1
|
Acevedo-López J, González-Madrid G, Navarro CA, Jerez CA. Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms 2024; 12:2627. [PMID: 39770829 PMCID: PMC11677633 DOI: 10.3390/microorganisms12122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In Escherichia coli, polyphosphates also function as inorganic molecular chaperones. The present study aims to investigate whether polyphosphate serves a similar chaperone function in archaea, using Saccharolobus solfataricus as a model organism. To this end, polyphosphate was extracted and quantified, the ADP/ATP ratio was determined, insoluble protein extracts were analyzed at different time points after copper exposure, and qPCR was performed to measure the expression of stress-related genes. PolyP was extracted after exposing the archaeon S. solfataricus to different copper concentrations. We determined that polyP degradation is directly correlated with metal concentration. At the minimum inhibitory concentration (MIC) of 2 mM Cu2+, polyP degradation stabilized 2 h after exposure and showed no recovery even after 24 h. The ADP/ATP ratio was measured and showed differences in the presence or absence of polyP. The analysis of proteins precipitated under copper stress showed a higher proportion of insoluble proteins at an elevated metal concentration. On the other hand, increased protein precipitation was detected in the absence of polyP. Gene expression analysis via qPCR was conducted to assess the expression of genes involved in chaperone and chaperonin production, copper resistance, oxidative stress response, and phosphate metabolism under prolonged copper exposure, both in the presence and absence of polyP. The results indicated an upregulation of all the chaperonins measured in the presence of polyP. Interestingly, just some of these genes were upregulated in polyP's absence. Despite copper stress, there was no upregulation of superoxide dismutase in our conditions. These results highlight the role of polyP in the copper stress response in S. solfataricus, particularly to prevent protein precipitation, likely due to its function as an inorganic chaperone. Additionally, the observed protein precipitation could be attributable to interactions between copper and some amino acids on the protein structures rather than oxidative stress induced by copper exposure, as previously described in E. coli. Our present findings provide new insights into the protective role of polyP as an inorganic chaperone in S. solfataricus and emphasize its importance in maintaining cellular homeostasis under metal stress conditions.
Collapse
Affiliation(s)
| | | | | | - Carlos A. Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile; (J.A.-L.); (G.G.-M.)
| |
Collapse
|
2
|
Pfeil-Gardiner O, Rosa HVD, Riedel D, Chen YS, Lörks D, Kükelhan P, Linck M, Müller H, Van Petegem F, Murphy BJ. Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis. Nat Methods 2024; 21:2299-2306. [PMID: 39448878 PMCID: PMC11621030 DOI: 10.1038/s41592-024-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.
Collapse
Affiliation(s)
- Olivia Pfeil-Gardiner
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Higor Vinícius Dias Rosa
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany
- Mattei Lab, Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Riedel
- Facility for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Seby Chen
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Filip Van Petegem
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
3
|
Ghose D, Jones RS. Extracellular Phosphate Modulation and Polyphosphate Accumulation by Corynebacterium matruchotii and Streptococcus mutans. Dent J (Basel) 2024; 12:366. [PMID: 39590416 PMCID: PMC11592680 DOI: 10.3390/dj12110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: An alternative and understudied microbial mechanism that may influence demineralization is the microbially mediated ion exchange of Ca2+ and orthophosphate (Pi), which alters the saturation state of the mineral species within the surface enamel. There is a need to examine the ability of members of the oral microbiome to modulate Ca2+ and Pi, which control mineral solubility, in order to effectively evaluate mineralization therapies to improve oral health. (2) Methods: Pi uptake was measured using an ascorbic acid assay during a BHI liquid culture growth of Corynebacterium matruchotii and Streptococcus mutans for up to 20 h. The initial and endpoint medium Ca2+ levels were measured using ICP-OES. Bacterial cells were examined at different growth stages using DAPI/polyP binding emission at 525 nm to detect the presence of internalized macromolecules of polyphosphates (polyP) that could drive Pi uptake. (3) Results: C. matruchotii (p = 0.0061) substantially accumulated Pi (3.84 mmol/L), with a concomitant formation of polyP. In contrast, S. mutans did not take up Pi or accumulate polyP. No significant Ca2+ drawdown in the media was observed in either strain. (4) Conclusions: This study suggests that when examining the future efficacy of prevention technologies to improve, in vitro assays may consider including specific oral bacteria capable of substantial Pi uptake.
Collapse
Affiliation(s)
- Debarati Ghose
- Department of Biology, Texas A&M University, College Station, TX 77840, USA;
| | - Robert S. Jones
- Department of Developmental & Surgical Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Höfmann S, Schmerling C, Stracke C, Niemeyer F, Schaller T, Snoep JL, Bräsen C, Siebers B. The archaeal family 3 polyphosphate kinase reveals a function of polyphosphate as energy buffer under low energy charge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610084. [PMID: 39257778 PMCID: PMC11383997 DOI: 10.1101/2024.08.28.610084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Inorganic polyphosphate, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, occurs in all three domains of life and plays a diverse and prominent role in metabolism and cellular regulation. While the polyphosphate metabolism and its physiological significance have been well studied in bacteria and eukaryotes including human, there are only few studies in archaea available so far. In Crenarchaeota including members of Sulfolobaceae , the presence of polyphosphate and degradation via exopolyphosphatase has been reported and there is some evidence for a functional role in metal ion chelation, biofilm formation, adhesion and motility, however, the nature of the crenarchaeal polyphosphate kinase is still unknown. Here we used the crenarchaeal model organism Sulfolobus acidocaldarius to study the enzymes involved in polyphosphate synthesis. The two genes annotated as thymidylate kinase ( saci_2019 and saci_2020 ), localized downstream of the exopolyphosphatase, were identified as the missing polyphosphate kinase in S. acidocaldarius ( Sa PPK3). Thymidylate kinase activity was confirmed for Saci_0893. Notably Saci_2020 showed no polyphosphate kinase activity on its own but served as regulatory subunit (rPPK3) and was able to enhance polyphosphate kinase activity of the catalytically active subunit Saci_2019 (cPPK3). Heteromeric polyphosphate kinase activity is reversible and shows a clear preference for polyP-dependent nucleotide kinase activity, i.e. polyP-dependent formation of ATP from ADP (12.4 U/mg) and to a lower extent of GDP to GTP whereas AMP does not serve as substrate. PPK activity in the direction of ATP-dependent polyP synthesis is rather low (0.25 U/mg); GTP was not used as phosphoryl donor. A combined experimental modelling approach using quantitative 31 P NMR allowed to follow the reversible enzyme reaction for both ATP and polyP synthesis. PolyP synthesis was only observed when the ATP/ADP ratio was kept high, using an ATP recycling system. In absence of such a recycling system, all incubations with polyP and PPK would reach an equilibrium state with an ATP/ADP ratio between 3 and 4, independent of the initial conditions. Structural and sequence comparisons as well as phylogenetic analysis reveal that the S. acidocaldarius PPK is a member of a new PPK family, named PPK3, within the thymidylate kinase family of the P-loop kinase superfamily, clearly separated from PPK2. Our studies show that polyP, in addition to its function as phosphate storage, has a special importance for the energy homeostasis of S. acidocaldarius and due to its reversibility serves as energy buffer under low energy charge enabling a quick response to changes in cellular demand.
