1
|
Abstract
Coffee is one of the most important commodities in the global market. Of the 130 species of Coffea, only Coffea arabica and Coffea canephora are actually cultivated on a large scale. Despite the economic and social importance of coffee, little research has been done on the coffee tree microbiome. To assess the structure and function of the rhizosphere microbiome, we performed a deep shotgun metagenomic sequencing of the rhizospheres of five different species, C. arabica, C. canephora, Coffea stenophylla, Coffea racemosa, and Coffea liberica. Our findings indicated that C. arabica and C. stenophylla have different microbiomes, while no differences were detected between the other Coffea species. The core rhizosphere microbiome comprises genera such as Streptomyces, Mycobacterium, Bradyrhizobium, Burkholderia, Sphingomonas, Penicillium, Trichoderma, and Rhizophagus, several of which are potential plant-beneficial microbes. Streptomyces and mycorrhizal fungi dominate the microbial communities. The concentration of sucrose in the rhizosphere seems to influence fungal communities, and the concentration of caffeine/theobromine has little effect on the microbiome. We also detected a possible relationship between drought tolerance in Coffea and known growth-promoting microorganisms. The results provide important information to guide future studies of the coffee tree microbiome to improve plant production and health. IMPORTANCE The microbiome has been identified as a fundamental factor for the maintenance of plant health, helping plants to fight diseases and the deleterious effects of abiotic stresses. Despite this, in-depth studies of the microbiome have been limited to a few species, generally with a short life cycle, and perennial species have mostly been neglected. The coffee tree microbiome, on the other hand, has gained interest in recent years as Coffea trees are perennial tropical species of enormous importance, especially for developing countries. A better understanding of the microorganisms associated with coffee trees can help to mitigate the deleterious effects of climate change on the crop, improving plant health and making the system more sustainable.
Collapse
|
2
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021; 12:3829. [PMID: 34158504 PMCID: PMC8219802 DOI: 10.1038/s41467-021-24005-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Institut für Biologie, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.11486.3a0000000104788040VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
| | - Chen Liu
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Ville-Petri Friman
- grid.5685.e0000 0004 1936 9668University of York, Department of Biology, York, UK
| | - Corné M. J. Pieterse
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- grid.5477.10000000120346234Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands
| |
Collapse
|
3
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021. [PMID: 34158504 DOI: 10.1038/s41467-012-24005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
| | - Chen Liu
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | | | - Corné M J Pieterse
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A H M Bakker
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Molina-Mora JA, García F. Molecular Determinants of Antibiotic Resistance in the Costa Rican Pseudomonas aeruginosa AG1 by a Multi-omics Approach: A Review of 10 Years of Study. PHENOMICS 2021; 1:129-142. [PMID: 35233560 PMCID: PMC8210740 DOI: 10.1007/s43657-021-00016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa AG1 (PaeAG1) is a Costa Rican strain that was isolated in 2010 in a major Hospital. This strain has resistance to multiple antibiotics such as β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. PaeAG1 is considered critical (Priority 1) due to its resistance to carbapenems, and it was the first report of a P. aeruginosa isolate carrying both VIM-2 and IMP-18 genes encoding for metallo-β-lactamases (MBL) enzymes (both with carbapenemase activity). Owing to these traits, we have studied this model for 10 years using diverse approaches including multi-omics. In this review, we summarize the main points of the different steps that we have studied in PaeAG1: preliminary analyses of this strain at the genomic and phenomic levels revealed that this microorganism has particular features of antibiotic resistance. In the multi-omics approach, the genome assembly was the initial step to identify the genomic determinants of this strain, including virulence factors, antibiotic resistance genes, as well as a complex accessory genome. Second, a comparative genomic approach was implemented to define and update the phylogenetic relationship among complete P. aeruginosa genomes, the genomic island content in other strains, and the architecture of the two MBL-carrying integrons. Third, the proteomic profile of PaeAG1 was studied after exposure to antibiotics using 2-dimensional gel electrophoresis (2D-GE). Fourth, to study the central response to multiple perturbations in P. aeruginosa, i.e., the core perturbome, a machine learning approach was used. The analysis revealed biological functions and determinants that are shared by different disturbances. Finally, to evaluate the effects of ciprofloxacin (CIP) on PaeAG1, a growth curve comparison, differential expression analysis (RNA-Seq), and network analysis were performed. Using the results of the core perturbome (pathways that also were found in this perturbation with CIP), it was possible to identify the “exclusive” response and determinants of PaeAG1 after exposure to CIP. Altogether, after a decade of study using a multi-omics approach (at genomics, comparative genomics, perturbomics, transcriptomics, proteomics, and phenomics levels), we have provided new insights about the genomic and transcriptomic determinants associated with antibiotic resistance in PaeAG1. These results not only partially explain the high-risk condition of this strain that enables it to conquer nosocomial environments and its multi-resistance profile, but also this information may eventually be used as part of the strategies to fight this pathogen.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fernando García
