1
|
O'Reilly P, Loiselle G, Darragh R, Slipski C, Bay DC. Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:39. [PMID: 40360746 PMCID: PMC12075810 DOI: 10.1038/s44259-025-00108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Decreased bacterial susceptibility to biocides raises concerns due to their influences on antibiotic resistance. The lack of standardized breakpoints, established methods, and consistent terminology complicates this research. This review summarizes techniques for studying biocide resistance mechanisms, susceptibility testing, and in-vitro adaptation methods, highlighting their benefits and limitations. Here, the challenges in studying biocide susceptibility and the need for standardized approaches in biocide research are emphasized for commonly studied biocide classes.
Collapse
Affiliation(s)
- Peter O'Reilly
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Genevieve Loiselle
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Darragh
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Carmine Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Sousa M, Machado I, Simões LC, Simões M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100557. [PMID: 40230384 PMCID: PMC11995807 DOI: 10.1016/j.ese.2025.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Idalina Machado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga, Guimarães, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
3
|
Kirchner M, Nunez-Garcia J, Duggett N, Gosling RJ, Anjum MF. Use of transcriptomics and genomics to assess the effect of disinfectant exposure on the survival and resistance of Escherichia coli O157:H7, a human pathogen. Front Microbiol 2024; 15:1477683. [PMID: 39507346 PMCID: PMC11538004 DOI: 10.3389/fmicb.2024.1477683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Disinfectants are essential for biosecurity, preventing the persistence and spread of zoonotic pathogens on farms and subsequent human infections. In this study, transcriptomics and genomics were utilised to assess the effect of disinfectant exposure on pathogenic Escherichia coli. The exposure of E. coli O157:H7 to sub-optimal concentrations of commonly used farm disinfectants elicited changes in both the transcriptome and genome. The transcriptomics identified upregulation of >300 genes and downregulation of >100 genes with functions, which included stress response, metabolism, transcription, transportation, membrane-associated and virulence genes. The phage shock protein (psp) operon was highly upregulated in response to a quaternary ammonium compound (QAC)-containing disinfectant, which has not previously been associated with a response to chemical stress. Disinfectant-adapted isolates generated by exposure to sub-lethal disinfectants levels demonstrated resistance to several common antibiotics and decreased sensitivity to biocides. Whole genome sequencing of the mutant strains indicated that they had acquired mutations in the genes associated with the upregulation of the multiple antibiotic resistance (MAR) efflux system (lon protease and marR) and topoisomerase genes (gyrA and gyrB). The disinfectant-adapted isolates also exhibited increased expression of transcription, respiration and several pH stress response genes localised in the "acid fitness island." This study demonstrated that sub-optimal disinfectant concentrations allow E. coli O157:H7 to adapt and survive disinfection and develop antibiotic resistance. These changes could have implications for disease treatment and elimination on farms. Although E. coli O157:H7 and farm disinfectants were the focus of this study, we believe these findings are also applicable to other settings, including hospitals.
Collapse
Affiliation(s)
- Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | | | | | | |
Collapse
|
4
|
Schmidt S, Täschner T, Nordholt N, Schreiber F. Differential Selection for Survival and for Growth in Adaptive Laboratory Evolution Experiments With Benzalkonium Chloride. Evol Appl 2024; 17:e70017. [PMID: 39399585 PMCID: PMC11470201 DOI: 10.1111/eva.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024] Open
Abstract
Biocides are used to control microorganisms across different applications, but emerging resistance may pose risks for those applications. Resistance to biocides has commonly been studied using adaptive laboratory evolution (ALE) experiments with growth at subinhibitory concentrations linked to serial subculturing. It has been shown recently that Escherichia coli adapts to repeated lethal stress imposed by the biocide benzalkonium chloride (BAC) by increased survival (i.e., tolerance) and not by evolving the ability to grow at increased concentrations (i.e., resistance). Here, we investigate the contributions of evolution for tolerance as opposed to resistance for the outcome of ALE experiments with E. coli exposed to BAC. We find that BAC concentrations close to the half maximal effective concentration (EC50, 4.36 μg mL-1) show initial killing (~40%) before the population resumes growth. This indicates that cells face a two-fold selection pressure: for increased survival and for increased growth. To disentangle the effects of both selection pressures, we conducted two ALE experiments: (i) one with initial killing and continued stress close to the EC50 during growth and (ii) another with initial killing and no stress during growth. Phenotypic characterization of adapted populations showed that growth at higher BAC concentrations was only selected for when BAC was present during growth. Whole genome sequencing revealed distinct differences in mutated genes across treatments. Treatments selecting for survival-only led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ), while treatments selecting for growth and survival led to mutations in genes related to stress response (hslO and tufA). Our results demonstrate that serial subculture ALE experiments with an antimicrobial at subinhibitory concentrations can select for increased growth and survival. This finding has implications for the design of ALE experiments to assess resistance risks of antimicrobials in different scenarios such as disinfection, preservation, and environmental pollution.
Collapse
Affiliation(s)
- Selina B. I. Schmidt
- Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1)Federal Institute for Materials Research and Testing (BAM)BerlinGermany
| | - Tom Täschner
- Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1)Federal Institute for Materials Research and Testing (BAM)BerlinGermany
| | - Niclas Nordholt
- Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1)Federal Institute for Materials Research and Testing (BAM)BerlinGermany
| | - Frank Schreiber
- Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1)Federal Institute for Materials Research and Testing (BAM)BerlinGermany
| |
Collapse
|
5
|
Li W, Tao Z, Zhou M, Jiang H, Wang L, Ji B, Zhao Y. Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy. Microbiol Res 2024; 287:127842. [PMID: 39032266 DOI: 10.1016/j.micres.2024.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Zhen Tao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Motan Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Huilin Jiang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Liudi Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
6
|
Wallart L, Ben Mlouka MA, Saffiedine B, Coquet L, Le H, Hardouin J, Jouenne T, Phan G, Kiefer-Meyer MC, Girard E, Broutin I, Cosette P. BacA: a possible regulator that contributes to the biofilm formation of Pseudomonas aeruginosa. Front Microbiol 2024; 15:1332448. [PMID: 38505547 PMCID: PMC10948618 DOI: 10.3389/fmicb.2024.1332448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Previously, we pointed out in P. aeruginosa PAO1 biofilm cells the accumulation of a hypothetical protein named PA3731 and showed that the deletion of the corresponding gene impacted its biofilm formation capacity. PA3731 belongs to a cluster of 4 genes (pa3732 to pa3729) that we named bac for "Biofilm Associated Cluster." The present study focuses on the PA14_16140 protein, i.e., the PA3732 (BacA) homolog in the PA14 strain. The role of BacA in rhamnolipid secretion, biofilm formation and virulence, was confirmed by phenotypic experiments with a bacA mutant. Additional investigations allow to advance that the bac system involves in fact 6 genes organized in operon, i.e., bacA to bacF. At a molecular level, quantitative proteomic studies revealed an accumulation of the BAC cognate partners by the bacA sessile mutant, suggesting a negative control of BacA toward the bac operon. Finally, a first crystallographic structure of BacA was obtained revealing a structure homologous to chaperones or/and regulatory proteins.
Collapse
Affiliation(s)
- Lisa Wallart
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Mohamed Amine Ben Mlouka
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Brahim Saffiedine
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Laurent Coquet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Julie Hardouin
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Thierry Jouenne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Gilles Phan
- Paris Cité University, CiTCoM, CNRS, Paris, France
| | - Marie-Christine Kiefer-Meyer
- Univ Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chemobiologie, IRIB, Rouen, France
| | - Eric Girard
- Grenoble Alpes University, CNRS, CEA, IBS, Grenoble, France
| | | | - Pascal Cosette
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| |
Collapse
|
7
|
Maillard JY, Pascoe M. Disinfectants and antiseptics: mechanisms of action and resistance. Nat Rev Microbiol 2024; 22:4-17. [PMID: 37648789 DOI: 10.1038/s41579-023-00958-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Chemical biocides are used for the prevention and control of infection in health care, targeted home hygiene or controlling microbial contamination for various industrial processes including but not limited to food, water and petroleum. However, their use has substantially increased since the implementation of programmes to control outbreaks of methicillin-resistant Staphylococcus aureus, Clostridioides difficile and severe acute respiratory syndrome coronavirus 2. Biocides interact with multiple targets on the bacterial cells. The number of targets affected and the severity of damage will result in an irreversible bactericidal effect or a reversible bacteriostatic one. Most biocides primarily target the cytoplasmic membrane and enzymes, although the specific bactericidal mechanisms vary among different biocide chemistries. Inappropriate usage or low concentrations of a biocide may act as a stressor while not killing bacterial pathogens, potentially leading to antimicrobial resistance. Biocides can also promote the transfer of antimicrobial resistance genes. In this Review, we explore our current understanding of the mechanisms of action of biocides, the bacterial resistance mechanisms encompassing both intrinsic and acquired resistance and the influence of bacterial biofilms on resistance. We also consider the impact of bacteria that survive biocide exposure in environmental and clinical contexts.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK.