Collapse
|
5
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 PMCID: PMC11921889 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Zhou Y, Yan A, Yang J, He W, Guo S, Li Y, Wu J, Dai Y, Pan X, Cui D, Pereira O, Teng W, Bi R, Chen S, Fan L, Wang P, Liao Y, Qin W, Sui SF, Zhu Y, Zhang C, Liu Z. Ultrastructural insights into cellular organization, energy storage and ribosomal dynamics of an ammonia-oxidizing archaeon from oligotrophic oceans. Front Microbiol 2024; 15:1367658. [PMID: 38737410 PMCID: PMC11082331 DOI: 10.3389/fmicb.2024.1367658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.
Collapse
Affiliation(s)
- Yangkai Zhou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An Yan
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiawen Yang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuai Guo
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Li
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanchao Dai
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Olivier Pereira
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institut AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenkai Teng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ran Bi
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan Liao
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Sen-Fang Sui
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
- Advanced Institute for Ocean Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Liu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Gao Y, Huang X, Zheng X, Yan F. FoxO signaling pathway stimulation by Bacillus smithii XY1 contributes to alleviating copper-induced neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133345. [PMID: 38147755 DOI: 10.1016/j.jhazmat.2023.133345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Increasingly copper pollution in the environment exacerbates the risk of neurodegenerative diseases. It is necessary to look for effective targets and safe methods for protecting from copper-induced neurotoxicity. Here we firstly explored the impact of copper-exposure on expression profiles in zebrafish. Copper reduced embryo hatching, increased mortality and caused embryonic developmental abnormalities and behavioral dysfunction in juveniles. Transcriptomic analysis revealed that differential genes related to neuron were highly associated with oxidative stress especially enriched to FoxO pathway. Through further validation in Caenorhabditis elegans, copper resulted in nematode neurodegenerative movement disorders and neuronal damage, along with increased levels of reactive oxygen species (ROS) as well as decreased expressions of antioxidant-related enzymes and downstream genes which was also involved in FoxO signaling pathway. Bacillus smithii XY1, a novel strain with an excellent antioxidative activity, showed a great alleviative effect on copper-induced neurotoxicity that was related to FoxO stimulation, being a potential candidate for copper pollution management. Overall, these results suggested that FoxO pathway activation can regard as a strategy for mitigating neurotoxicity caused by copper and B. smithii XY1 with excellent tolerance and outstanding antioxidation specially targeted for FoxO has a promising application in controlling copper contamination.
Collapse
Affiliation(s)
- Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Sun J, He X, LE Y, Al-Tohamy R, Ali SS. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120081. [PMID: 38237330 DOI: 10.1016/j.jenvman.2024.120081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.
Collapse
Affiliation(s)
- Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xing He
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yilin LE
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
10
|
Manesh MJH, Willard DJ, Lewis AM, Kelly RM. Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us? BIORESOURCE TECHNOLOGY 2024; 391:129988. [PMID: 37949149 DOI: 10.1016/j.biortech.2023.129988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Elevated temperatures favor bioleaching processes through faster kinetics, more favorable mineral chemistry, lower cooling requirements, and less surface passivation. Extremely thermoacidophilic archaea from the order Sulfolobales exhibit novel mechanisms for bioleaching metals from ores and have great potential. Genome sequences of many extreme thermoacidophiles are now available and provide new insights into their biochemistry, metabolism, physiology and ecology as these relate to metal mobilization from ores. Although there are some molecular genetic tools available for extreme thermoacidophiles, further development of these is sorely needed to advance the study and application of these archaea for bioleaching applications. The evolving landscape for bioleaching technologies at high temperatures merits a closer look through a genomic lens at what is currently possible and what lies ahead in terms of new developments and emerging opportunities. The need for critical metals and the diminishing primary deposits for copper should provide incentives for high temperature bioleaching.
Collapse
Affiliation(s)
- Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
11
|
Llorca MG, Martínez-Espinosa RM. Assessment of Haloferax mediterranei Genome in Search of Copper-Molecular Machinery With Potential Applications for Bioremediation. Front Microbiol 2022; 13:895296. [PMID: 35783429 PMCID: PMC9240420 DOI: 10.3389/fmicb.2022.895296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Heavy metals are essential micronutrients at low concentrations, serving as cofactors for relevant microbial enzymes (i.e., respiratory nitrate and nitrite reductases NADH dehydrogenase-2, amine oxidase, etc.), but they become harmful cellular intoxicants at significant low concentrations compared to other chemical compounds. The increasing need to incorporate bioremediation in the removal of heavy metals and other contaminants from wastewaters has led extremophiles to the spotlight of research. The haloarchaeon Haloferax mediterranei has promising physiological characteristics regarding bioremediation. However, little is known about how haloarchaea manage to resist high concentrations of heavy metals in the environment. The aim of this work is to develop bioinformatics research as the first step for further omics-based studies to shed light on copper metabolism in haloarchaea by analyzing H. mediterranei genome (strain ATCC 33500). To reach this aim, genome and protein databases have been consulted, and copper-related genes have been identified. BLAST analysis has been carried out to find similarities between copper resistance genes described from other microorganisms and H. mediterranei genes. Plausible copper importer genes, genes coding for siderophores, and copper exporters belonging to P1B-type ATPase group have been found apart from genes encoding copper chaperones, metal-responsive transcriptional regulators, and several proteins belonging to the cupredoxin superfamily: nitrite reductase, nitrous oxide reductases, cytochrome c oxidases, multicopper oxidases, and small blue copper proteins from the amicyanin/pseudoazurin families as halocyanins. As the presence of heavy metals causes oxidative stress, genes coding for proteins involved in antioxidant mechanisms have been also explored: thioredoxin, glutaredoxin, peroxiredoxin, catalase, and γ-glutamylcysteine as an analog of glutathione. Bioinformatic-based analysis of H. mediterranei genome has revealed a set of genes involved in copper metabolism that could be of interest for bioremediation purposes. The analysis of genes involved in antioxidative mechanisms against heavy metals makes it possible to infer the capability of H. mediterranei to synthesize inorganic polyphosphate granules against oxidative stress.