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to ciprofloxacin identified by a top-down systems biology approach. Sci Rep 2020; 10:13717. [PMID: 32792590 PMCID: PMC7427096 DOI: 10.1038/s41598-020-70581-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in diverse environments and causes a variety of human infections. Pseudomonas aeruginosa AG1 (PaeAG1) is a high-risk sequence type 111 (ST-111) strain isolated from a Costa Rican hospital in 2010. PaeAG1 has both blaVIM-2 and blaIMP-18 genes encoding for metallo-β-lactamases, and it is resistant to β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. Ciprofloxacin (CIP) is an antibiotic commonly used to treat P. aeruginosa infections, and it is known to produce DNA damage, triggering a complex molecular response. In order to evaluate the effects of a sub-inhibitory CIP concentration on PaeAG1, growth curves using increasing CIP concentrations were compared. We then measured gene expression using RNA-Seq at three time points (0, 2.5 and 5 h) after CIP exposure to identify the transcriptomic determinants of the response (i.e. hub genes, gene clusters and enriched pathways). Changes in expression were determined using differential expression analysis and network analysis using a top–down systems biology approach. A hybrid model using database-based and co-expression analysis approaches was implemented to predict gene–gene interactions. We observed a reduction of the growth curve rate as the sub-inhibitory CIP concentrations were increased. In the transcriptomic analysis, we detected that over time CIP treatment resulted in the differential expression of 518 genes, showing a complex impact at the molecular level. The transcriptomic determinants were 14 hub genes, multiple gene clusters at different levels (associated to hub genes or as co-expression modules) and 15 enriched pathways. Down-regulation of genes implicated in several metabolism pathways, virulence elements and ribosomal activity was observed. In contrast, amino acid catabolism, RpoS factor, proteases, and phenazines genes were up-regulated. Remarkably, > 80 resident-phage genes were up-regulated after CIP treatment, which was validated at phenomic level using a phage plaque assay. Thus, reduction of the growth curve rate and increasing phage induction was evidenced as the CIP concentrations were increased. In summary, transcriptomic and network analyses, as well as the growth curves and phage plaque assays provide evidence that PaeAG1 presents a complex, concentration-dependent response to sub-inhibitory CIP exposure, showing pleiotropic effects at the systems level. Manipulation of these determinants, such as phage genes, could be used to gain more insights about the regulation of responses in PaeAG1 as well as the identification of possible therapeutic targets. To our knowledge, this is the first report of the transcriptomic analysis of CIP response in a ST-111 high-risk P. aeruginosa strain, in particular using a top-down systems biology approach.
Collapse
|
6
|
Jaffuel G, Imperiali N, Shelby K, Campos-Herrera R, Geisert R, Maurhofer M, Loper J, Keel C, Turlings TCJ, Hibbard BE. Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Sci Rep 2019; 9:3127. [PMID: 30816250 PMCID: PMC6395644 DOI: 10.1038/s41598-019-39753-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR), is the most destructive pest of maize in North America, and has recently spread across central Europe. Its subterranean larval stages are hard to reach with pesticides and it has evolved resistance to conventional management practices. The application of beneficial soil organisms is being considered as a sustainable and environmental friendly alternative. In a previous study, the combined application in wheat fields of arbuscular mycorrhizal fungi, entomopathogenic Pseudomonas bacteria, and entomopathogenic nematodes was found to promote growth and protection against a natural pest infestation, without negative cross effects. Because of the insect-killing capacity of the bacteria and nematodes, we hypothesized that the application of these organisms would have similar or even greater beneficial effects in WCR-infested maize fields. During three consecutive years (2015–2017), we conducted trials in Missouri (USA) in which we applied the three organisms, alone or in combinations, in plots that were artificially infested with WCR and in non-infested control plots. For two of the three trials, we found that in plots treated with entomopathogenic nematodes and/or entomopathogenic Pseudomonas bacteria, roots were less damaged than the roots of plants in control plots. During one year, WCR survival was significantly lower in plots treated with Pseudomonas than in control plots, and the surviving larvae that were recovered from these plots were lighter. The bacterial and nematodes treatments also enhanced yield, assessed as total grain weight, in one of the trials. The effects of the treatments varied considerable among the three years, but they were always positive for the plants.
Collapse
Affiliation(s)
- Geoffrey Jaffuel
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nicola Imperiali
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kent Shelby
- Biological Control of Insects Research, US Department of Agriculture, Agricultural Research Service, Columbia, MO, USA
| | - Raquel Campos-Herrera
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Instituto de Ciencias de la Vid y del Vino, CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | - Ryan Geisert
- Biological Control of Insects Research, US Department of Agriculture, Agricultural Research Service, Columbia, MO, USA
| | - Monika Maurhofer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Joyce Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.,Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR, USA
| | - Christoph Keel
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Bruce E Hibbard
- Plant Genetics Research Unit, US Department of Agriculture-ARS, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Farrow JM, Wells G, Pesci EC. Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS One 2018; 13:e0205638. [PMID: 30308034 PMCID: PMC6181384 DOI: 10.1371/journal.pone.0205638] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/03/2022] Open
Abstract
For the opportunistic pathogen Acinetobacter baumannii, desiccation tolerance is thought to contribute significantly to the persistence of these bacteria in the healthcare environment. We investigated the ability of A. baumannii to survive rapid drying, and found that some strains exhibited a profoundly desiccation-resistant phenotype, characterized by the ability of a large proportion of cells to survive on a dry surface for an extended period of time. However, this phenotype was only displayed during the stationary phase of growth. Most interestingly, we found that drying resistance could be lost after extended cultivation in liquid medium. Genome sequencing of isolates that became drying-sensitive identified mutations in bfmR, which encodes a two-component response regulator that is important for A. baumannii virulence. Additionally, BfmR was necessary for the expression of stress-related proteins during stationary phase, and one of these, KatE, was important for long-term drying survival. These results suggested that BfmR may control stress responses, and we demonstrated that the ΔbfmR mutant was more sensitive to hydrogen peroxide, nutrient starvation, and increased osmolarity. We also found that cross-protection against drying could be stimulated by either starvation, which required BfmR, or increased osmolarity. These results imply that BfmR plays a role in controlling stress responses in A. baumannii which help protect cells during desiccation, and they provide a regulatory link between this organism’s ability to persist in the environment and pathogenicity.