| | - Michael Pascoe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| |
Collapse
|
8
|
Charron R, Lemée P, Huguet A, Minlong O, Boulanger M, Houée P, Soumet C, Briandet R, Bridier A. Polyhexamethylene biguanide promotes adaptive cross-resistance to gentamicin in Escherichia coli biofilms. Front Cell Infect Microbiol 2023; 13:1324991. [PMID: 38149014 PMCID: PMC10750414 DOI: 10.3389/fcimb.2023.1324991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Antimicrobial resistance is a critical public health issue that requires a thorough understanding of the factors that influence the selection and spread of antibiotic-resistant bacteria. Biocides, which are widely used in cleaning and disinfection procedures in a variety of settings, may contribute to this resistance by inducing similar defense mechanisms in bacteria against both biocides and antibiotics. However, the strategies used by bacteria to adapt and develop cross-resistance remain poorly understood, particularly within biofilms -a widespread bacterial habitat that significantly influences bacterial tolerance and adaptive strategies. Using a combination of adaptive laboratory evolution experiments, genomic and RT-qPCR analyses, and biofilm structural characterization using confocal microscopy, we investigated in this study how Escherichia coli biofilms adapted after 28 days of exposure to three biocidal active substances and the effects on cross-resistance to antibiotics. Interestingly, polyhexamethylene biguanide (PHMB) exposure led to an increase of gentamicin resistance (GenR) phenotypes in biofilms formed by most of the seven E. coli strains tested. Nevertheless, most variants that emerged under biocidal conditions did not retain the GenR phenotype after removal of antimicrobial stress, suggesting a transient adaptation (adaptive resistance). The whole genome sequencing of variants with stable GenR phenotypes revealed recurrent mutations in genes associated with cellular respiration, including cytochrome oxidase (cydA, cyoC) and ATP synthase (atpG). RT-qPCR analysis revealed an induction of gene expression associated with biofilm matrix production (especially curli synthesis), stress responses, active and passive transport and cell respiration during PHMB exposure, providing insight into potential physiological responses associated with adaptive crossresistance. In addition, confocal laser scanning microscopy (CLSM) observations demonstrated a global effect of PHMB on biofilm architectures and compositions formed by most E. coli strains, with the appearance of dense cellular clusters after a 24h-exposure. In conclusion, our results showed that the PHMB exposure stimulated the emergence of an adaptive cross-resistance to gentamicin in biofilms, likely induced through the activation of physiological responses and biofilm structural modulations altering gradients and microenvironmental conditions in the biological edifice.
Collapse
Affiliation(s)
- Raphaël Charron
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
- Université Paris-Saclay, National Research Institute for Agriculture, Food and the Environment (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Lemée
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Antoine Huguet
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Ornella Minlong
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Marine Boulanger
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Paméla Houée
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Christophe Soumet
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Romain Briandet
- Université Paris-Saclay, National Research Institute for Agriculture, Food and the Environment (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| |
Collapse
|
9
|
Baig MIR, Kadu P, Bawane P, Nakhate KT, Yele S, Ojha S, Goyal SN. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review. J Antibiot (Tokyo) 2023; 76:629-641. [PMID: 37605076 DOI: 10.1038/s41429-023-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Although the development of resistance by microorganisms to antimicrobial drugs has been recognized as a global public health concern, the contribution of various non-antibiotic antimicrobial agents to the development of antimicrobial resistance (AMR) remains largely neglected. The present review discusses various chemical substances and factors other than typical antibiotics, such as preservatives, disinfectants, biocides, heavy metals and improper chemical sterilization that contribute to the development of AMR. Furthermore, it encompasses the mechanisms like co-resistance and co-selection, horizontal gene transfer, changes in the composition and permeability of cell membrane, efflux pumps, transposons, biofilm formation and enzymatic degradation of antimicrobial chemicals which underlie the development of resistance to various non-antibiotic antimicrobial agents. In addition, the review addresses the resistance-associated changes that develops in microorganisms due to these agents, which ultimately contribute to the development of resistance to antibiotics. In order to prevent the indiscriminate use of chemical substances and create novel therapeutic agents to halt resistance development, a more holistic scientific approach might provide diversified views on crucial factors contributing to the persistence and spread of AMR. The review illustrates the common and less explored mechanisms contributing directly or indirectly to the development of AMR by non-antimicrobial agents that are commonly used.
Collapse
Affiliation(s)
- Mirza Ilyas Rahim Baig
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India
| | - Pramod Kadu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India.
| | - Pradip Bawane
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Hyderabad, 509301, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
10
|
Chukwu KB, Abafe OA, Amoako DG, Ismail A, Essack SY, Abia ALK. Impact of Environmental Sub-Inhibitory Concentrations of Antibiotics, Heavy Metals, and Biocides on the Emergence of Tolerance and Effects on the Mutant Selection Window in E. coli. Microorganisms 2023; 11:2265. [PMID: 37764108 PMCID: PMC10535725 DOI: 10.3390/microorganisms11092265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria's ability to withstand the detrimental effects of antimicrobials could occur as resistance or tolerance with the minimum inhibitory concentration, the mutant prevention concentration, and the mutant selection window as salient concepts. Thus, this study assessed the impact of exposure to extremely high doses of ampicillin on the level of persistence and tolerance development in isolates previously exposed to different concentrations of selected antibiotics, biocides, and heavy metals. These isolates were previously exposed to oxytetracycline (OXYTET), amoxicillin (AMX), copper (Cu), zinc (Zn), benzalkonium chloride (BAC) 10, dimethylammonium chloride (DADMAC) 12 and a combination of all the individual pollutants (ALL). The isolates were exposed to very high concentrations (25 × MIC) of ampicillin, and their tolerance was calculated as the time required to kill 99.9% of the bacterial population (MDK99.9). The MDK99.9 increased by 30 to 50% in test isolates (DADMAC, OXYTET, Zinc = 28 h; BAC, Copper = 30 h; amoxycillin, ALL = 26 h) compared to the untreated control. BAC-exposed isolates decreased from 2.5 × 108 CFU/mL to 2.5 × 104 CFU/mL on the second day, displaying the highest tolerance increase. The tolerance appeared to originate from two sources, i.e., stochastic persistence and genetic-induced persistence, involving multiple genes with diverse mechanisms. The mutant selection window of the isolates to ampicillin, amoxicillin, and oxytetracycline also slightly increased compared to the control, indicating the selective survival of persister cells during the 30-day exposure. These findings indicate that bacterial exposure to sub-inhibitory concentrations of environmental chemical stressors may not always result in the development of antimicrobial resistance but could initiate this process by selecting persisters that could evolve into resistant isolates.
Collapse
Affiliation(s)
- Kelechi B. Chukwu
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (K.B.C.); (O.A.A.); (D.G.A.)
| | - Ovokeroye A. Abafe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (K.B.C.); (O.A.A.); (D.G.A.)
- Residue Laboratory, Agricultural Research Council, Onderstepoort Veterinary Research Campus, Onderstepoort 0110, South Africa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (K.B.C.); (O.A.A.); (D.G.A.)
- Department of Integrative Biology and Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2192, South Africa;
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou 0950, South Africa
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (K.B.C.); (O.A.A.); (D.G.A.)
| | - Akebe L. K. Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (K.B.C.); (O.A.A.); (D.G.A.)
- Environmental Research Foundation, Westville 3630, South Africa
| |
Collapse
|
11
|
Transcriptional insight into the effect of benzalkonium chloride on resistance and virulence potential in Salmonella Typhimurium. Microbiol Res 2023; 266:127240. [DOI: 10.1016/j.micres.2022.127240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
|
12
|
Jia Y, Lu H, Zhu L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155090. [PMID: 35398118 PMCID: PMC8985400 DOI: 10.1016/j.scitotenv.2022.155090] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 05/08/2023]
Abstract
The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.