Collapse
Affiliation(s)
- Marina García Llorca
- Biochemistry and Molecular Biology Division, Department of Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Department of Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
- *Correspondence: Rosa María Martínez-Espinosa,
| |
Collapse
|
12
|
Suzina NE, Sorokin VV, Polivtseva VN, Klyueva VV, Emelyanova EV, Solyanikova IP. From Rest to Growth: Life Collisions of Gordonia polyisoprenivorans 135. Microorganisms 2022; 10:465. [PMID: 35208919 PMCID: PMC8879720 DOI: 10.3390/microorganisms10020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
In the process of evolution, living organisms develop mechanisms for population preservation to survive in unfavorable conditions. Spores and cysts are the most obvious examples of dormant forms in microorganisms. Non-spore-forming bacteria are also capable of surviving in unfavorable conditions, but the patterns of their behavior and adaptive reactions have been studied in less detail compared to spore-forming organisms. The purpose of this work was to study the features of transition from dormancy to active vegetative growth in one of the non-spore-forming bacteria, Gordonia polisoprenivorans 135, which is known as a destructor of such aromatic compounds as benzoate, 3-chlorobenzoate, and phenol. It was shown that G. polyisoprenivorans 135 under unfavorable conditions forms cyst-like cells with increased thermal resistance. Storage for two years does not lead to complete cell death. When the cells were transferred to fresh nutrient medium, visible growth was observed after 3 h. Immobilized cells stored at 4 °C for at least 10 months regenerated their metabolic activity after only 30 min of aeration. A study of the ultrathin organization of resting cells by transmission electron microscopy combined with X-ray microanalysis revealed intracytoplasmic electron-dense spherical membrane ultrastructures with significant similarity to previously described acidocalcisomas. The ability of some resting G. polyisoprenivorans 135 cells in the population to secrete acidocalcisome-like ultrastructures into the extracellular space was also detected. These structures contain predominantly calcium (Ca) and, to a lesser extent, phosphorus (P), and are likely to serve as depots of vital macronutrients to maintain cell viability during resting and provide a quick transition to a metabolically active state under favorable conditions. The study revealed the features of transitions from active growth to dormant state and vice versa of non-spore-forming bacteria G. polyisoprenivorans 135 and the possibility to use them as the basis of biopreparations with a long shelf life.
Collapse
Affiliation(s)
- Nataliya E. Suzina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Vladimir V. Sorokin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 117312 Moscow, Russia;
| | - Valentina N. Polivtseva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Violetta V. Klyueva
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| | - Elena V. Emelyanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Inna P. Solyanikova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| |
Collapse
|
13
|
Gorlas A, Mariotte T, Morey L, Truong C, Bernard S, Guigner JM, Oberto J, Baudin F, Landrot G, Baya C, Le Pape P, Morin G, Forterre P, Guyot F. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments? Environ Microbiol 2022; 24:626-642. [PMID: 35102700 PMCID: PMC9306673 DOI: 10.1111/1462-2920.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Thermococcales, a major order of archaea inhabiting the iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, have been shown to rapidly produce abundant quantities of pyrite FeS2 in iron-sulfur-rich fluids at 85°C, suggesting that they may contribute to the formation of 'low temperature' FeS2 in their ecosystem. We show that this process operates in Thermococcus kodakarensis only when zero-valent sulfur is directly available as intracellular sulfur vesicles. Whether in the presence or absence of zero-valent sulfur, significant amounts of Fe3 S4 greigite nanocrystals are formed extracellularly. We also show that mineralization of iron sulfides induces massive cell mortality but that concomitantly with the formation of greigite and/or pyrite, a new generation of cells can grow. This phenomenon is observed for Fe concentrations of 5 mM but not higher suggesting that above a threshold in the iron pulse all cells are lysed. We hypothesize that iron sulfides precipitation on former cell materials might induce the release of nutrients in the mineralization medium further used by a fraction of surviving non-mineralized cells allowing production of new alive cells. This suggests that biologically induced mineralization of iron-sulfides could be part of a survival strategy employed by Thermococcales to cope with mineralizing high-temperature hydrothermal environments.
Collapse
Affiliation(s)
- A Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - T Mariotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - L Morey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - C Truong
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - S Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J-M Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Baudin
- Institut des Sciences de la Terre de Paris, UMR 7193 - Sorbonne Université - CNRS, Paris, 75005, France
| | - G Landrot
- Synchrotron SOLEIL - SAMBA beamline, Saint-Aubin, 91190, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - G Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
14
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
15
|
Mehmood T, Gaurav GK, Cheng L, Klemeš JJ, Usman M, Bokhari A, Lu J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113108. [PMID: 34218074 DOI: 10.1016/j.jenvman.2021.113108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Management and treatment of multi-polluted stormwater in bioretention system have gained significant attraction recently. Besides nutrients, recent source appointment studies found elevated levels of Potentially toxic metal(loid)s (PTMs) and contaminants of emerging concern (CECs) in stormwater that highlighted many limitations in conventional media adsorption-based pollutant removal bioretention strategies. The substantial new studies include biological treatment approaches to strengthen pollutants degradation and adsorption capacity of bioretention. The knowledge on characteristics of plants and their corresponding mechanisms in various functions, e.g., rainwater interception, retention, infiltration, media clogging prevention, evapotranspiration and phytoremediation, is scattered. The microorganisms' role in facilitating vegetation and media, plant-microorganism interactions and relative performance over different functions in bioretention is still unreviewed. To uncover the underneath, it was summarised plant and microbial studies and their functionality in hydrogeochemical cycles in the bioretention system in this review, contributing to finding their interconnections and developing a more efficient bioretention system. Additionally, source characteristics of stormwater and fate of associated pollutants in the environment, the potential of genetical engineered plants, algae and fungi in bioretention system as well as performance assessment of plants and microorganisms in non-bioretention studies to propose the possible solution of un-addressed problems in bioretention system have been put forward in this review. The present review can be used as an imperative reference to enlighten the advantages of adopting multidisciplinary approaches for the environment sustainability and pollution control.
Collapse
Affiliation(s)
- Tariq Mehmood
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| | - Gajendra Kumar Gaurav
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| | - Liu Cheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Pakistan
| | - Jie Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
16
|
Vogt MS, Ngouoko Nguepbeu RR, Mohr MKF, Albers SV, Essen LO, Banerjee A. The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family. J Biol Chem 2021; 297:100820. [PMID: 34029589 PMCID: PMC8233210 DOI: 10.1016/j.jbc.2021.100820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022] Open
Abstract
CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3′,5′-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network–based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.
Collapse
Affiliation(s)
- Marian S Vogt
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | - Michael K F Mohr
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
| | - Ankan Banerjee
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Department of Genetics, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
17
|
Did Cyclic Metaphosphates Have a Role in the Origin of Life? ORIGINS LIFE EVOL B 2021; 51:1-60. [PMID: 33721178 DOI: 10.1007/s11084-021-09604-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
How life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life's constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol's salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.
Collapse
|
18
|
Shiny Matilda C, Mannully ST, Rao VP, Shanthi C. Chromium binding Bacillus cereus VITSH1-a promising candidate for heavy metal clean up. Lett Appl Microbiol 2021; 72:517-525. [PMID: 33331052 DOI: 10.1111/lam.13441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Bacteria survive metal stress by several mechanisms and metal binding is one such mechanism which has been screened in the present study to investigate the survival strategies of metal resistant bacteria. The production of siderophores, a metal chelating agent, was detected by chrome azurol S agar assay. The changes in cell wall studied by analysing the peptidoglycan and teichoic acid content indicated an increase in the cell wall content. Evaluation of morphological and physiological alterations like cell size, granularity analysed by SEM and flow cytometry analysis revealed an increase in cell size and granularity respectively. The transformation of phosphates monitored by 31 P NMR analysis indicated the presence of inorganic phosphate. Based on the cell wall changes and the 31 P NMR analysis, the surface charge of the organism was studied by zeta potential which displayed a difference at pH7.