Collapse
Affiliation(s)
- John M. Farrow
- Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Greg Wells
- Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Everett C. Pesci
- Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Chakroun I, Cordero H, Mahdhi A, Morcillo P, Fedhila K, Cuesta A, Bakhrouf A, Mahdouani K, Esteban MÁ. Adhesion, invasion, cytotoxic effect and cytokine production in response to atypical Salmonella Typhimurium infection. Microb Pathog 2017; 106:40-49. [DOI: 10.1016/j.micpath.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022]
|
9
|
RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 2016; 167:168-77. [DOI: 10.1016/j.resmic.2015.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
|
10
|
Sakil Munna M, Tahera J, Mohibul Hassan Afrad M, Nur IT, Noor R. Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC Res Notes 2015; 8:637. [PMID: 26526722 PMCID: PMC4630936 DOI: 10.1186/s13104-015-1631-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Background The bacterial stressed state upon temperature raise has widely been observed especially in Escherichia coli cells. The current study extended such physiological investigation on Bacillus spp. SUBB01 under aeration at 100 rpm on different culture media along with the high temperature exposure at 48, 50, 52, 53 and 54 °C. Bacterial growth was determined through the enumeration of the viable and culturable cells; i.e., cells capable of producing the colony forming units on Luria–Bertani and nutrient agar plates up to 24 h. Microscopic experiments were conducted to scrutinize the successive physiological changes. Suppression of bacterial growth due to the elevated heat was further confirmed by the observation of non-viability through spot tests. Results As expected, a quick drop in both cell turbidity and colony forming units (~104) along with spores were observed after 12–24 h of incubation period, when cells were grown at 54 °C in both Luria–Bertani and nutrient broth and agar. The critical temperature (the temperature above which it is no longer possible to survive) of Bacillus spp. SUBB01 was estimated to be 53 °C. Furthermore, a positive impact was observed on the inhibited E. coli SUBE01 growth at 45 and 47 °C, upon the supplementation of the extracellular fractions of Bacillus species into the growing culture. Conclusions Overall the present analysis revealed the conversion of the culturable cells into the viable and nonculturable (VBNC) state as a result of heat shock response in Bacillus spp. SUBB01 and the cellular adaptation at extremely high temperature.
Collapse
Affiliation(s)
- Md Sakil Munna
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Jannatun Tahera
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Md Mohibul Hassan Afrad
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Ifra Tun Nur
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Rashed Noor
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| |
Collapse
|
11
|
Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. mBio 2014; 5:e01683-14. [PMID: 25182327 PMCID: PMC4173789 DOI: 10.1128/mbio.01683-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators’ responses to distinct environmental signals. Leaves harbor abundant microorganisms, all of which must withstand challenges such as active plant defenses and a highly dynamic environment. Some of these microbes can influence plant health. Despite knowledge of individual regulators that affect the fitness or pathogenicity of foliar pathogens, our understanding of the relative importance of various global regulators to leaf colonization is limited. Pseudomonas syringae strain B728a is a plant pathogen and a good colonist of both the surfaces and interior of leaves. This study used global transcript profiles of strain B728a to investigate the complex regulatory network of putative quorum-sensing regulators, two-component regulators, and sigma factors in cells colonizing the leaf surface and leaf interior under stressful in vitro conditions. The results highlighted the value of evaluating these networks in planta due to the impact of leaf-specific environmental signals and suggested signal differences that may enable cells to differentiate surface versus interior leaf habitats.
Collapse
|
12
|
Puopolo G, Giovannini O, Pertot I. Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine. Microbiol Res 2014; 169:633-42. [DOI: 10.1016/j.micres.2013.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/15/2022]
|
13
|
Petrova O, Gorshkov V, Daminova A, Ageeva M, Moleleki LN, Gogolev Y. Stress response in Pectobacterium atrosepticum SCRI1043 under starvation conditions: adaptive reactions at a low population density. Res Microbiol 2014; 165:119-27. [DOI: 10.1016/j.resmic.2013.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/19/2013] [Indexed: 11/27/2022]
|
14
|
Kidarsa TA, Shaffer BT, Goebel NC, Roberts DP, Buyer JS, Johnson A, Kobayashi DY, Zabriskie TM, Paulsen I, Loper JE. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environ Microbiol 2013; 15:716-35. [PMID: 23297839 DOI: 10.1111/1462-2920.12066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/20/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Gene expression profiles of the biological control strain Pseudomonas protegens Pf-5 inhabiting pea seed surfaces were revealed using a whole-genome oligonucleotide microarray. We identified genes expressed by Pf-5 under the control of two global regulators (GacA and RpoS) known to influence biological control and secondary metabolism. Transcript levels of 897 genes, including many with unknown functions as well as those for biofilm formation, cyclic diguanylate (c-di-GMP) signalling, iron homeostasis and secondary metabolism, were influenced by one or both regulators, providing evidence for expression of these genes by Pf-5 on seed surfaces. Comparison of the GacA and RpoS transcriptomes defined for Pf-5 grown on seed versus in broth culture overlapped, but most genes were regulated by GacA or RpoS under only one condition, likely due to differing levels of expression in the two conditions. We quantified secondary metabolites produced by Pf-5 and gacA and rpoS mutants on seed and in culture, and found that production profiles corresponded generally with biosynthetic gene expression profiles. Future studies evaluating biological control mechanisms can now focus on genes expressed by Pf-5 on seed surfaces, the habitat where the bacterium interacts with seed-infecting pathogens to suppress seedling diseases.