Collapse
Affiliation(s)
- Yin Jia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
13
|
Antimicrobial, Cytotoxic and Mutagenic Activity of Gemini QAS Derivatives of 1,4:3,6-Dianhydro-l-iditol. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030757. [PMID: 35164023 PMCID: PMC8838521 DOI: 10.3390/molecules27030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
A series of quaternary diammonium salts derivatives of 1,4:3,6-dianhydro-l-iditol were synthesized, using isommanide (1,4:3,6-dianhydro-d-mannitol) as a starting material. Both aromatic (pyridine, 4-(N,N-dimethylamino)pyridine (DMAP), (3-carboxamide)pyridine; N-methylimidazole) and aliphatic (trimethylamine, N,N-dimethylhexylamine, N,N-dimethyloctylamine, N,N-dimethyldecylamine) amines were used, giving eight gemini quaternary ammonium salts (QAS). All salts were tested for their antimicrobial activity against yeasts, Candida albicans and Candida glabrata, as well as bacterial Staphylococcus aureus and Escherichia coli reference strains. Moreover, antibacterial activity against 20 isolates of S. aureus collected from patients with skin and soft tissue infections (n = 8) and strains derived from subclinical bovine mastitis milk samples (n = 12) were evaluated. Two QAS with octyl and decyl residues exhibited antimicrobial activity, whereas those with two decyl residues proved to be the most active against the tested pathogens, with MIC of 16-32, 32, and 8 µg/mL for yeast, E. coli, and S. aureus reference and clinical strains, respectively. Only QAS with decyl residues proved to be cytotoxic in MTT assay against human keratinocytes (HaCaT), IC50 12.8 ± 1.2 μg/mL. Ames test was used to assess the mutagenic potential of QAS, and none of them showed mutagenic activity in the concentration range 4-2000 µg/plate.
Collapse
|
14
|
Fox LJ, Kelly PP, Humphreys GJ, Waigh TA, Lu JR, McBain AJ. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol 2022; 49:kuab074. [PMID: 34718634 PMCID: PMC9113109 DOI: 10.1093/jimb/kuab074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The control of microorganisms is a key objective in disease prevention and in medical, industrial, domestic, and food-production environments. Whilst the effectiveness of biocides in these contexts is well-evidenced, debate continues about the resistance risks associated with their use. This has driven an increased regulatory burden, which in turn could result in a reduction of both the deployment of current biocides and the development of new compounds and formulas. Efforts to balance risk and benefit are therefore of critical importance and should be underpinned by realistic methods and a multi-disciplinary approach, and through objective and critical analyses of the literature. The current literature on this topic can be difficult to navigate. Much of the evidence for potential issues of resistance generation by biocides is based on either correlation analysis of isolated bacteria, where reports of treatment failure are generally uncommon, or laboratory studies that do not necessarily represent real biocide applications. This is complicated by inconsistencies in the definition of the term resistance. Similar uncertainties also apply to cross-resistance between biocides and antibiotics. Risk assessment studies that can better inform practice are required. The resulting knowledge can be utilised by multiple stakeholders including those tasked with new product development, regulatory authorities, clinical practitioners, and the public. This review considers current evidence for resistance and cross-resistance and outlines efforts to increase realism in risk assessment. This is done in the background of the discussion of the mode of application of biocides and the demonstrable benefits as well as the potential risks.
Collapse
Affiliation(s)
- Laura J Fox
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Paul P Kelly
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Jian R Lu
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Nordholt N, Kanaris O, Schmidt SBI, Schreiber F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat Commun 2021; 12:6792. [PMID: 34815390 PMCID: PMC8611074 DOI: 10.1038/s41467-021-27019-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials.
Collapse
Affiliation(s)
- Niclas Nordholt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | - Orestis Kanaris
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Selina B I Schmidt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| |
Collapse
|
16
|
Gregorchuk BSJ, Reimer SL, Green KAC, Cartwright NH, Beniac DR, Hiebert SL, Booth TF, Chong PM, Westmacott GR, Zhanel GG, Bay DC. Phenotypic and Multi-Omics Characterization of Escherichia coli K-12 Adapted to Chlorhexidine Identifies the Role of MlaA and Other Cell Envelope Alterations Regulated by Stress Inducible Pathways in CHX Resistance. Front Mol Biosci 2021; 8:659058. [PMID: 34095221 PMCID: PMC8170033 DOI: 10.3389/fmolb.2021.659058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chlorhexidine (CHX) is an essential medicine used as a topical antiseptic in skin and oral healthcare treatments. The widespread use of CHX has increased concerns regarding the development of antiseptic resistance in Enterobacteria and its potential impact on cross-resistance to other antimicrobials. Similar to other cationic antiseptics, resistance to CHX is believed to be driven by three membrane-based mechanisms: lipid synthesis/transport, altered porin expression, and increased efflux pump activity; however, specific gene and protein alterations associated with CHX resistance remain unclear. Here, we adapted Escherichia coli K-12 BW25113 to increasing concentrations of CHX to determine what phenotypic, morphological, genomic, transcriptomic, and proteomic changes occurred. We found that CHX-adapted E. coli isolates possessed no cross-resistance to any other antimicrobials we tested. Scanning electron microscopy imaging revealed that CHX adaptation significantly altered mean cell widths and lengths. Proteomic analyses identified changes in the abundance of porin OmpF, lipid synthesis/transporter MlaA, and efflux pump MdfA. Proteomic and transcriptomic analyses identified that CHX adaptation altered E. coli transcripts and proteins controlling acid resistance (gadE, cdaR) and antimicrobial stress-inducible pathways Mar-Sox-Rob, stringent response systems. Whole genome sequencing analyses revealed that all CHX-resistant isolates had single nucleotide variants in the retrograde lipid transporter gene mlaA as well as the yghQ gene associated with lipid A transport and synthesis. CHX resistant phenotypes were reversible only when complemented with a functional copy of the mlaA gene. Our results highlight the importance of retrograde phospholipid transport and stress response systems in CHX resistance and the consequences of prolonged CHX exposure.
Collapse
Affiliation(s)
- Branden S J Gregorchuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shelby L Reimer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kari A C Green
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Nicola H Cartwright
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Timothy F Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Patrick M Chong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Garrett R Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Biocide-Induced Emergence of Antibiotic Resistance in Escherichia coli. Front Microbiol 2021; 12:640923. [PMID: 33717036 PMCID: PMC7952520 DOI: 10.3389/fmicb.2021.640923] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biocide use is essential and ubiquitous, exposing microbes to sub-inhibitory concentrations of antiseptics, disinfectants, and preservatives. This can lead to the emergence of biocide resistance, and more importantly, potential cross-resistance to antibiotics, although the degree, frequency, and mechanisms that give rise to this phenomenon are still unclear. Here, we systematically performed adaptive laboratory evolution of the gut bacteria Escherichia coli in the presence of sub-inhibitory, constant concentrations of ten widespread biocides. Our results show that 17 out of 40 evolved strains (43%) also decreased the susceptibility to medically relevant antibiotics. Through whole-genome sequencing, we identified mutations related to multidrug efflux proteins (mdfA and acrR), porins (envZ and ompR), and RNA polymerase (rpoA and rpoBC), as mechanisms behind the resulting (cross)resistance. We also report an association of several genes (yeaW, pyrE, yqhC, aes, pgpA, and yeeP-isrC) and specific mutations that induce cross-resistance, verified through mutation repairs. A greater capacity for biofilm formation with respect to the parent strain was also a common feature in 11 out of 17 (65%) cross-resistant strains. Evolution in the biocides chlorophene, benzalkonium chloride, glutaraldehyde, and chlorhexidine had the most impact in antibiotic susceptibility, while hydrogen peroxide and povidone-iodine the least. No cross-resistance to antibiotics was observed for isopropanol, ethanol, sodium hypochlorite, and peracetic acid. This work reinforces the link between exposure to biocides and the potential for cross-resistance to antibiotics, presents evidence on the underlying mechanisms of action, and provides a prioritized list of biocides that are of greater concern for public safety from the perspective of antibiotic resistance. SIGNIFICANCE STATEMENT Bacterial resistance and decreased susceptibility to antimicrobials is of utmost concern. There is evidence that improper biocide (antiseptic and disinfectant) use and discard may select for bacteria cross-resistant to antibiotics. Understanding the cross-resistance emergence and the risks associated with each of those chemicals is relevant for proper applications and recommendations. Our work establishes that not all biocides are equal when it comes to their risk of inducing antibiotic resistance; it provides evidence on the mechanisms of cross-resistance and a risk assessment of the biocides concerning antibiotic resistance under residual sub-inhibitory concentrations.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Xiaokang Wang
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Gregorchuk BSJ, Reimer SL, Beniac DR, Hiebert SL, Booth TF, Wuzinski M, Funk BE, Milner KA, Cartwright NH, Doucet AN, Mulvey MR, Khajehpour M, Zhanel GG, Bay DC. Antiseptic quaternary ammonium compound tolerance by gram-negative bacteria can be rapidly detected using an impermeant fluorescent dye-based assay. Sci Rep 2020; 10:20543. [PMID: 33239659 PMCID: PMC7689532 DOI: 10.1038/s41598-020-77446-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Biocides such as quaternary ammonium compounds (QACs) are potentially important contributors towards bacterial antimicrobial resistance development, however, their contributions are unclear due to a lack of internationally recognized biocide testing standards. Methods to detect QAC tolerance are limited to laborious traditional antimicrobial susceptibility testing (AST) methods. Here, we developed a rapid fluorescent dye-based membrane impermeant assay (RFDMIA) to discriminate QAC susceptibility among Gram-negative Enterobacterales and Pseudomonadales species. RFDMIA uses a membrane impermeant fluorescent dye, propidium iodide, in a 30-min 96-well fluorescent microplate-based assay where cell suspensions are exposed to increasing QAC concentrations. Our results demonstrate that RFDMIA can discriminate between QAC-susceptible and QAC-adapted Escherichia coli tolerant phenotypes and predict benzalkonium and cetrimide tolerance in all species tested except for intrinsically fluorescent Pseudomonas aeruginosa. RFDMIA identified a close association to minimum inhibitory concentration values determined by broth microdilution AST and increasing fluorescent dye emission values. RFDMIA emission values and scanning electron microscopy results also suggest that CET-adapted E. coli isolates have a CET dependence, where cells require sub-inhibitory CET concentrations to maintain bacilliform cell integrity. Overall, this study generates a new, rapid, sensitive fluorescent assay capable of detecting QAC-susceptible Gram-negative bacteria phenotypes and cell membrane perturbations.