Collapse
Affiliation(s)
- C Shiny Matilda
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S T Mannully
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - V P Rao
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C Shanthi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
19
|
Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Paula FS, Chin JP, Schnürer A, Müller B, Manesiotis P, Waters N, Macintosh KA, Quinn JP, Connolly J, Abram F, McGrath JW, O'Flaherty V. The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Sci Rep 2019; 9:17101. [PMID: 31745137 PMCID: PMC6864096 DOI: 10.1038/s41598-019-53168-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Inorganic polyphosphate (polyP) is ubiquitous across all forms of life, but the study of its metabolism has been mainly confined to bacteria and yeasts. Few reports detail the presence and accumulation of polyP in Archaea, and little information is available on its functions and regulation. Here, we report that homologs of bacterial polyP metabolism proteins are present across the major taxa in the Archaea, suggesting that archaeal populations may have a greater contribution to global phosphorus cycling than has previously been recognised. We also demonstrate that polyP accumulation can be induced under strictly anaerobic conditions, in response to changes in phosphate (Pi) availability, i.e. Pi starvation, followed by incubation in Pi replete media (overplus), in cells of the methanogenic archaeon Methanosarcina mazei. Pi-starved M. mazei cells increased transcript abundance of the alkaline phosphatase (phoA) gene and of the high-affinity phosphate transport (pstSCAB-phoU) operon: no increase in polyphosphate kinase 1 (ppk1) transcript abundance was observed. Subsequent incubation of Pi-starved M. mazei cells under Pi replete conditions, led to a 237% increase in intracellular polyphosphate content and a > 5.7-fold increase in ppk1 gene transcripts. Ppk1 expression in M. mazei thus appears not to be under classical phosphate starvation control.
Collapse
Affiliation(s)
- Fabiana S Paula
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland.
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Jason P Chin
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Nicholas Waters
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| | - Katrina A Macintosh
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - John P Quinn
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Jasmine Connolly
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - Florence Abram
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Vincent O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland.
| |
Collapse
|
21
|
Jasso-Chávez R, Lira-Silva E, González-Sánchez K, Larios-Serrato V, Mendoza-Monzoy DL, Pérez-Villatoro F, Morett E, Vega-Segura A, Torres-Márquez ME, Zepeda-Rodríguez A, Moreno-Sánchez R. Marine Archaeon Methanosarcina acetivorans Enhances Polyphosphate Metabolism Under Persistent Cadmium Stress. Front Microbiol 2019; 10:2432. [PMID: 31708902 PMCID: PMC6821655 DOI: 10.3389/fmicb.2019.02432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/09/2019] [Indexed: 12/04/2022] Open
Abstract
Phosphate metabolism was studied to determine whether polyphosphate (polyP) pools play a role in the enhanced resistance against Cd2+ and metal-removal capacity of Cd2+-preadapted (CdPA) Methanosarcina acetivorans. Polyphosphate kinase (PPK), exopolyphosphatase (PPX) and phosphate transporter transcript levels and their activities increased in CdPA cells compared to control (Cnt) cells. K+ inhibited recombinant Ma-PPK and activated Ma-PPX, whereas divalent cations activated both enzymes. Metal-binding polyP and thiol-containing molecule contents, Cd2+-removal, and biofilm synthesis were significantly higher in CdPA cells >Cnt cells plus a single addition of Cd2+>Cnt cells. Also, CdPA cells showed a higher number of cadmium, sulfur, and phosphorus enriched-acidocalcisomes than control cells. Biochemical and physiological phenotype exhibited by CdPA cells returned to that of Cnt cells when cultured without Cd2+. Furthermore, no differences in the sequenced genomes upstream and downstream of the genes involved in Cd2+ resistance were found between CdPA and Cnt cells, suggesting phenotype loss rather than genome mutations induced by chronic Cd2+-exposure. Instead, a metabolic adaptation induced by Cd2+ stress was apparent. The dynamic ability of M. acetivorans to change its metabolism, depending on the environmental conditions, may be advantageous to remove cadmium in nature and biodigesters.
Collapse
Affiliation(s)
- Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Elizabeth Lira-Silva
- Departamento de Farmacología, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | | - Fernando Pérez-Villatoro
- Winter Genomics, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Enrique Morett
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | | | | | | | | |
Collapse
|
22
|
Panyushkina AE, Babenko VV, Nikitina AS, Selezneva OV, Tsaplina IA, Letarova MA, Kostryukova ES, Letarov AV. Sulfobacillus thermotolerans: new insights into resistance and metabolic capacities of acidophilic chemolithotrophs. Sci Rep 2019; 9:15069. [PMID: 31636299 PMCID: PMC6803676 DOI: 10.1038/s41598-019-51486-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
The first complete genome of the biotechnologically important species Sulfobacillus thermotolerans has been sequenced. Its 3 317 203-bp chromosome contains an 83 269-bp plasmid-like region, which carries heavy metal resistance determinants and the rusticyanin gene. Plasmid-mediated metal resistance is unusual for acidophilic chemolithotrophs. Moreover, most of their plasmids are cryptic and do not contribute to the phenotype of the host cells. A polyphosphate-based mechanism of metal resistance, which has been previously unknown in the genus Sulfobacillus or other Gram-positive chemolithotrophs, potentially operates in two Sulfobacillus species. The methylcitrate cycle typical for pathogens and identified in the genus Sulfobacillus for the first time can fulfill the energy and/or protective function in S. thermotolerans Kr1 and two other Sulfobacillus species, which have incomplete glyoxylate cycles. It is notable that the TCA cycle, disrupted in all Sulfobacillus isolates under optimal growth conditions, proved to be complete in the cells enduring temperature stress. An efficient antioxidant defense system gives S. thermotolerans another competitive advantage in the microbial communities inhabiting acidic metal-rich environments. The genomic comparisons revealed 80 unique genes in the strain Kr1, including those involved in lactose/galactose catabolism. The results provide new insights into metabolism and resistance mechanisms in the Sulfobacillus genus and other acidophiles.
Collapse
Affiliation(s)
- Anna E Panyushkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia.