Collapse
Affiliation(s)
- Teresa A Kidarsa
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Park SH, Butcher BG, Anderson Z, Pellegrini N, Bao Z, D’Amico K, Filiatrault MJ. Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2012; 159:296-306. [PMID: 23258266 PMCID: PMC3709562 DOI: 10.1099/mic.0.063826-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae pv. tomato DC3000, P16, was investigated. We determined that RpoS regulates the expression of P16. We found that deletion of P16 results in increased sensitivity to hydrogen peroxide compared to the wild-type strain, suggesting that P16 plays a role in the bacteria’s susceptibility to oxidative stress. Additionally the P16 mutant displayed enhanced resistance to heat stress. Our findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G. Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zoe Anderson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nola Pellegrini
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D’Amico
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Melanie J. Filiatrault
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 2012; 13:643. [PMID: 23171218 PMCID: PMC3560180 DOI: 10.1186/1471-2164-13-643] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/22/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND We have previously shown that lipophilic components (LPC) of the brown seaweed Ascophyllum nodosum (ANE) improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s) of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. RESULTS Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH) gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ) representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5%) in comparison with untreated plants. A total of 463 genes (2%) were up regulated while 650 genes (3%) were down regulated. CONCLUSION Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.
Collapse
Affiliation(s)
- Prasanth Nair
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Saveetha Kandasamy
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Junzeng Zhang
- Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, PEI, C1A 4P3, Canada
| | - Xiuhong Ji
- Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, PEI, C1A 4P3, Canada
| | - Chris Kirby
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 550 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Bernhard Benkel
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Mark D Hodges
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, NS, B4N 1J5, Canada
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Ave., Dartmouth, NS, B3B 1X8, Canada
| | - David Hiltz
- Acadian Seaplants Limited, 30 Brown Ave., Dartmouth, NS, B3B 1X8, Canada
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
17
|
Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Appl Environ Microbiol 2011; 78:676-83. [PMID: 22138988 DOI: 10.1128/aem.06150-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψ(m)) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψ(m), we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (-0.4 MPa) for 4, 24, or 72 h. The major response was detected at 4 h before gradually disappearing. Upregulation of alginate genes was notable in this early response. Flagellar genes were not downregulated, and the microarray data even suggested increasing expression as the stress prolonged. Moreover, we tested the effect of polyethylene glycol 8000 (PEG 8000), a nonpermeating solute often used to simulate Ψ(m), on the gene expression profile and detected a different profile than that observed by directly imposing Ψ(m). This study is the first transcriptome profiling of KT2440 under directly controlled Ψ(m) and also the first to show the difference in gene expression profiles between a PEG 8000-simulated and a directly controlled Ψ(m).
Collapse
|
18
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
19
|
Growth advantage in stationary phase phenomenon in Gram-positive bacteria. J Hosp Infect 2011; 78:73-5. [PMID: 21316120 DOI: 10.1016/j.jhin.2010.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/22/2010] [Indexed: 01/12/2023]
|
20
|
Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12. J Biotechnol 2011; 154:1-10. [DOI: 10.1016/j.jbiotec.2011.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/08/2011] [Accepted: 04/13/2011] [Indexed: 11/24/2022]
|
21
|
Gorski L, Duhé JM, Flaherty D. The Sigma B operon is a determinant of fitness for a Listeria monocytogenes serotype 4b strain in soil. Foodborne Pathog Dis 2011; 8:699-704. [PMID: 21381923 DOI: 10.1089/fpd.2010.0752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In nature the foodborne pathogen Listeria monocytogenes lives as a saprophyte where it can contaminate preharvest produce. This environment can present many stresses such as ultraviolet light, variations in temperature and humidity, and oxidative stress from growing plant matter in the soil. The alternative sigma factor Sigma B, encoded by sigB, controls the response to most stresses in L. monocytogenes. Fitness in soil and on radishes sown and grown in contaminated soil was measured in a wild-type and an isogenic sigB operon mutant strain to determine if the sigma factor was necessary for life in these niches. Levels of wild-type and mutant strains were monitored in contaminated soil over the course of radish gestation from seed to mature tuber, and levels on mature radishes were determined. The wild-type strain was able to survive in soil over the 4 weeks of the experiment at levels of 4-7 log CFU/g soil, and the levels of the sigB mutant were reduced by 1-2 log from the wild type. The mutant showed reduced levels in soil by 6 h after inoculation, which was partially recovered when the mutant was complemented, and stayed at a reduced level over the next 4 weeks. Upon harvest, 3-4 log CFU/g of wild-type L. monocytogenes was detected on radish surfaces, and the bacteria could not be washed off under running water. On mature radishes populations of the mutant strain were 1-2 log CFU/g lower than the wild type. The levels on mature radishes reflected the levels in the soil at 4 weeks. The conclusions are that the Sigma B operon is necessary for initial adaptation to the soil environment, and plays a role in maintaining the population, but does not play a role in attachment or colonization of the radish.