Collapse
Affiliation(s)
- Branden S J Gregorchuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Shelby L Reimer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Timothy F Booth
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michelle Wuzinski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Brielle E Funk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Kieran A Milner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Nicola H Cartwright
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Ali N Doucet
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
19
|
Golin AP, Choi D, Ghahary A. Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses. Am J Infect Control 2020; 48:1062-1067. [PMID: 32565272 PMCID: PMC7301780 DOI: 10.1016/j.ajic.2020.06.182] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Background The emergence of the novel virus, SARS-CoV-2, has posed unprecedented challenges to public health around the world. Currently, strategies to deal with COVID-19 are purely supportive and preventative, aimed at reducing transmission. An effective and simple method for reducing transmission of infections in public or healthcare settings is hand hygiene. Unfortunately, little is known regarding the efficacy of hand sanitizers against SARS-CoV-2. Methods In this review, an extensive literature search was performed to succinctly summarize the primary active ingredients and mechanisms of action of hand sanitizers, compare the effectiveness and compliance of gel and foam sanitizers, and predict whether alcohol and non-alcohol hand sanitizers would be effective against SARS-CoV-2. Results Most alcohol-based hand sanitizers are effective at inactivating enveloped viruses, including coronaviruses. With what is currently known in the literature, one may not confidently suggest one mode of hand sanitizing delivery over the other. When hand washing with soap and water is unavailable, a sufficient volume of sanitizer is necessary to ensure complete hand coverage, and compliance is critical for appropriate hand hygiene. Conclusions By extrapolating effectiveness of hand sanitizers on viruses of similar structure to SARS-CoV-2, this virus should be effectively inactivated with current hand hygiene products, though future research should attempt to determine this directly.
Collapse
|
20
|
Zhou L, She P, Tan F, Li S, Zeng X, Chen L, Luo Z, Wu Y. Repurposing Antispasmodic Agent Otilonium Bromide for Treatment of Staphylococcus aureus Infections. Front Microbiol 2020; 11:1720. [PMID: 32849366 PMCID: PMC7410927 DOI: 10.3389/fmicb.2020.01720] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, the problem of bacterial resistance has been brought into focus, which makes the development of new antibiotics become a necessity. Compared with traditional development approaches, drug repurposing provides a faster and more effective approach to find new antimicrobial agents. In this study, we found that antispasmodic agent otilonium bromide had strong antibacterial ability and bactericidal activity against Staphylococcus aureus, with minimal inhibitory concentrations (MICs) of 4-8 μg/ml, and bacteria could be killed completely after treatment with 2× MIC of otilonium bromide for 5 h. Furthermore, it had a potent effect on eradicating biofilm at concentrations ranging from 16 to 64 μg/ml. At the same time, it had low tendency to develop resistance and possessed limited cytotoxicity. In the methicillin-resistant S. aureus-infected mouse peritonitis model, it was also effective to cure mice and improve their survival rate. In addition, we observed that otilonium bromide changed the permeability of bacterial membrane and caused membrane damage, and it is probably the antibacterial mechanism of otilonium bromide. Taken together, our results indicated that otilonium bromide could be a new antimicrobial agent to treat S. aureus infections more safely and efficiently.
Collapse
Affiliation(s)
- Linying Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fang Tan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shijia Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianghai Zeng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Short- and Long-Term Transcriptomic Responses of Escherichia coli to Biocides: a Systems Analysis. Appl Environ Microbiol 2020; 86:e00708-20. [PMID: 32385082 PMCID: PMC7357472 DOI: 10.1128/aem.00708-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/01/2022] Open
Abstract
The mechanisms of the bacterial response to biocides are poorly understood, despite their broad application. To identify the genetic basis and pathways implicated in the biocide stress response, we exposed Escherichia coli populations to 10 ubiquitous biocides. By comparing the transcriptional responses between a short-term exposure (30 min) and a long-term exposure (8 to 12 h) to biocide stress, we established the common gene and pathway clusters that are implicated in general and biocide-specific stress responses. Our analysis revealed a temporal choreography, starting from the upregulation of chaperones to the subsequent repression of motility and chemotaxis pathways and the induction of an anaerobic pool of enzymes and biofilm regulators. A systematic analysis of the transcriptional data identified a zur-regulated gene cluster to be highly active in the stress response against sodium hypochlorite and peracetic acid, presenting a link between the biocide stress response and zinc homeostasis. Susceptibility assays with knockout mutants further validated our findings and provide clear targets for downstream investigation of the implicated mechanisms of action.IMPORTANCE Antiseptics and disinfectant products are of great importance to control and eliminate pathogens, especially in settings such as hospitals and the food industry. Such products are widely distributed and frequently poorly regulated. Occasional outbreaks have been associated with microbes resistant to such compounds, and researchers have indicated potential cross-resistance with antibiotics. Despite that, there are many gaps in knowledge about the bacterial stress response and the mechanisms of microbial resistance to antiseptics and disinfectants. We investigated the stress response of the bacterium Escherichia coli to 10 common disinfectant and antiseptic chemicals to shed light on the potential mechanisms of tolerance to such compounds.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, California, USA
- Genome Center, University of California, Davis, California, USA
| | - Xiaokang Wang
- Genome Center, University of California, Davis, California, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California, USA
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, California, USA
- Department of Computer Science, University of California, Davis, California, USA
| |
Collapse
|
22
|
Maertens H, Demeyere K, De Reu K, Dewulf J, Vanhauteghem D, Van Coillie E, Meyer E. Effect of subinhibitory exposure to quaternary ammonium compounds on the ciprofloxacin susceptibility of Escherichia coli strains in animal husbandry. BMC Microbiol 2020; 20:155. [PMID: 32527225 PMCID: PMC7291530 DOI: 10.1186/s12866-020-01818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/10/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Quaternary ammonium compound based disinfectants are commonly used in pig and poultry husbandry to maintain farm hygiene. However, studies have shown that subinhibitory concentrations of these disinfectants may increase antibiotic resistance. Investigation of antibiotic susceptibility is usually assessed via the microbroth dilution method, although this conventional culture-based technique only provides information on the bacteriostatic activity of an antimicrobial agent. Therefore, experiments were performed to investigate the effect of prior benzalkonium chloride (BKC) exposure on the viability of subsequent ciprofloxacin (CIP) treated Escherichia coli. RESULTS Following CIP treatment, bacterial cell counts were significantly higher after exposure to a subinhibitory BKC concentration than without BKC exposure. The flow cytometric results suggested a BKC-dependent onset of membrane damage and loss of membrane potential. CONCLUSION Our results indicate a lower bactericidal effect of CIP treatment on BKC-exposed E. coli isolates compared to unexposed E. coli isolates.