| | - Vladislav V Babenko
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Anastasia S Nikitina
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Oksana V Selezneva
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Iraida A Tsaplina
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia
| | - Maria A Letarova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia
| | - Elena S Kostryukova
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Andrey V Letarov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia
| |
Collapse
|
23
|
Ramos-Zúñiga J, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. J Proteomics 2019; 198:132-144. [DOI: 10.1016/j.jprot.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/28/2022]
|
24
|
Wang L, Liu Q, Wu X, Huang Y, Wise MJ, Liu Z, Wang W, Hu J, Wang C. Bioinformatics Analysis of Metabolism Pathways of Archaeal Energy Reserves. Sci Rep 2019; 9:1034. [PMID: 30705313 PMCID: PMC6355812 DOI: 10.1038/s41598-018-37768-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 11/08/2022] Open
Abstract
Energy storage compounds play crucial roles in prokaryotic physiology. Five chemical compounds have been identified in prokaryotes as energy reserves: polyphosphate (polyP), polyhydroxyalkanoates (PHAs), glycogen, wax ester (WE) and triacylglycerol (TAG). Currently, no systematic study of archaeal energy storage metabolism exists. In this study, we collected 427 archaeal reference sequences from UniProt database. A thorough pathway screening of energy reserves led to an overview of distribution patterns of energy metabolism in archaea. We also explored how energy metabolism might have impact on archaeal extremophilic phenotypes. Based on the systematic analyses of archaeal proteomes, we confirmed that metabolism pathways of polyP, PHAs and glycogen are present in archaea, but TAG and WE are completely absent. It was also confirmed that PHAs are tightly related to halophilic archaea with larger proteome size and higher GC contents, while polyP is mainly present in methanogens. In sum, this study systematically investigates energy storage metabolism in archaea and provides a clear correlation between energy metabolism and the ability to survive in extreme environments. With more genomic editing tools developed for archaea and molecular mechanisms unravelled for energy storage metabolisms (ESMs), there will be a better understanding of the unique lifestyle of archaea in extreme environments.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Huang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Michael J Wise
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Department of Computer Science and Software Engineering, School of Physics, Mathematics and Computing, University of Western Australia, Perth, Western Australia, Australia
| | - Zhanzhong Liu
- Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Public Health, Capital Medical University, Beijing, China
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Junfeng Hu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Computer Science, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunying Wang
- Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Grillo-Puertas M, Delaporte-Quintana P, Pedraza RO, Rapisarda VA. Intracellular Polyphosphate Levels in Gluconacetobacter diazotrophicus Affect Tolerance to Abiotic Stressors and Biofilm Formation. Microbes Environ 2018; 33:440-445. [PMID: 30404971 PMCID: PMC6307995 DOI: 10.1264/jsme2.me18044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gluconacetobacter diazotrophicus is a plant growth-promoting bacterium that is used as a bioinoculant. Phosphate (Pi) modulates intracellular polyphosphate (polyP) levels in Escherichia coli, affecting cellular fitness and biofilm formation capacity. It currently remains unclear whether environmental Pi modulates polyP levels in G. diazotrophicus to enhance fitness in view of its technological applications. In high Pi media, cells accumulated polyP and degraded it, thereby improving survival, tolerance to environmental stressors, biofilm formation capacity on abiotic and biotic surfaces, and competence as a growth promoter of strawberry plants. The present results support the importance of Pi and intracellular polyP as signals involved in the survival of G. diazotrophicus.
Collapse
Affiliation(s)
- Mariana Grillo-Puertas
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán
| | | | | | - Viviana Andrea Rapisarda
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán
| |
Collapse
|
26
|
Remonsellez F, Castro-Severyn J, Pardo-Esté C, Aguilar P, Fortt J, Salinas C, Barahona S, León J, Fuentes B, Areche C, Hernández KL, Aguayo D, Saavedra CP. Characterization and Salt Response in Recurrent Halotolerant Exiguobacterium sp. SH31 Isolated From Sediments of Salar de Huasco, Chilean Altiplano. Front Microbiol 2018; 9:2228. [PMID: 30294311 PMCID: PMC6158405 DOI: 10.3389/fmicb.2018.02228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-extremophiles microorganisms have the capacity to inhabit hostile environments and can survive several adverse conditions that include as variations in temperature, pH, and salinity, high levels UV light and atmospheric pressure, and even the presence of toxic compounds and the formation of reactive oxygen species (ROS). A halotolerant Exiguobacterium strain was isolated from Salar de Huasco (Chilean Altiplano), a well-known shallow lake area with variable salinity levels, little human intervention, and extreme environmental conditions, which makes it ideal for the study of resistant mechanisms and the evolution of adaptations. This bacterial genus has not been extensively studied, although its cosmopolitan location indicates that it has high levels of plasticity and adaptive capacity. However, to date, there are no studies regarding the tolerance and resistance to salinity and osmotic pressure. We set out to characterize the Exiguobacterium sp. SH31 strain and describe its phenotypical and genotypical response to osmotic stress. In this context, as a first step to characterize the response to the SH31 strain to salinity and to establish the bases for a molecular study, we proposed to compare its response under three salt conditions (0, 25, and 50 g/l NaCl). Using different physiology, genomic, and transcriptomic approaches, we determined that the bacterium is able to grow properly in a NaCl concentration of up to 50 g/l; however, the best growth rate was observed at 25 g/l. Although the presence of flagella is not affected by salinity, motility was diminished at 25 g/l NaCl and abolished at 50 g/l. Biofilm formation was induced proportionally with increases in salinity, which was expected. These phenotypic results correlated with the expression of related genes: fliG and fliS Motility); opuBA and putP (transport); glnA, proC, gltA, and gbsA (compatible solutes); ywqC, bdlA, luxS y pgaC (biofilm and stress response); and therefore, we conclude that this strain effectively modifies gene expression and physiology in a differential manner when faced with different concentrations of NaCl and these modifications aid survival.
Collapse
Affiliation(s)
- Francisco Remonsellez
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Aguilar
- Lake and Glacier Ecology Research Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jonathan Fortt
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Cesar Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Sergio Barahona
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Joice León
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Bárbara Fuentes
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Klaudia L. Hernández
- Centro de Investigación Marina Quintay, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Aguayo
- Center for Bioinformatics and Integrative Biology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
27
|
Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 2018; 34:139. [DOI: 10.1007/s11274-018-2523-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
|
28
|
Feng G, Feng Y, Guo T, Yang Y, Guo W, Huang M, Wu H, Zeng M. Biogenic Polyphosphate Nanoparticles from Synechococcus sp. PCC 7002 Exhibit Intestinal Protective Potential in Human Intestinal Epithelial Cells In Vitro and Murine Small Intestine Ex Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8026-8035. [PMID: 29975063 DOI: 10.1021/acs.jafc.8b03381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyphosphates are one of the active compounds from probiotics to maintain gut health. The current research extracted and purified intact biogenic polyphosphate nanoparticles (BPNPs) from Synechococcus sp. PCC 7002 cells. BPNPs were near-spherical anionic particles (56.9 ± 15.1 nm) mainly composed of calcium and magnesium salt of polyphosphate and were colloidally stable at near-neutral and alkaline pH. BPNPs survived gastrointestinal digestion in mice and could be absorbed and transported by polarized Caco-2 cell monolayers. They dose-dependently increased the tightness of intercellular tight junction and the expression of claudin-4, occludin, zonula occludens-1, and heat shock protein 27 in Caco-2 cell monolayers. BPNPs also effectively attenuated H2O2-induced cell death, plasma membrane impairment, and intracellular superoxide production in NCM460 cells. In addition, they conferred resistance to H2O2-induced barrier disruption in freshly excised mouse small intestine. Our results suggest that BPNPs are a promising postbiotic nanomaterial with potential applications in gut health maintenance.
Collapse
Affiliation(s)
- Guangxin Feng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Yinong Feng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Tengjiao Guo
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Yisheng Yang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Wei Guo
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Min Huang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Haohao Wu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Mingyong Zeng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| |
Collapse
|
29
|
The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria. Res Microbiol 2018; 169:552-557. [PMID: 30031071 DOI: 10.1016/j.resmic.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
The ability of acidophilic bacteria to grow in the presence of elevated concentrations of cationic transition metals, though varying between species, has long been recognized to be far greater than that of most neutrophiles. Conversely, their sensitivity to both inorganic and organic anions, with the notable exception of sulfate, has generally been considered to be far more pronounced. We have compared the tolerance of different species of mineral-oxidizing Acidithiobacillus and Sulfobacillus, and the heterotrophic iron-reducer Acidiphilium cryptum, to copper and chloride when grown on ferrous iron, hydrogen or glucose as electron donors at pH values between 2.0 and 3.0. While tolerance of copper varied greatly between species, these were invariably far greater at pH 2.0 than at pH 3.0, while their tolerance of chloride showed the opposite pattern. The combination of copper and chloride in liquid media appeared to be far more toxic than when these elements were present alone, which was thought to be due to the formation of copper-chloride complexes. The results of this study bring new insights into the understanding of the physiological behaviour of metal-mobilising acidophilic bacteria, and have generic significance for the prospects of bioleaching copper ores and concentrates in saline and brackish waters.