Collapse
Affiliation(s)
- Lisa Gorski
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | | | |
Collapse
|
22
|
Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 2010; 5:e12504. [PMID: 20856932 PMCID: PMC2938339 DOI: 10.1371/journal.pone.0012504] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fruit fly, Drosophila melanogaster, is a well-established model organism for probing the molecular and cellular basis of physiological and immune system responses of adults or late stage larvae to bacterial challenge. However, very little is known about the consequences of bacterial infections that occur in earlier stages of development. We have infected mid-second instar larvae with strains of Pseudomonas fluorescens to determine how infection alters the ability of larvae to survive and complete development. Methodology/Principal Findings We mimicked natural routes of infection using a non-invasive feeding procedure to study the toxicity of the three sequenced P. fluorescens strains (Pf0-1, SBW25, and Pf-5) to Drosophila melanogaster. Larvae fed with the three strains of P. fluorescens showed distinct differences in developmental trajectory and survival. Treatment with SBW25 caused a subset of insects to die concomitant with a systemic melanization reaction at larval, pupal or adult stages. Larvae fed with Pf-5 died in a dose-dependent manner with adult survivors showing eye and wing morphological defects. In addition, larvae in the Pf-5 treatment groups showed a dose-dependent delay in the onset of metamorphosis relative to control-, Pf0-1-, and SBW25-treated larvae. A functional gacA gene is required for the toxic properties of wild-type Pf-5 bacteria. Conclusions/Significance These experiments are the first to demonstrate that ingestion of P. fluorescens bacteria by D. melanogaster larvae causes both lethal and non-lethal phenotypes, including delay in the onset of metamorphosis and morphological defects in surviving adult flies, which can be decoupled.
Collapse
|
23
|
Knight CG, Zhang XX, Gunn A, Brenner T, Jackson RW, Giddens SR, Prabhakar S, Zitzmann N, Rainey PB. Testing temperature-induced proteomic changes in the plant-associated bacterium Pseudomonas fluorescens SBW25. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:396-402. [PMID: 23766112 DOI: 10.1111/j.1758-2229.2009.00102.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Traits used by bacteria to enhance ecological performance in natural environments are not well understood. Recognizing that the saprophytic plant-colonizing bacterium Pseudomonas fluorescens SBW25 experiences temperatures in its natural environment significantly cooler than the 28°C routinely used in the laboratory, we identified proteins differentially expressed between 28°C and the more environmentally relevant temperature of 14°C. Of 2102 protein isoforms, 32 were temperature responsive and identified by mass spectrometry. Seven of these (OmpR, MucD, GuaD, OsmY and three of unknown function, Tee1, Tee2 and Tee3) were selected for genetic and ecological analyses. In each instance, changes in protein expression with temperature were mirrored by parallel transcriptional changes. The fitness contribution of the genes encoding each of the seven proteins was larger at 14°C than 28°C and included two cases of trade-offs (enhanced fitness at one temperature and reduced fitness at the other -mucD and tee2 deletions). The relationship between the fitness effects of genes in vitro and in vivo was variable, but two temperature-responsive genes -osmY and mucD- contribute substantially to the ability of P. fluorescens to colonize the plant environment.
Collapse
Affiliation(s)
- C G Knight
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Private Bag 102904, North Shore Mail Centre 0745, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Loper JE. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 2010; 12:899-915. [PMID: 20089046 DOI: 10.1111/j.1462-2920.2009.02134.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GacS/GacA signal transduction system is a central regulator in Pseudomonas spp., including the biological control strain P. fluorescens Pf-5, in which GacS/GacA controls the production of secondary metabolites and exoenzymes that suppress plant pathogens. A whole genome oligonucleotide microarray was developed for Pf-5 and used to assess the global transcriptomic consequences of a gacA mutation in P. fluorescens Pf-5. In cultures at the transition from exponential to stationary growth phase, GacA significantly influenced transcript levels of 635 genes, representing more than 10% of the 6147 annotated genes in the Pf-5 genome. Transcripts of genes involved in the production of hydrogen cyanide, the antibiotic pyoluteorin and the extracellular protease AprA were at a low level in the gacA mutant, whereas those functioning in siderophore production and other aspects of iron homeostasis were significantly higher in the gacA mutant than in wild-type Pf-5. Notable effects of gacA inactivation were also observed in the transcription of genes encoding components of a type VI secretion system and cytochrome c oxidase subunits. Two novel gene clusters expressed under the control of gacA were identified from transcriptome analysis, and we propose global-regulator-based genome mining as an approach to decipher the secondary metabolome of Pseudomonas spp.
Collapse
Affiliation(s)
- Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Maki ML, Lawrence JR, Swerhone GDW, Leung KT. The role of rpoS on the survival of a p-nitrophenol degrading Pseudomonas putida strain in planktonic and biofilm phases. Can J Microbiol 2009; 55:1176-86. [PMID: 19935890 DOI: 10.1139/w09-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The survival of and interactions between a Pseudomonas putida strain labelled with a red fluorescent protein gene (WT-rfp) and its green fluorescent protein gene-labelled rpoS(-) mutant (KO-gfp) were examined. The generation times of the planktonic WT-rfp and KO-gfp in trypticase soy broth were not significantly different (i.e., p > 0.05) from each other at 30 degrees C. However, the biovolume of the KO-gfp biofilm was about 7 times larger than its WT-rfp counterpart after 48 h of growth. Furthermore, the presence of WT-rfp suppressed the biofilm development of KO-gfp significantly in co-culture biofilms. In planktonic conditions, the pre-carbon-starved WT-rfp achieved a 3-fold greater survival than the pre-carbon-starved KO-gfp in 0.85% saline after a 13-day incubation. In a 1:1 ratio co-culture, the pre-carbon-starved WT-rfp outcompeted the pre-carbon-starved KO-gfp by 20-fold. However, the survival of WT-rfp and KO-gfp were not significantly different from each other in biofilm conditions. Additionally, 11.4% and 61.2% of the WT-rfp and KO-gfp biofilms, respectively, remained intact after washing in 0.2% SDS for 60 min. In conclusion, the rpoS had a significant impact on survival and competitiveness of planktonic P. putida, and on biofilm development, being implicated in competitive suppression of biofilm development in co-culture biofilms and decreased biofilm cohesiveness.