Collapse
Affiliation(s)
- H Maertens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - K Demeyere
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - K De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - J Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - D Vanhauteghem
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - E Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - E Meyer
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
23
|
Lee J, Pascall MA. Reduction in microbial survival on food contact surfaces by a spray coated polymerized quaternary ammonium compound. Food Sci Nutr 2020; 8:2472-2477. [PMID: 32405403 PMCID: PMC7215225 DOI: 10.1002/fsn3.1537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
Using polymerization and immobilization techniques, the loss of antimicrobial efficacy of a quaternary ammonium compound (QAC) was minimized by decreasing its solubility and crosslinking it to metal substrates. The survivability of Listeria innocua and Escherichia coli K12 inoculated to silane QAC coated metal surfaces was compared with uncoated metal surfaces at different treatment conditions for up to 6 months storage. Resilience of the coating material to repeated cleaning, up to 20 washing and rinsing cycles, was also investigated. No evidence of bacteria viability (>5 log reduction of colony-forming unit) was observed for L. innocua when they were inoculated onto coated surfaces stored for 3 months, whereas E. coli was reduced by 3 to 4-logs. For the viable L. innocua cells on the coated surfaces, >5 log reductions were achieved even after the coated surfaces were cleaned by 20 washing and rinsing cycles prior to the cells' inoculation. For the E. coli cells, ~ 2 log reductions were achieved after 5 cleaning cycles and <1 log reduction after 10 or more cleaning procedures. Overall, the results showed that the coating had antimicrobial activity against Gram-positive bacteria while it showed moderate activity to Gram-negative bacteria.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Food Science and TechnologyOhio State UniversityColumbusOHUSA
| | - Melvin A. Pascall
- Department of Food Science and TechnologyOhio State UniversityColumbusOHUSA
| |
Collapse
|
24
|
Enany ME, Algammal AM, Nasef SA, Abo-Eillil SAM, Bin-Jumah M, Taha AE, Allam AA. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express 2019; 9:192. [PMID: 31797067 PMCID: PMC6890893 DOI: 10.1186/s13568-019-0920-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Colibacillosis is a major disease affecting poultry leads to high morbidity and mortality which causing tremendous economic losses worldwide. These economic disparities are amplified among low and middle-income where sanitation and hygiene are challenged by the increasing demand for quality sources of animal protein. With a view to investigating the prevalence of virulence genes and QACs resistance genes as well as monitoring the antibiogram of E. coli strains, a total of 368 specimens were collected from diseased broiler chickens (n = 226) and environmental sources (n = 142) at large-scale poultry farms in Ismailia Governorate, Egypt. The bacteriological examination proved that E. coli prevalence was 26.76% and 50.44% in the farm environment and diseased broilers, respectively. In tandem, the isolated E. coli strains were serogrouped, determining the most common serotypes were O78, O1:H7, O91:H21 and O126. Isolates were tested for antimicrobial susceptibility against 12 antibiotics, screened for 4 virulence genes (iss, papC, eaeA, and cfaI), and screened for 3 QACs resistance genes (qacEΔ1, qacA/B, and qacC/D). All the tested strains were positive for iss and papC genes, only 20.3% of the tested strains were positive for eaeA gene, moreover, the examined strains were negative to CFAI gene. Furthermore, all the tested strains were positive for qacEΔ1, qacA/B, and qacC/D genes. In conclusion; virulence genes (iss, papC) as well as QACs resistance genes are common in avian Pathogenic E. coli and environmental strains and are mainly associated with multi-drug resistance phenomena.![]()
Collapse
|
25
|
Paley S, Karp PD. The MultiOmics Explainer: explaining omics results in the context of a pathway/genome database. BMC Bioinformatics 2019; 20:399. [PMID: 31319812 PMCID: PMC6637615 DOI: 10.1186/s12859-019-2971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background High-throughput experiments can bring to light associations between genes, proteins and/or metabolites, many of which will be explainable by existing knowledge. Our aim is to speed elucidation of such explanations and, in some cases, find explanations that scientists might otherwise overlook. Results We describe the MultiOmics Explainer, a new tool within the Pathway Tools software suite that leverages what is known about an organism’s metabolic and regulatory network to suggest explanations for the results of omics experiments. Querying a database such as EcoCyc, the MultiOmics Explainer searches the organism’s network of metabolic reactions, transporters, cofactors, enzyme substrate-level activation and inhibition relationships, and transcriptional and translational regulation relationships to identify paths of influence among input genes, proteins and metabolites. Results are presented in a combined metabolic and regulatory diagram. We present several examples of explanations generated for associations found in the Escherichia coli literature. Conclusions The MultiOmics Explainer is a valuable tool that helps researchers understand and interpret the results of their omics experiments in the context of what is known about an organism’s metabolic and regulatory network. It showcases the rich set of computational inferences that can be drawn from a database such as EcoCyc that encodes a diverse range of biological interactions. Electronic supplementary material The online version of this article (10.1186/s12859-019-2971-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne Paley
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, Menlo Park, 94025, CA, USA.
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, Menlo Park, 94025, CA, USA
| |
Collapse
|
26
|
Yuan W, Yuk HG. Effects of Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde Adaptation on Virulence Properties of Escherichia coli O157:H7. Appl Environ Microbiol 2019; 85:AEM.00271-19. [PMID: 31076428 DOI: 10.1128/aem.00271-19/format/epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/28/2019] [Indexed: 05/27/2023] Open
Abstract
Essential oils (EOs) have demonstrated wide-spectrum antimicrobial activities and have been actively studied for their application in foods as alternative natural preservatives. However, information regarding microbial adaptive responses and changes in virulence properties following sublethal EO exposure is still scarce. The present study investigated the effect of sublethal thymol (Thy), carvacrol (Car), or trans-cinnamaldehyde (TC) adaptation on virulence gene expression and virulence properties of Escherichia coli O157:H7. The results demonstrated that E. coli O157:H7 grown to the early stationary phase in the presence of sublethal EO showed significantly (P < 0.05) reduced motility (reversible after stress removal), biofilm-forming ability, and efflux pump activity, with no induction of antibiotic resistance and no significant changes to its adhesion and invasion ability on a human colon adenocarcinoma (Caco-2) cell line. Reverse transcription-quantitative PCR revealed reduced expression of relevant virulence genes, including those encoding flagellar biosynthesis and function, biofilm formation regulators, multidrug efflux pumps, and type III secretion system components. This study demonstrated that Thy, Car, and TC at sublethal concentrations did not potentiate virulence in adapted E. coli O157:H7, which could benefit to their application in the food industry.IMPORTANCE The present study was conducted to evaluate changes in virulence properties in Escherichia coli O157:H7 adapted to sublethal essential oils (EOs). The results demonstrated reduced motility, biofilm-forming ability, and efflux pump activities in EO-adapted E. coli O157:H7, with no induction of antibiotic resistance or infection (adhesion and invasion) on Caco-2 cells. Reverse transcription-quantitative PCR results revealed changes in the expression of related virulence genes. Thus, the present study provides new insights into microbial virulence behavior following EO adaptation and suggests that Thy, Car, and TC sublethal exposure did not constitute a significant risk in inducing microbial virulence.
Collapse
Affiliation(s)
- Wenqian Yuan
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
27
|
Effects of Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde Adaptation on Virulence Properties of Escherichia coli O157:H7. Appl Environ Microbiol 2019; 85:AEM.00271-19. [PMID: 31076428 DOI: 10.1128/aem.00271-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/28/2019] [Indexed: 01/22/2023] Open
Abstract
Essential oils (EOs) have demonstrated wide-spectrum antimicrobial activities and have been actively studied for their application in foods as alternative natural preservatives. However, information regarding microbial adaptive responses and changes in virulence properties following sublethal EO exposure is still scarce. The present study investigated the effect of sublethal thymol (Thy), carvacrol (Car), or trans-cinnamaldehyde (TC) adaptation on virulence gene expression and virulence properties of Escherichia coli O157:H7. The results demonstrated that E. coli O157:H7 grown to the early stationary phase in the presence of sublethal EO showed significantly (P < 0.05) reduced motility (reversible after stress removal), biofilm-forming ability, and efflux pump activity, with no induction of antibiotic resistance and no significant changes to its adhesion and invasion ability on a human colon adenocarcinoma (Caco-2) cell line. Reverse transcription-quantitative PCR revealed reduced expression of relevant virulence genes, including those encoding flagellar biosynthesis and function, biofilm formation regulators, multidrug efflux pumps, and type III secretion system components. This study demonstrated that Thy, Car, and TC at sublethal concentrations did not potentiate virulence in adapted E. coli O157:H7, which could benefit to their application in the food industry.IMPORTANCE The present study was conducted to evaluate changes in virulence properties in Escherichia coli O157:H7 adapted to sublethal essential oils (EOs). The results demonstrated reduced motility, biofilm-forming ability, and efflux pump activities in EO-adapted E. coli O157:H7, with no induction of antibiotic resistance or infection (adhesion and invasion) on Caco-2 cells. Reverse transcription-quantitative PCR results revealed changes in the expression of related virulence genes. Thus, the present study provides new insights into microbial virulence behavior following EO adaptation and suggests that Thy, Car, and TC sublethal exposure did not constitute a significant risk in inducing microbial virulence.