Collapse
|
30
|
Oetiker N, Norambuena R, Martínez-Bussenius C, Navarro CA, Amaya F, Álvarez SA, Paradela A, Jerez CA. Possible Role of Envelope Components in the Extreme Copper Resistance of the Biomining Acidithiobacillus ferrooxidans. Genes (Basel) 2018; 9:genes9070347. [PMID: 29996532 PMCID: PMC6070983 DOI: 10.3390/genes9070347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023] Open
Abstract
Acidithiobacillus ferrooxidans resists extremely high concentrations of copper. Strain ATCC 53993 is much more resistant to the metal compared with strain ATCC 23270, possibly due to the presence of a genomic island in the former one. The global response of strain ATCC 53993 to copper was analyzed using iTRAQ (isobaric tag for relative and absolute quantitation) quantitative proteomics. Sixty-seven proteins changed their levels of synthesis in the presence of the metal. On addition of CusCBA efflux system proteins, increased levels of other envelope proteins, such as a putative periplasmic glucan biosynthesis protein (MdoG) involved in the osmoregulated synthesis of glucans and a putative antigen O polymerase (Wzy), were seen in the presence of copper. The expression of A. ferrooxidansmdoG or wzy genes in a copper sensitive Escherichia coli conferred it a higher metal resistance, suggesting the possible role of these components in copper resistance of A. ferrooxidans. Transcriptional levels of genes wzy, rfaE and wzz also increased in strain ATCC 23270 grown in the presence of copper, but not in strain ATCC 53993. Additionally, in the absence of this metal, lipopolysaccharide (LPS) amounts were 3-fold higher in A. ferrooxidans ATCC 53993 compared with strain 23270. Nevertheless, both strains grown in the presence of copper contained similar LPS quantities, suggesting that strain 23270 synthesizes higher amounts of LPS to resist the metal. On the other hand, several porins diminished their levels in the presence of copper. The data presented here point to an essential role for several envelope components in the extreme copper resistance by this industrially important acidophilic bacterium.
Collapse
Affiliation(s)
- Nia Oetiker
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Rodrigo Norambuena
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Cristóbal Martínez-Bussenius
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Fernando Amaya
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 7800003, Chile.
| | - Sergio A Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 7800003, Chile.
| | - Alberto Paradela
- Proteomics Laboratory, National Biotechnology Center, CSIC, 28049 Madrid, Spain.
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| |
Collapse
|
31
|
Tolerance of Trichoderma sp. to Heavy Metals and its Antifungal Activity in Algerian Marine Environment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
|
33
|
McCarthy S, Ai C, Blum P. Enhancement of Metallosphaera sedula Bioleaching by Targeted Recombination and Adaptive Laboratory Evolution. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:135-165. [PMID: 30143251 DOI: 10.1016/bs.aambs.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thermophilic and lithoautotrophic archaea such as Metallosphaera sedula occupy acidic, metal-rich environments and are used in biomining processes. Biotechnological approaches could accelerate these processes and improve metal recovery by biomining organisms, but systems for genetic manipulation in these organisms are currently lacking. To gain a better understanding of the interplay between metal resistance, autotrophy, and lithotrophic metabolism, a genetic system was developed for M. sedula and used to evaluate parameters governing the efficiency of copper bioleaching. Additionally, adaptive laboratory evolution was used to select for naturally evolved M. sedula cell lines with desirable phenotypes for biomining, and these adapted cell lines were shown to have increased bioleaching capacity and efficiency. Genomic methods were used to analyze mutations that led to resistance in the experimentally evolved cell lines, while transcriptomics was used to examine changes in stress-inducible gene expression specific to the environmental conditions.
Collapse
Affiliation(s)
- Samuel McCarthy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chenbing Ai
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Blum
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
34
|
Inorganic Polyphosphate, Exopolyphosphatase, and Pho84-Like Transporters May Be Involved in Copper Resistance in Metallosphaera sedula DSM 5348 T. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:5251061. [PMID: 29692683 PMCID: PMC5859850 DOI: 10.1155/2018/5251061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023]
Abstract
Polyphosphates (PolyP) are linear polymers of orthophosphate residues that have been proposed to participate in metal resistance in bacteria and archaea. In addition of having a CopA/CopB copper efflux system, the thermoacidophilic archaeon Metallosphaera sedula contains electron-dense PolyP-like granules and a putative exopolyphosphatase (PPXMsed, Msed_0891) and four presumed pho84-like phosphate transporters (Msed_0846, Msed_0866, Msed_1094, and Msed_1512) encoded in its genome. In the present report, the existence of a possible PolyP-based copper-resistance mechanism in M. sedula DSM 5348T was evaluated. M. sedula DSM 5348T accumulated high levels of phosphorous in the form of granules, and its growth was affected in the presence of 16 mM copper. PolyP levels were highly reduced after the archaeon was subjected to an 8 mM CuSO4 shift. PPXMsed was purified, and the enzyme was found to hydrolyze PolyP in vitro. Essential residues for catalysis of PPXMsed were E111 and E113 as shown by a site-directed mutagenesis of the implied residues. Furthermore, M. sedula ppx, pho84-like, and copTMA genes were upregulated upon copper exposure, as determined by qRT-PCR analysis. The results obtained support the existence of a PolyP-dependent copper-resistance system that may be of great importance in the adaptation of this thermoacidophilic archaeon to its harsh environment.
Collapse
|
35
|
Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach. J Proteomics 2018; 191:143-152. [PMID: 29501848 DOI: 10.1016/j.jprot.2018.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/26/2018] [Accepted: 02/25/2018] [Indexed: 12/29/2022]
Abstract
Inorganic polyphosphates (polyP) are present in all living cells and several important functions have been described for them. They are involved in the response to stress conditions, such as nutrient depletion, oxidative stress and toxic metals amongst others. A recombinant strain of Sulfolobus solfataricus unable to accumulate polyP was designed by the overexpression of its endogenous ppx gene. The overall impact of the lack of polyP on this S. solfataricus polyP (-) strain was analyzed by using quantitative proteomics (isotope-coded protein label, ICPL). Stress-related proteins, such as peroxiredoxins and heat shock proteins, proteins involved in metabolism and several others were produced at higher levels in the ppx expression strain. The polyP deficient strain showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA gene coding for the P-type copper-exporting ATPase. This implies a complementary function of both copper resistance systems. These results strongly suggests that the lack of polyP makes this hyperthermophilic archaeon more sensitive to toxic conditions, such as an exposure to metals or other harmful stimuli, emphasizing the importance of this inorganic phosphate polymers in the adaptations to live in the environmental conditions in which thermoacidophilic archaea thrive. SIGNIFICANCE: Inorganic polyphosphate (polyP) are ubiquitous molecules with many functions in living organisms. Few studies related to these polymers have been made in archaea. The construction of a polyP deficient recombinant strain of Sulfolobus solfataricus allowed the study of the global changes in the proteome of this thermoacidophilic archaeon in the absence of polyP compared with the wild type strain. The results obtained using quantitative proteomics suggest an important participation of polyP in the oxidative stress response of the cells and as having a possible metabolic role in the cell, as previously described in bacteria. The polyP deficient strain also showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA, implying a complementary role of both copper resistance systems.