Collapse
Affiliation(s)
- M L Maki
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | | | | | | |
Collapse
|
26
|
Stockwell VO, Hockett K, Loper JE. Role of RpoS in stress tolerance and environmental fitness of the phyllosphere bacterium Pseudomonas fluorescens strain 122. PHYTOPATHOLOGY 2009; 99:689-695. [PMID: 19453227 DOI: 10.1094/phyto-99-6-0689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacteria living epiphytically on aerial plant surfaces encounter severe and rapidly fluctuating environmental conditions, and their capacity to withstand environmental stress contributes to epiphytic fitness. The stationary phase sigma factor RpoS is a key determinant in stress response of gram-negative bacteria, including Pseudomonas spp. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens strain 122 on aerial plant surfaces. RpoS had a significant role in the response of the phyllosphere bacterium P. fluorescens 122 to stresses imposed by desiccation, UV irradiation, starvation, and an oxidative environment. While significant, the difference in stress response between an rpoS mutant and the parental strain was less for strain 122 than for the rhizosphere bacterium P. fluorescens Pf-5. No consistent influence of RpoS on epiphytic population size of strain 122 on pear or apple flowers or leaves was observed in field trials. These data may indicate that P. fluorescens occupies protected microsites on aerial plant surfaces where the bacteria escape exposure to environmental stress, or that redundant stress-response mechanisms are operating in this bacterium, thereby obscuring the role of RpoS in epiphytic fitness of the bacterium.
Collapse
|
27
|
Hagen MJ, Stockwell VO, Whistler CA, Johnson KB, Loper JE. Stress tolerance and environmental fitness of Pseudomonas fluorescens A506, which has a mutation in RpoS. PHYTOPATHOLOGY 2009; 99:679-688. [PMID: 19453226 DOI: 10.1094/phyto-99-6-0679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Establishment of suppressive populations of bacterial biological control agents on aerial plant surfaces is a critical phase in biologically based management of floral diseases. Periodically, biocontrol agents encounter inhospitable conditions for growth on plants; consequently, tolerance of environmental stresses may contribute to their fitness. In many gram-negative bacteria, including strains of Pseudomonas spp., the capacity to survive environmental stresses is influenced by the stationary phase sigma factor RpoS. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens A506, a well-studied bacterial biological control agent. We detected a frameshift mutation in the rpoS of A506 and demonstrated that the mutation resulted in a truncated, nonfunctional RpoS. Using site-directed mutagenesis, we deleted a nucleotide from rpoS, which then encoded a full-length, functional RpoS. We compared the stress response and epiphytic fitness of A506 with derivative strains having the functional full-length RpoS or a disrupted, nonfunctional RpoS. RpoS had little effect on stress response of A506 and no consistent influence on epiphytic population size of A506 on pear or apple leaves or flowers. Although the capacity of strain A506 to withstand exposure to environmental stresses was similar to that of other fluorescent pseudomonads, this capacity was largely independent of rpoS.
Collapse
Affiliation(s)
- Mary J Hagen
- Department of Botany, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
28
|
Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system. Microbiol Res 2009; 164:18-26. [DOI: 10.1016/j.micres.2008.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/07/2008] [Accepted: 02/03/2008] [Indexed: 11/17/2022]
|
29
|
Poirier I, Jean N, Guary JC, Bertrand M. Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 406:76-87. [PMID: 18793794 DOI: 10.1016/j.scitotenv.2008.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/24/2008] [Accepted: 07/10/2008] [Indexed: 05/26/2023]
Abstract
A Pseudomonas fluorescens strain was isolated from oxic marine sediments obtained from the strand zone of the St Anne Bay (a moderately metal-contaminated site to the west of Cherbourg harbour). The strain, which exhibited a high tolerance to metal contamination when cultivated (minimal inhibitory concentration=950 microM [62 mg L(-1)] for Zn, 660 microM [42 mg L(-1)] for Cu, and 505 microM [57 mg L(-1)] for Cd), was further characterized by its physiological and biochemical responses to metal additions to the culture medium. Bacterial growth was significantly disturbed by 380 microM Zn (25 mg L(-1)), 315 microM Cu (20 mg L(-1)) and 90 microM Cd (10 mg L(-1)). The Zn-containing alkaline phosphatase was studied as an intoxication biomarker. Its activity was stimulated (+9%) by an excess of Zn, but inhibited by Cd (-55%) and Cu (-10%), these two elements could displace the native Zn or/and disturb the enzyme 3D-structure. Bacterial O(2) consumption was recorded as a global physiological response to metal stress. This parameter dropped with increasing Cd and Cu contamination (-49% and -45%, respectively, at 20 mg L(-1)). By contrast, Zn increased O2 consumption (approximately +40% for the different tested concentrations). The proteomes of bacteria grown in the presence or absence of 20 mg metal L(-1) were characterized by 2D-gel electrophoresis. The number of spots exhibiting a difference in intensity between the contaminated sample and the control was 65, 68, and 103, for Zn, Cu and Cd, respectively. Among them, 45, 61 and 82 spots respectively appeared de novo or increased in intensity, indicative of metal-stimulated synthesis, particularly for Cu and Cd. In summary, whereas Cd and Cu treatments both stressed cells and slowed down primary metabolism to differing extents, Zn has a stimulating action on several physiological and biochemical parameters.