Collapse
|
28
|
Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl Environ Microbiol 2019; 85:AEM.00377-19. [PMID: 31028024 DOI: 10.1128/aem.00377-19] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Benzalkonium chlorides (BACs) are chemicals with widespread applications due to their broad-spectrum antimicrobial properties against bacteria, fungi, and viruses. This review provides an overview of the market for BACs, as well as regulatory measures and available data on safety, toxicity, and environmental contamination. We focus on the effect of frequent exposure of microbial communities to BACs and the potential for cross-resistant phenotypes to emerge. Toward this goal, we review BAC concentrations in consumer products, their correlation with the emergence of tolerance in microbial populations, and the associated risk potential. Our analysis suggests that the ubiquitous and frequent use of BACs in commercial products can generate selective environments that favor microbial phenotypes potentially cross-resistant to a variety of compounds. An analysis of benefits versus risks should be the guidepost for regulatory actions regarding compounds such as BACs.
Collapse
|
29
|
Montagna MT, Triggiano F, Barbuti G, Bartolomeo N, De Giglio O, Diella G, Lopuzzo M, Rutigliano S, Serio G, Caggiano G. Study on the In Vitro Activity of Five Disinfectants against Nosocomial Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:1895. [PMID: 31146343 PMCID: PMC6603693 DOI: 10.3390/ijerph16111895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
Nosocomial infections cause significant morbidity and mortality worldwide, and the pathogenic organisms responsible for such infections can develop resistance to antimicrobial agents. Understanding the activity of disinfectants against clinical and environmental bacterial isolates is therefore crucial. We analysed the in vitro activity of five antimicrobial products (phenolic compounds, didecyldimethylammonium chloride (DDAC), sodium hypochlorite, isopropanol + ammonium compounds (IACs), hydrogen peroxide) against 187 bacterial strains comprising clinical isolates, as well as 30 environmental isolates of Pseudomonas aeruginosa from hospital water samples. Disk diffusion assays were employed to assess antimicrobial activity. Hydrogen peroxide was significantly more active (p < 0.0001) than the other disinfectants against all P. aeruginosa, Klebsiella pneumoniae, Enterococcus faecalis and Staphylococcus aureus strains. It was also the only disinfectant with activity against both clinical and environmental strains of P. aeruginosa. DDAC and IAC-based disinfectants were ineffective against Gram-negative strains, but showed significant activity (particularly IACs, p < 0.0001) against the Gram-positive strains. Compared with IACs, DDAC was significantly more active on E. faecalis and less active on S. aureus (p < 0.0001). Sodium hypochlorite and phenol compounds, by contrast, were inactive against all bacterial strains. The development of disinfection procedures that are effective against all microorganisms is essential for limiting the spread of nosocomial infections.
Collapse
Affiliation(s)
- Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giovanna Barbuti
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Nicola Bartolomeo
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Serafina Rutigliano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Gabriella Serio
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
30
|
Biocide Exposure Induces Changes in Susceptibility, Pathogenicity, and Biofilm Formation in Uropathogenic Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.01892-18. [PMID: 30642923 PMCID: PMC6395906 DOI: 10.1128/aac.01892-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a frequent cause of catheter-associated urinary tract infection (CAUTI). Biocides have been incorporated into catheter coatings to inhibit bacterial colonization while, ideally, exhibiting low cytotoxicity and mitigating the selection of resistant bacterial populations. We compared the effects of long-term biocide exposure on susceptibility, biofilm formation, and relative pathogenicity in eight UPEC isolates. MICs, minimum bactericidal concentrations (MBCs), minimum biofilm eradication concentrations (MBECs), and antibiotic susceptibilities were determined before and after long-term exposure to triclosan, polyhexamethylene biguanide (PHMB), benzalkonium chloride (BAC), and silver nitrate. Biofilm formation was quantified using a crystal violet assay, and relative pathogenicity was assessed via a Galleria mellonella waxworm model. Cytotoxicity and the resulting biocompatibility index values were determined by use of an L929 murine fibroblast cell line. Biocide exposure resulted in multiple decreases in biocide susceptibility in planktonic and biofilm-associated UPEC. Triclosan exposure induced the largest frequency and magnitude of susceptibility decreases at the MIC, MBC, and MBEC, which correlated with an increase in biofilm biomass in all isolates. Induction of antibiotic cross-resistance occurred in 6/84 possible combinations of bacteria, biocide, and antibiotic. Relative pathogenicity significantly decreased after triclosan exposure (5/8 isolates), increased after silver nitrate exposure (2/8 isolates), and varied between isolates for PHMB and BAC. The biocompatibility index ranked the antiseptic potential as PHMB > triclosan > BAC > silver nitrate. Biocide exposure in UPEC may lead to reductions in biocide and antibiotic susceptibility, changes in biofilm formation, and alterations in relative pathogenicity. These data indicate the multiple consequences of biocide adaptation that should be considered when selecting an anti-infective catheter-coating agent.
Collapse
|
31
|
Forbes S, Morgan N, Humphreys GJ, Amézquita A, Mistry H, McBain AJ. Loss of Function in Escherichia coli Exposed to Environmentally Relevant Concentrations of Benzalkonium Chloride. Appl Environ Microbiol 2019; 85:e02417-18. [PMID: 30530708 PMCID: PMC6365820 DOI: 10.1128/aem.02417-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Assessing the risk of resistance associated with biocide exposure commonly involves exposing microorganisms to biocides at concentrations close to the MIC. With the aim of representing exposure to environmental biocide residues, Escherichia coli MG1655 was grown for 20 passages in the presence or absence of benzalkonium chloride (BAC) at 100 ng/liter and 1,000 ng/liter (0.0002% and 0.002% of the MIC, respectively). BAC susceptibility, planktonic growth rates, motility, and biofilm formation were assessed, and differentially expressed genes were determined via transcriptome sequencing. Planktonic growth rate and biofilm formation were significantly reduced (P < 0.001) following BAC adaptation, while BAC minimum bactericidal concentration increased 2-fold. Transcriptomic analysis identified 289 upregulated and 391 downregulated genes after long-term BAC adaptation compared with the respective control organism passaged in BAC-free medium. When the BAC-adapted bacterium was grown in BAC-free medium, 1,052 genes were upregulated and 753 were downregulated. Repeated passage solely in biocide-free medium resulted in 460 upregulated and 476 downregulated genes compared with unexposed bacteria. Long-term exposure to environmentally relevant BAC concentrations increased the expression of genes associated with efflux and reduced the expression of genes associated with outer-membrane porins, motility, and chemotaxis. This was manifested phenotypically through the loss of function (motility). Repeated passage in a BAC-free environment resulted in the upregulation of multiple respiration-associated genes, which was reflected by increased growth rate. In summary, repeated exposure of E. coli to BAC residues resulted in significant alterations in global gene expression that were associated with minor decreases in biocide susceptibility, reductions in growth rate and biofilm formation, and loss of motility.IMPORTANCE Exposure to very low concentrations of biocides in the environment is a poorly understood risk factor for antimicrobial resistance. Repeated exposure to trace levels of the biocide benzalkonium chloride (BAC) resulted in loss of function (motility) and a general reduction in bacterial fitness but relatively minor decreases in susceptibility. These changes were accompanied by widespread changes in the Escherichia coli transcriptome. These results demonstrate the importance of including phenotypic characterization in studies designed to assess the risks of biocide exposure.
Collapse
Affiliation(s)
- Sarah Forbes
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Nicola Morgan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Hitesh Mistry
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Tolerance to benzalkonium chloride and antimicrobial activity of Butia odorata Barb. Rodr. extract in Salmonella spp. isolates from food and food environments. Food Res Int 2019; 116:652-659. [DOI: 10.1016/j.foodres.2018.08.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/21/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022]
|
33
|
Gutiérrez D, Fernández L, Rodríguez A, García P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front Microbiol 2019; 10:12. [PMID: 30723460 PMCID: PMC6349743 DOI: 10.3389/fmicb.2019.00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
The growing human population is currently facing an unprecedented challenge regarding global food sustainability. Thus, it is of paramount to maintain food production and quality while avoiding a negative impact on climate change and the environment at large. Along the food chain, several practices could compromise future food safety and human health. One example is the widespread use of antibiotics and disinfectants in dairy production, which has contributed to the current antibiotic resistance crisis. Moreover, the uncontrolled release of antimicrobials to the environment poses a significant threat to natural ecosystems. For these reasons, research has recently focused on exploiting natural antimicrobials with the goal of achieving a safer and more sustainable dairy production chain. In this context, bacteriophages, viruses that infect bacteria, may become good allies to prevent and treat diseases in cattle, or be used as disinfectants in dairy facilities and as preservatives in dairy products. This review provides an overview of the current research regarding the use of phages as a global approach to reduce economic losses and food waste, while increasing food safety and reducing the environmental impact of food production. Our current understanding of progress, solutions, and future challenges in dairy production, processing, safety, waste processing, and quality assurance is also discussed.