Collapse
|
36
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
37
|
Ferreira PAA, Tiecher T, Tiecher TL, Rangel WDM, Soares CRFS, Deuner S, Tarouco CP, Giachini AJ, Nicoloso FT, Brunetto G, Coronas MV, Ceretta CA. Effects of Rhizophagus clarus and P availability in the tolerance and physiological response of Mucuna cinereum to copper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:46-56. [PMID: 29175636 DOI: 10.1016/j.plaphy.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) improve plant ability to uptake P and tolerate heavy metals. This study aimed to evaluate the effect of available P and the inoculation of Rhizophagus clarus in a Cu-contaminated soil (i) on the activity of acid phosphatases (soil and plant), the presence of glomalin, and (ii) in the biochemical and physiological status of Mucuna cinereum. A Typic Hapludalf soil artificially contaminated by adding 60 mg kg-1 Cu was used in a 3 × 2 factorial design with three replicates. Treatments consisted of three P levels: 0, 40, and 100 mg kg-1 P. Each P treatment level was inoculated (+AMF)/non-inoculated (-AMF) with 200 spores of R. clarus per pot, and plants grown for 45 days. The addition of at least 40 mg kg-1 P and the inoculation of plants with R. clarus proved to be efficient to reduce Cu phytotoxicity and increase dry matter yield. Mycorrhization and phosphate fertilization reduced the activity of enzymes regulating oxidative stress (SOD and POD), and altered the chlorophyll a fluorescence parameters, due to the lower stress caused by available Cu. These results suggest a synergism between the application of P and the inoculation with R. clarus, favoring the growth of M. cinereum in a Cu-contaminated soil. This study shows that AMF inoculation represents an interesting alternative to P fertilization to improve plant development when exposed to excess Cu.
Collapse
Affiliation(s)
| | - Tales Tiecher
- Department of Soil Science, Federal University of Rio Grande do Sul, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Tadeu Luis Tiecher
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Wesley de Melo Rangel
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Claudio Roberto Fonsêca Sousa Soares
- Centre for Biological Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sidnei Deuner
- Department of Botanic, Federal University of Pelotas, Capão do Leão, 96900-010, RS, Brazil
| | - Camila Peligrinotti Tarouco
- Department of Biology, Center of Natural and Exact Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Admir José Giachini
- Centre for Biological Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Fernando Teixeira Nicoloso
- Department of Biology, Center of Natural and Exact Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Gustavo Brunetto
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Mariana Vieira Coronas
- Academic Coordination, Federal University of Santa Maria, CEP 96506-322, Rio Grande do Sul, Brazil
| | - Carlos Alberto Ceretta
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| |
Collapse
|
38
|
Belfiore C, Curia MV, Farías ME. Characterization of Rhodococcus sp. A5 wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Rev Argent Microbiol 2017; 50:311-322. [PMID: 29239754 DOI: 10.1016/j.ram.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 01/07/2023] Open
Abstract
Lithium (Li) is widely distributed in nature and has several industrial applications. The largest reserves of Li (over 85%) are in the so-called "triangle of lithium" that includes the Salar de Atacama in Chile, Salar de Uyuni in Bolivia and Salar del Hombre Muerto in Argentina. Recently, the use of microorganisms in metal recovery such as copper has increased; however, there is little information about the recovery of lithium. The strain Rhodococcus sp. A5wh used in this work was previously isolated from Laguna Azul. The assays revealed that this strain was able to accumulate Li (39.52% of Li/g microbial cells in 180min) and that it was able to grow in its presence up to 1M. In order to understand the mechanisms implicated in Li tolerance, a proteomic approach was conducted. Comparative proteomic analyses of strain A5wh exposed and unexposed to Li reveal that 17 spots were differentially expressed. The identification of proteins was performed by MALDI-TOF/MS, and the obtained results showed that proteins involved in stress response, transcription, translations, and metabolism were expressed under Li stress. This knowledge constitutes the first proteomic approach to elucidate the strategy followed by Rhodococcus to adapt to Li.
Collapse
Affiliation(s)
- Carolina Belfiore
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina.
| | - María V Curia
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina
| |
Collapse
|
39
|
Farias ME, Rasuk MC, Gallagher KL, Contreras M, Kurth D, Fernandez AB, Poiré D, Novoa F, Visscher PT. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS One 2017; 12:e0186867. [PMID: 29140980 PMCID: PMC5687714 DOI: 10.1371/journal.pone.0186867] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/09/2017] [Indexed: 11/19/2022] Open
Abstract
Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hypersaline lake, were characterized in terms of bacterial and archaeal diversity, biogeochemistry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial communities are growing in extreme conditions, including high salinity, high solar insolation, and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. In this study, the La Brava non-lithifying microbial mats, microbialites, and rhizome-associated concretions were compared to each other and their diversity was related to their environmental conditions. All the ecosystems revealed an unusual community where Euryarchaeota, Crenarchaeota, Acetothermia, Firmicutes and Planctomycetes were the most abundant groups, and cyanobacteria, typically an important primary producer in microbial mats, were relatively insignificant or absent. This suggests that other microorganisms, and possibly novel pathways unique to this system, are responsible for carbon fixation. Depth profiles of O2 and sulfide showed active production and respiration. The mineralogy composition was calcium carbonate (as aragonite) and increased from mats to microbialites and rhizome-associated concretions. Halite was also present. Further analyses were performed on representative microbial mats and microbialites by layer. Different taxonomic compositions were observed in the upper layers, with Archaea dominating the non-lithifying mat, and Planctomycetes the microbialite. The bottom layers were similar, with Euryarchaeota, Crenarchaeota and Planctomycetes as dominant phyla. Sequences related to Cyanobacteria were very scarce. These systems may contain previously uncharacterized community metabolisms, some of which may be contributing to net mineral precipitation. Further work on these sites might reveal novel organisms and metabolisms of biotechnological interest.