Collapse
Affiliation(s)
- I Poirier
- Equipe Microorganismes-Métaux-Toxicité, Laboratoire d'Etudes et de Recherches Marines, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, F-50103 Cherbourg Cedex, France.
| | | | | | | |
Collapse
|
30
|
Allen CA, Niesel DW, Torres AG. The effects of low-shear stress on Adherent-invasive Escherichia coli. Environ Microbiol 2008; 10:1512-25. [PMID: 18312396 DOI: 10.1111/j.1462-2920.2008.01567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The impact of low-shear stress (LSS) was evaluated on an Adherent-invasive Escherichia coli clinical isolate (AIEC strain O83:H1) from a Crohn's disease patient. High-aspect ratio vessels (HARVs) were used to model LSS conditions to characterize changes in environmental stress resistance and adhesion/invasive properties. Low-shear stress-grown cultures exhibited enhanced thermal and oxidative stress resistance as well as increased adherence to Caco-2 cells, but no changes in invasion were observed. An AIEC rpoS mutant was constructed to examine the impact of this global stress regulator. The absence of RpoS under LSS conditions resulted in increased sensitivity to oxidative stress while adherence levels were elevated in comparison with the wild-type strain. TnphoA mutagenesis and rpoS complementation were carried out on the rpoS mutant to identify those factors involved in the LSS-induced adherence phenotype. Mutagenesis results revealed that one insertion disrupted the tnaB gene (encoding tryptophan permease) and the rpoS tnaB double mutant exhibited decreased adherence under LSS. Complementation of the tnaB gene, or medium supplemented with exogenous indole, restored adhesion of the rpoS tnaB mutant under LSS conditions. Overall, our study demonstrated how mechanical stresses such as LSS altered AIEC phenotypic characteristics and identified novel functions for some RpoS-regulated proteins.
Collapse
Affiliation(s)
- Christopher A Allen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | |
Collapse
|
31
|
Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK. PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 2007; 73:3684-94. [PMID: 17400767 PMCID: PMC1932703 DOI: 10.1128/aem.02445-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals. A Tn5 insertion mutant of DC3000, designated PsrA(-) (Psr is for Pseudomonas sigma regulator), overexpresses psyR (a LuxR-type regulator of psyI) and psyI (the gene for AHL synthase), and it produces a ca. 8-fold-higher level of AHL than does DC3000. The mutant is impaired in its ability to elicit the hypersensitive reaction and is attenuated in its virulence in tomato. These phenotypes correlate with reduced expression of hrpL, the gene for an alternate sigma factor, as well as several hrp and hop genes during early stages of incubation in a Hrp-inducing medium. PsrA also positively controls rpoS, the gene for an alternate sigma factor known to control various stress responses. By contrast, PsrA negatively regulates rsmA1, an RNA-binding protein gene known to function as negative regulator, and aefR, a tetR-like gene known to control AHL production and epiphytic fitness in P. syringae pv. syringae. Gel mobility shift assays and other lines of evidence demonstrate a direct interaction of PsrA protein with rpoS promoter DNA and aefR operator DNA. In addition, PsrA negatively autoregulates and binds the psrA operator. In an AefR(-) mutant, the expression of psyR and psyI and AHL production are lower than those in DC3000, the AefR(+) parent. In an RpoS(-) mutant, on the other hand, the levels of AHL and transcripts of psyR and psyI are much higher than those in the RpoS(+) parent, DC3000. We present evidence, albeit indirect, that the RpoS effect occurs via psyR. Thus, AefR positively regulates AHL production, whereas RpoS has a strong negative effect. We show that AefR and RpoS do not regulate PsrA and that the PsrA effect on AHL production is exerted via its cumulative, but independent, effects on both AefR and RpoS.
Collapse
Affiliation(s)
- Asita Chatterjee
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
32
|
Essendoubi M, Brhada F, Eljamali JE, Filali-Maltouf A, Bonnassie S, Georgeault S, Blanco C, Jebbar M. Osmoadaptative responses in the rhizobia nodulating Acacia isolated from south-eastern Moroccan Sahara. Environ Microbiol 2007; 9:603-11. [PMID: 17298361 DOI: 10.1111/j.1462-2920.2006.01176.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four strains of rhizobia nodulating Acacia were isolated from the Moroccan desert soil by trapping with seedlings of Acacia gummifera and Acacia raddiana, and were studied for their ability to tolerate high salinity and dryness conditions. The strains MDSMC 2, MDSMC 18 and MDSMC 50 were halotolerant (they tolerated up to 1 M NaCl) and they accumulated glutamate and mannosucrose. The synthesis of the latter solute, which is the major endogenous osmolyte, is partially repressed in the presence of glycine betaine. The strain MDSMC 34 was less halotolerant (growth inhibited by a concentration greater than 0.5 M NaCl), and accumulated trehalose (as the main endogenous osmolyte) and glutamate. Rhizobia from the Moroccan desert soil were highly resistant to desiccation and their tolerance to dryness was stimulated by osmotic pretreatment. Thus, the accumulation of mannosucrose or trehalose by desert rhizobia represents both an osmoadaptative response and a part of a desiccation tolerance mechanism.
Collapse
Affiliation(s)
- Mohammed Essendoubi
- Departement Osmorégulation chez les Bactéries, UMR-CNRS 6026, IFR 140, Université de Rennes 1, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Loper JE, Kobayashi DY, Paulsen IT. The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. PHYTOPATHOLOGY 2007; 97:233-8. [PMID: 18944380 DOI: 10.1094/phyto-97-2-0233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.