Collapse
Affiliation(s)
| | | | | | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
34
|
Kampf G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics (Basel) 2018; 7:E110. [PMID: 30558235 PMCID: PMC6316403 DOI: 10.3390/antibiotics7040110] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022] Open
Abstract
Biocidal agents used for disinfection are usually not suspected to enhance cross-resistance to antibiotics. The aim of this review was therefore to evaluate the effect of 13 biocidal agents at sublethal concentrations on antibiotic resistance in Gram-negative species. A medline search was performed for each biocidal agent on antibiotic tolerance, antibiotic resistance, horizontal gene transfer, and efflux pump. In cells adapted to benzalkonium chloride a new resistance was most frequently found to ampicillin (eight species), cefotaxime (six species), and sulfamethoxazole (three species), some of them with relevance for healthcare-associated infections such as Enterobacter cloacae or Escherichia coli. With chlorhexidine a new resistance was often found to ceftazidime, sulfamethoxazole and imipenem (eight species each) as well as cefotaxime and tetracycline (seven species each). Cross-resistance to antibiotics was also found with triclosan, octenidine, sodium hypochlorite, and didecyldimethylammonium chloride. No cross-resistance to antibiotics has been described after low level exposure to ethanol, propanol, peracetic acid, polyhexanide, povidone iodine, glutaraldehyde, and hydrogen peroxide. Taking into account that some biocidal agents used in disinfectants have no health benefit (e.g., in alcohol-based hand rubs) but may cause antibiotic resistance it is obvious to prefer products without them.
Collapse
Affiliation(s)
- Günter Kampf
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine, 17475 Greifswald, Germany.
| |
Collapse
|
35
|
Adaptive microbial response to low-level benzalkonium chloride exposure. J Hosp Infect 2018; 100:e1-e22. [DOI: 10.1016/j.jhin.2018.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
|
36
|
Božik M, Cejnar P, Šašková M, Nový P, Maršík P, Klouček P. Stress response of Escherichia coli to essential oil components - insights on low-molecular-weight proteins from MALDI-TOF. Sci Rep 2018; 8:13042. [PMID: 30158663 PMCID: PMC6115441 DOI: 10.1038/s41598-018-31255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023] Open
Abstract
The antibacterial effects of essential oils and their components (EOCs) are usually attributed to effects on membranes and metabolism. Studies of the effects of EOCs on protein expression have primarily analysed proteins larger than 10 kDa using gel electrophoresis. In the present study, we used MALDI-TOF-MS to investigate the effects of EOCs on low-molecular-weight proteins. From 297 m/z features, we identified 94 proteins with important differences in expression among untreated samples, samples treated with EOCs, and samples treated with antibiotics, peroxide, or chlorine. The targets of these treatments obviously differ, even among EOCs. In addition to ribosomal proteins, stress-, membrane- and biofilm-related proteins were affected. These findings may provide a basis for identifying new targets of essential oils and synergies with other antibiotics.
Collapse
Affiliation(s)
- Matěj Božik
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Cejnar
- University of Chemistry and Technology, Department of Computing and Control Engineering, Prague, Czech Republic.,Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Prague, Czech Republic
| | - Martina Šašková
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Nový
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Petr Maršík
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Klouček
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic.
| |
Collapse
|
37
|
Sousa-Silva M, Simões M, Melo L, Machado I. Pseudomonas fluorescens tolerance to benzyldimethyldodecyl ammonium chloride: Altered phenotype and cross-resistance. J Glob Antimicrob Resist 2018; 15:188-195. [PMID: 30026133 DOI: 10.1016/j.jgar.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Benzyldimethyldodecyl ammonium chloride (BDMDAC) is a quaternary ammonium compound (QAC) with bactericidal action that is used as an active molecule in detergent formulations. Pseudomonas fluorescens is a Gram-negative bacterium with versatile metabolism that is frequently present in biofilms on industrial surfaces. This work reports P. fluorescens adaptation to BDMDAC and subsequent concurrent reduced susceptibility to the QAC benzalkonium chloride (BAC) and the antimicrobial ciprofloxacin (CIP). METHODS Stepwise adaptation to increasing concentrations of BDMDAC was easily achieved and caused changes in the bacterial phenotype of P. fluorescens. Adaptation was evaluated through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determination and was subsequently confirmed by time-kill curves. Biofilm phenotype (biomass and number of cells) was characterised for the adapted and reference strains after treatment with BDMDAC, BAC and CIP. RESULTS Susceptibility to BAC and CIP was reduced in adapted P. fluorescens. Biofilms developed by the adapted strain had 20% more mass and a higher number of bacteria (2 log). CONCLUSIONS This study revealed that exposure to sublethal concentrations of BDMDAC may select tolerant strains to that product as well as to related products and unrelated antimicrobial agents.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Luís Melo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Idalina Machado
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
38
|
García MR, Cabo ML. Optimization of E. coli Inactivation by Benzalkonium Chloride Reveals the Importance of Quantifying the Inoculum Effect on Chemical Disinfection. Front Microbiol 2018; 9:1259. [PMID: 29997577 PMCID: PMC6028699 DOI: 10.3389/fmicb.2018.01259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023] Open
Abstract
Optimal disinfection protocols are fundamental to minimize bacterial resistance to the compound applied, or cross-resistance to other antimicrobials such as antibiotics. The objective is twofold: guarantee safe levels of pathogens and minimize the excess of disinfectant after a treatment. In this work, the disinfectant dose is optimized based on a mathematical model. The model explains and predicts the interplay between disinfectant and pathogen at different initial microbial densities (inocula) and dose concentrations. The study focuses on the disinfection of Escherichia coli with benzalkonium chloride, the most common quaternary ammonium compound. Interestingly, the specific benzalkonium chloride uptake (mean uptake per cell) decreases exponentially when the inoculum concentration increases. As a consequence, the optimal disinfectant dose increases exponentially with the initial bacterial concentration.
Collapse
Affiliation(s)
- Míriam R García
- Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Marta L Cabo
- Microbiology Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| |
Collapse
|
39
|
Knauf GA, Cunningham AL, Kazi MI, Riddington IM, Crofts AA, Cattoir V, Trent MS, Davies BW. Exploring the Antimicrobial Action of Quaternary Amines against Acinetobacter baumannii. mBio 2018; 9:e02394-17. [PMID: 29437928 PMCID: PMC5801471 DOI: 10.1128/mbio.02394-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Quaternary amine compounds (QAC) are potent antimicrobials used to prevent the spread of pathogenic bacteria. While they are known for their membrane-damaging properties, QAC action has been suggested to extend beyond the surface to intracellular targets. Here we characterize the range of action of the QAC biocide benzalkonium chloride (BZK) against the bacterial pathogen Acinetobacter baumannii At high concentrations, BZK acts through membrane disruption, but at low concentrations we show that wide-spread protein aggregation is associated with BZK-induced cell death. Resistance to BZK is found to develop through ribosomal protein mutations that protect A. baumannii against BZK-induced protein aggregation. The multifunctional impact of BZK led us to discover that alternative QAC structures, with low human toxicity, retain potent action against multidrug-resistant A. baumannii, Staphylococcus aureus, and Clostridium difficile and present opportunities for their development as antibiotics.IMPORTANCE Quaternary amine compounds (QACs) are widely used to prevent the spread of bacterial pathogens, but our understanding of their mode of action is incomplete. Here we describe disruption of bacterial proteostasis as an unrecognized action of QAC antimicrobial action and uncover the potential of diverse QAC structures to act as multitarget antibiotics.