Collapse
Affiliation(s)
- Maria Eugenia Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
- * E-mail:
| | - Maria Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
| | - Kimberley L. Gallagher
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | | | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
| | - Ana Beatriz Fernandez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Tucumán, Argentina
| | - Daniel Poiré
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-Conicet, La Plata, Argentina
| | - Fernando Novoa
- Centro de Ecología Aplicada (CEA), Ñuñoa, Santiago, Chile
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
- Australian Centre for Astrobiology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Trilisenko L, Kulakovskaya E, Kulakovskaya T. The cadmium tolerance in Saccharomyces cerevisiae depends on inorganic polyphosphate. J Basic Microbiol 2017; 57:982-986. [PMID: 28809038 DOI: 10.1002/jobm.201700257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 11/08/2022]
Abstract
The sensitivity to cadmium (Cd(II)), an important environmental pollutant, was studied in the cells of Saccharomyces cerevisiae strains with genetically altered polyphosphate metabolism. The strains overproducing polyphosphatases PPX1 or PPN1 were more sensitive to Cd(II) than the parent strain. The half maximal inhibitory concentrations were 0.02 and 0.05 mM for the transformants and the parent strain, respectively. Transformant strains cultivated in the presence of Cd(II) show a decrease in the content of short-chained cytosolic acid soluble polyphosphate. The role of this polyphosphate fraction in detoxification of heavy metal ions is discussed.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Ekaterina Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
41
|
Wegner CE, Liesack W. Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags. Front Microbiol 2017; 8:1023. [PMID: 28642744 PMCID: PMC5462947 DOI: 10.3389/fmicb.2017.01023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Acid mine drainage (AMD) and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur), which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13]), Actinobacteria (TM214), Alphaproteobacteria (DA111), and Chloroflexi (JG37-AG-4), which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18) by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases). Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University JenaJena, Germany
| | - Werner Liesack
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| |
Collapse
|
42
|
Urbieta MS, Rascovan N, Vázquez MP, Donati E. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities. BMC Genomics 2017; 18:445. [PMID: 28587624 PMCID: PMC5461723 DOI: 10.1186/s12864-017-3828-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Within this group, the genus Acidianus contains four biomining species (from ten known Acidianus species), but none of these have their genome sequenced. To get insights into the genetic potential and metabolic pathways involved in the biomining activity of this group, we sequenced the genome of Acidianus copahuensis ALE1 strain, a novel thermoacidophilic crenarchaeon (optimum growth: 75 °C, pH 3) isolated from the volcanic geothermal area of Copahue at Neuquén province in Argentina. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is also autotrophic and tolerant to heavy metals, thus, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments. Results In this work we analyzed the genome of Acidianus copahuensis and describe the genetic pathways involved in biomining processes. We identified the enzymes that are most likely involved in growth on sulfur and ferrous iron oxidation as well as those involved in autotrophic carbon fixation. We also found that A. copahuensis genome gathers different features that are only present in particular lineages or species from the order Sulfolobales, some of which are involved in biomining. We found that although most of its genes (81%) were found in at least one other Sulfolobales species, it is not specifically closer to any particular species (60–70% of proteins shared with each of them). Although almost one fifth of A. copahuensis proteins are not found in any other Sulfolobales species, most of them corresponded to hypothetical proteins from uncharacterized metabolisms. Conclusion In this work we identified the genes responsible for the biomining metabolisms that we have previously observed experimentally. We provide a landscape of the metabolic potentials of this strain in the context of Sulfolobales and propose various pathways and cellular processes not yet fully understood that can use A. copahuensis as an experimental model to further understand the fascinating biology of thermoacidophilic biomining archaea. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3828-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Sofía Urbieta
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina. .,, Calle 50, entre 115 y 116, N° 227, La Plata, Buenos Aires, Argentina.
| | - Nicolás Rascovan
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Predio CCT, Rosario, Argentina
| | - Martín P Vázquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Predio CCT, Rosario, Argentina
| | - Edgardo Donati
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina
| |
Collapse
|
43
|
Matilda SC, Shanthi C. Metal induced changes in trivalent chromium resistantAlcaligenes faecalisVITSIM2. J Basic Microbiol 2017; 57:402-412. [DOI: 10.1002/jobm.201600596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 01/27/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Shiny C. Matilda
- School of Bioscience and Technology; VIT University; Vellore-632014 India
| | - Chittibabu Shanthi
- School of Bioscience and Technology; VIT University; Vellore-632014 India
| |
Collapse
|
44
|
Furnholm T, Rehan M, Wishart J, Tisa LS. Pb2+ tolerance by Frankia sp. strain EAN1pec involves surface-binding. MICROBIOLOGY-SGM 2017; 163:472-487. [PMID: 28141503 DOI: 10.1099/mic.0.000439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several Frankia strains have been shown to be lead-resistant. The mechanism of lead resistance was investigated for Frankia sp. strain EAN1pec. Analysis of the cultures by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and Fourier transforming infrared spectroscopy (FTIR) demonstrated that Frankia sp. strain EAN1pec undergoes surface modifications and binds high quantities of Pb+2. Both labelled and unlabelled shotgun proteomics approaches were used to determine changes in Frankia sp. strain EAN1pec protein expression in response to lead and zinc. Pb2+ specifically induced changes in exopolysaccharides, the stringent response, and the phosphate (pho) regulon. Two metal transporters (a Cu2+-ATPase and cation diffusion facilitator), as well as several hypothetical transporters, were also upregulated and may be involved in metal export. The exported Pb2+ may be precipitated at the cell surface by an upregulated polyphosphate kinase, undecaprenyl diphosphate synthase and inorganic diphosphatase. A variety of metal chaperones for ensuring correct cofactor placement were also upregulated with both Pb+2 and Zn+2 stress. Thus, this Pb+2 resistance mechanism is similar to other characterized systems. The cumulative interplay of these many mechanisms may explain the extraordinary resilience of Frankia sp. strain EAN1pec to Pb+2. A potential transcription factor (DUF156) binding site was identified in association with several proteins identified as upregulated with heavy metals. This site was also discovered, for the first time, in thousands of other organisms across two kingdoms.
Collapse
Affiliation(s)
- Teal Furnholm
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Medhat Rehan
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Genetics, College of Agriculture, Kafrelsheikh University, Egypt.,Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Jessica Wishart
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Louis S Tisa
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
45
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
46
|
Martínez-Bussenius C, Navarro CA, Jerez CA. Microbial copper resistance: importance in biohydrometallurgy. Microb Biotechnol 2016; 10:279-295. [PMID: 27790868 PMCID: PMC5328820 DOI: 10.1111/1751-7915.12450] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022] Open
Abstract
Industrial biomining has been extensively used for many years to recover valuable metals such as copper, gold, uranium and others. Furthermore, microorganisms involved in these processes can also be used to bioremediate places contaminated with acid and metals. These uses are possible due to the great metal resistance that these extreme acidophilic microorganisms possess. In this review, the most recent findings related to copper resistance mechanisms of bacteria and archaea related to biohydrometallurgy are described. The recent search for novel metal resistance determinants is not only of scientific interest but also of industrial importance, as reflected by the genomic sequencing of microorganisms present in mining operations and the search of those bacteria with extreme metal resistance to improve the extraction processes used by the biomining companies.
Collapse
Affiliation(s)
- Cristóbal Martínez-Bussenius
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
47
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
48
|
Discovery and Characterization of Iron Sulfide and Polyphosphate Bodies Coexisting in Archaeoglobus fulgidus Cells. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:4706532. [PMID: 27194953 PMCID: PMC4853940 DOI: 10.1155/2016/4706532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/20/2016] [Indexed: 11/21/2022]
Abstract
Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidus strain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent in A. fulgidus cells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell contains not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.
Collapse
|
49
|
Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 2016; 32:27. [DOI: 10.1007/s11274-015-1983-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
50
|
Li WW, Zhang HL, Sheng GP, Yu HQ. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. WATER RESEARCH 2015; 86:85-95. [PMID: 26143588 DOI: 10.1016/j.watres.2015.06.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 05/06/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater.
Collapse
Affiliation(s)
- Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Hai-Ling Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China.
| |
Collapse
|