Collapse
|
34
|
Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, Hazen TC, Arkin AP, Wall JD, Zhou JZ, Fields MW. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol 2006; 72:5578-88. [PMID: 16885312 PMCID: PMC1538716 DOI: 10.1128/aem.00284-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Desulfovibrio vulgaris was cultivated in a defined medium, and biomass was sampled for approximately 70 h to characterize the shifts in gene expression as cells transitioned from the exponential to the stationary phase during electron donor depletion. In addition to temporal transcriptomics, total protein, carbohydrate, lactate, acetate, and sulfate levels were measured. The microarray data were examined for statistically significant expression changes, hierarchical cluster analysis, and promoter element prediction and were validated by quantitative PCR. As the cells transitioned from the exponential phase to the stationary phase, a majority of the down-expressed genes were involved in translation and transcription, and this trend continued at the remaining times. There were general increases in relative expression for intracellular trafficking and secretion, ion transport, and coenzyme metabolism as the cells entered the stationary phase. As expected, the DNA replication machinery was down-expressed, and the expression of genes involved in DNA repair increased during the stationary phase. Genes involved in amino acid acquisition, carbohydrate metabolism, energy production, and cell envelope biogenesis did not exhibit uniform transcriptional responses. Interestingly, most phage-related genes were up-expressed at the onset of the stationary phase. This result suggested that nutrient depletion may affect community dynamics and DNA transfer mechanisms of sulfate-reducing bacteria via the phage cycle. The putative feoAB system (in addition to other presumptive iron metabolism genes) was significantly up-expressed, and this suggested the possible importance of Fe2+ acquisition under metal-reducing conditions. The expression of a large subset of carbohydrate-related genes was altered, and the total cellular carbohydrate levels declined during the growth phase transition. Interestingly, the D. vulgaris genome does not contain a putative rpoS gene, a common attribute of the delta-Proteobacteria genomes sequenced to date, and the transcription profiles of other putative rpo genes were not significantly altered. Our results indicated that in addition to expected changes (e.g., energy conversion, protein turnover, translation, transcription, and DNA replication and repair), genes related to phage, stress response, carbohydrate flux, the outer envelope, and iron homeostasis played important roles as D. vulgaris cells experienced electron donor depletion.
Collapse
Affiliation(s)
- M E Clark
- Department of Microbiology, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 2006; 103:13186-91. [PMID: 16926146 PMCID: PMC1559774 DOI: 10.1073/pnas.0603530103] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerial plant surfaces are colonized by diverse bacteria such as the ubiquitous Methylobacterium spp. The specific physiological traits as well as the underlying regulatory mechanisms for bacterial plant colonization are largely unknown. The purpose of this study was to identify proteins produced specifically in the phyllosphere by comparing the proteome of Methylobacterium extorquens colonizing the leaves either with that of bacteria colonizing the roots or with that of bacteria growing on synthetic medium. We identified 45 proteins that were more abundant in M. extorquens present on plant surfaces as compared with bacteria growing on synthetic medium, including 9 proteins that were more abundant on leaves compared with roots. Among the proteins induced during epiphytic growth, we found enzymes involved in methanol utilization, prominent stress proteins, and proteins of unknown function. In addition, we detected a previously undescribed type of two-domain response regulator, named PhyR, that consists of an N-terminal sigma factor (RpoE)-like domain and a C-terminal receiver domain and is predicted to be present in essentially all Alphaproteobacteria. The importance of PhyR was demonstrated through phenotypic tests of a deletion mutant strain shown to be deficient in plant colonization. Among PhyR-regulated gene products, we found a number of general stress proteins and, in particular, proteins known to be involved in the oxidative stress response such as KatE, SodA, AhpC, Ohr, Trx, and Dps. The PhyR-regulated gene products partially overlap with the bacterial in planta-induced proteome, suggesting that PhyR is a key regulator for adaptation to epiphytic life of M. extorquens.
Collapse
Affiliation(s)
- Benjamin Gourion
- *Laboratoire des Interactions Plantes Micro-Organismes (LIPM), Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, BP52627, 31326 Castanet-Tolosan, France; and
| | - Michel Rossignol
- Unité Mixte de Recherche 5546, Centre National de la Recherche/Université P. Sabatier, F-31326 Castanet-Tolosan, France
| | - Julia A. Vorholt
- *Laboratoire des Interactions Plantes Micro-Organismes (LIPM), Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, BP52627, 31326 Castanet-Tolosan, France; and
| |
Collapse
|
36
|
Brandl MT. Fitness of human enteric pathogens on plants and implications for food safety. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:367-92. [PMID: 16704355 DOI: 10.1146/annurev.phyto.44.070505.143359] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The continuous rise in the number of outbreaks of foodborne illness linked to fresh fruit and vegetables challenges the notion that enteric pathogens are defined mostly by their ability to colonize the intestinal habitat. This review describes the epidemiology of produce-associated outbreaks of foodborne disease and presents recently acquired knowledge about the behavior of enteric pathogens on plants, with an emphasis on Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The growth and survival of enteric pathogens on plants are discussed in the light of knowledge and concepts in plant microbial ecology, including epiphytic fitness, the physicochemical nature of plant surfaces, biofilm formation, and microbe-microbe and plant-microbe interactions. Information regarding the various stresses that affect the survival of enteric pathogens and the molecular events that underlie their interactions in the plant environment provides a good foundation for assessing their role in the infectious dose of the pathogens when contaminated fresh produce is the vehicle of illness.
Collapse
Affiliation(s)
- Maria T Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Services, U.S. Department of Agriculture, Albany, California 94710, USA.
| |
Collapse
|