb, fib, sae), which are highly expressed in strain Newman. In contrast, class II target genes (hla, hlb, cap) are not sensitive to the SaeS polymorphism. The SaeS(L) allele (saeS(L)) is dominant over the SaeS(P) allele, as shown by single-copy integration of saePQRS(L) in strain Newman, which results in severe repression of class I target genes. The differential effect on target gene expression is explained by different requirements for SaeR phosphorylation. From an analysis of saeS deletion strains and strains with mutated SaeR phosphorylation sites, we concluded that a high level of SaeR phosphorylation is required for activation of class I target genes. However, a low level of SaeR phosphorylation, which can occur independent of SaeS, is sufficient to activate class II target genes. Using inducible saeRS constructs, we showed that the expression of both types of target genes is independent of the saeRS dosage and that the typical growth phase-dependent gene expression pattern is not driven by SaeRS.
Collapse
|
50
|
Franke GC, Böckenholt A, Sugai M, Rohde H, Aepfelbacher M. Epidemiology, variable genetic organization and regulation of the EDIN-B toxin in Staphylococcus aureus from bacteraemic patients. MICROBIOLOGY-SGM 2009; 156:860-872. [PMID: 19875439 DOI: 10.1099/mic.0.030304-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
EDIN-B (epidermal cell differentiation inhibitor-B; also termed C3Stau) is an exotoxin of Staphylococcus aureus which ADP-ribosylates and inactivates Rho GTP binding proteins. The EDIN-B gene (edin-B) and the gene for exfoliative toxin D (etd) make up the central part of a recently described pathogenicity island. Here we evaluated the prevalence and genetic organization of the edin-B/etd pathogenicity island in invasive S. aureus isolates, and characterized edin-B transcription and EDIN-B production using artificial constructs transduced in S. aureus strains RN6390 and Newman. We found that eight out of 121 (7 %) S. aureus blood culture isolates harbour edin-B, which is organized in three novel variants of the original edin-B/etd pathogenicity island. In the serum of patients infected with edin-B-positive S. aureus, significant titres of anti-EDIN-B antibodies could be detected. Regulation of edin-B transcription depended on the sarA but not on the agr regulatory system. Furthermore, retrieval of EDIN-B protein secreted by S. aureus RN6390 required the presence of alpha2-macroglobulin to inhibit the activity of extracellular proteases. These data suggest that the EDIN-B toxin is produced during human infection, is part of a highly variable pathogenicity island and can be controlled by the sarA gene regulon and secreted bacterial proteases.
Collapse
Affiliation(s)
- Gefion C Franke
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße52, 20246 Hamburg, Germany
| | - Alexandra Böckenholt
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße52, 20246 Hamburg, Germany
| | - Motoyuki Sugai
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße52, 20246 Hamburg, Germany
| |
Collapse
|