Collapse
Affiliation(s)
- Gregory A Knauf
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ashley L Cunningham
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Misha I Kazi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ian M Riddington
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, Georgia, USA
| | - Vincent Cattoir
- University of Rennes 1, Inserm Unit U1230, Rennes, France
- Department of Clinical Microbiology, University Hospital of Rennes, Rennes, France
- National Reference Center for Antimicrobial Resistance (lab 'Enterococci'), Rennes, France
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, Georgia, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Center for Systems and Synthetic Biology, John Ring LaMontagne Center for Infectious Diseases, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
40
|
Slipski CJ, Zhanel GG, Bay DC. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. J Membr Biol 2018; 251:15-33. [PMID: 29063140 PMCID: PMC5840245 DOI: 10.1007/s00232-017-9992-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 02/03/2023]
Abstract
Bacterial resistance to biocides used as antiseptics, dyes, and disinfectants is a growing concern in food preparation, agricultural, consumer manufacturing, and health care industries, particularly among Gram-negative Enterobacteriaceae, some of the most common community and healthcare-acquired bacterial pathogens. Biocide resistance is frequently associated with antimicrobial cross-resistance leading to reduced activity and efficacy of both antimicrobials and antiseptics. Multidrug resistant efflux pumps represent an important biocide resistance mechanism in Enterobacteriaceae. An assortment of structurally diverse efflux pumps frequently co-exist in these species and confer both unique and overlapping biocide and antimicrobial selectivity. TolC-dependent multicomponent systems that span both the plasma and outer membranes have been shown to confer clinically significant resistance to most antimicrobials including many biocides, however, a growing number of single component TolC-independent multidrug resistant efflux pumps are specifically associated with biocide resistance: small multidrug resistance (SMR), major facilitator superfamily (MFS), multidrug and toxin extruder (MATE), cation diffusion facilitator (CDF), and proteobacterial antimicrobial compound efflux (PACE) families. These efflux systems are a growing concern as they are rapidly spread between members of Enterobacteriaceae on conjugative plasmids and mobile genetic elements, emphasizing their importance to antimicrobial resistance. In this review, we will summarize the known biocide substrates of these efflux pumps, compare their structural relatedness, Enterobacteriaceae distribution, and significance. Knowledge gaps will be highlighted in an effort to unravel the role that these apparent "lone wolves" of the efflux-mediated resistome may offer.
Collapse
Affiliation(s)
- Carmine J Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
41
|
Lin L, Sun L, Ali F, Guo Z, Zhang L, Lin W, Lin X. Proteomic Analysis of Alterations in Aeromonas hydrophila Outer Membrane Proteins in Response to Oxytetracycline Stress. Microb Drug Resist 2018; 24:1067-1074. [PMID: 29356594 DOI: 10.1089/mdr.2017.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Gram-negative bacteria, the outer membrane proteins (OMPs) perform a crucial role in antibiotic resistance, but it is largely unknown how they behave in response to antibiotic stress. In this study, we treated Aeromonas hydrophila with two different doses of oxytetracycline (OXY) to induce antibiotic stress. Proteins were isolated from sarcosine-insoluble fractions and quantitatively examined by using tandem mass tag labeling-based mass spectrometry to identify differentially expressed proteins. As a result, we identified 125 differential proteins in the 5 μg/ml OXY treatment group, including 20 OMPs, and 150 proteins from the 10 μg/ml OXY group, including 22 OMPs. Gene ontology analysis showed that translation-related proteins, including 30S and 50S ribosome proteins, were significantly enriched in increasing abundance under OXY stress; whereas the downregulated proteins were associated with the transport process, such as maltodextrin, maltose, and oligosaccharide transport. We then validated a subset of the identified differential proteins by using Western blot and quantitative polymerase chain reaction analyses. Finally, the quantitative real-time PCR (qPCR) results showed that at the transcription level, the expression of five OMP genes, including AHA_1280 (protein name A0KHS0), AHA_1281 (A0KHS1), AHA_1447 (A0KI84, BamE), AHA_1861 (A0KJE1), and AHA_2766 (A0KLX3), and one lipoprotein gene AHA_1740 (A0KJ25) was consistent with proteomic results under 5 and 10 μg/ml OXY treatment, respectively. In addition, the Western blotting also demonstrated that two altered OMP proteins A0KHS1 and A0KHH2 were upregulated for both OXY treatment groups. This study indicates that bacteria regulate the expression levels of OMPs in response to antibiotic stress and further contribute to our understanding of the functions of OMPs in antibiotic resistance. Moreover, our results suggest that the upregulation of translation and downregulation of the transport process may affect bacterial fitness during OXY stress. These findings may provide new clues to the antibiotic resistance mechanism in A. hydrophila.
Collapse
Affiliation(s)
- Ling Lin
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Lina Sun
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Farman Ali
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Zhuang Guo
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Liang Zhang
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Wenxiong Lin
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Xiangmin Lin
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| |
Collapse
|
42
|
Rodríguez-López P, Cabo ML. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments. Food Microbiol 2017. [PMID: 28648294 DOI: 10.1016/j.fm.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was designed to assess the effects that sublethal exposures to pronase (PRN) and benzalkonium chloride (BAC) combined treatments have on Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel in terms of tolerance development (TD) to these compounds. Additionally, fluorescence microscopy was used to observe the changes of the biofilm structure. PRN-BAC exposure was carried out using three different approaches and TD was evaluated treating biofilms with a final 100 μg/ml PRN followed by 50 μg/ml BAC combined treatment. Results showed that exposure to PRN-BAC significantly decreased the number of adhered L. monocytogenes (P < 0.05), while E. coli counts remained generally unaltered. It was also demonstrated that the incorporation of recovery periods during sublethal exposures increased the tolerance of both species of the mixed biofilm to the final PRN-BAC treatment. Moreover, control biofilms became more resistant to PRN-BAC if longer incubation periods were used. Regardless of the treatment used, log reduction values were generally lower in L. monocytogenes compared to E. coli. Additionally, microscopy images showed an altered morphology produced by sublethal PRN-BAC in exposed L. monocytogenes-E. coli dual-species biofilms compared to control samples. Results also demonstrated that L. monocytogenes-E. coli dual-species biofilms are able to develop tolerance to PRN-BAC combined treatments depending on way they have been previously exposed. Moreover, they suggest that the generation of bacterial tolerance should be included as a parameter for sanitation procedures design.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Department of Microbiology and Technology of Marine Products, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - Marta López Cabo
- Department of Microbiology and Technology of Marine Products, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| |
Collapse
|
43
|
Bartho JD, Bellini D, Wuerges J, Demitri N, Toccafondi M, Schmitt AO, Zhao Y, Walsh MA, Benini S. The crystal structure of Erwinia amylovora AmyR, a member of the YbjN protein family, shows similarity to type III secretion chaperones but suggests different cellular functions. PLoS One 2017; 12:e0176049. [PMID: 28426806 PMCID: PMC5398634 DOI: 10.1371/journal.pone.0176049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
AmyR is a stress and virulence associated protein from the plant pathogenic Enterobacteriaceae species Erwinia amylovora, and is a functionally conserved ortholog of YbjN from Escherichia coli. The crystal structure of E. amylovora AmyR reveals a class I type III secretion chaperone-like fold, despite the lack of sequence similarity between these two classes of protein and lacking any evidence of a secretion-associated role. The results indicate that AmyR, and YbjN proteins in general, function through protein-protein interactions without any enzymatic action. The YbjN proteins of Enterobacteriaceae show remarkably low sequence similarity with other members of the YbjN protein family in Eubacteria, yet a high level of structural conservation is observed. Across the YbjN protein family sequence conservation is limited to residues stabilising the protein core and dimerization interface, while interacting regions are only conserved between closely related species. This study presents the first structure of a YbjN protein from Enterobacteriaceae, the most highly divergent and well-studied subgroup of YbjN proteins, and an in-depth sequence and structural analysis of this important but poorly understood protein family.
Collapse
Affiliation(s)
- Joseph D. Bartho
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
| | - Dom Bellini
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Jochen Wuerges
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
| | - Nicola Demitri
- Elettra–Sincrotrone Trieste, S.S 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
| | - Mirco Toccafondi
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
| | - Armin O. Schmitt
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
- Georg-August-Universität Göttingen, Dept. Nutztierwissenschaften, Breeding informatics, Margarethe von Wrangell-Weg 7, Göttingen, Germany
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois, 1201 W. Gregory Dr., Urbana, IL, United States of America
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
- * E-mail:
| |
Collapse
|
44
|
Oblak E, Piecuch A, Maciaszczyk-Dziubinska E, Wawrzycka D. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride induced alterations in Saccharomyces cerevisiae physiology. J Biosci 2017; 41:601-614. [PMID: 27966483 DOI: 10.1007/s12038-016-9644-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated the influence of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited resistance to ethanol, osmotic shock and oxidative stress, as well as increased sensitivity to UV. Moreover, it was noted that mutant EO25 appears to have an increased resistance to clotrimazole, ketoconazole, fluconazole, nystatin and cycloheximide. It also tolerated growth in the presence of crystal violet, DTT and metals (selenium, tin, arsenic). It was shown that the presence of IM decreased ergosterol level in mutant plasma membrane and increased its unsaturation. These results indicate changes in the cell lipid composition. Western blot analysis showed the induction of Pma1 level by IM. RT-PCR revealed an increased PMA1 expression after IM treatment.
Collapse
Affiliation(s)
- Ewa Oblak
- Institute of Genetics and Microbiology, and Institute of Experimental Biology University of Wroclaw, Wroclaw, Poland,
| | | | | | | |
Collapse
|
45
|
Long M, Lai H, Deng W, Zhou K, Li B, Liu S, Fan L, Wang H, Zou L. Disinfectant susceptibility of differentSalmonellaserotypes isolated from chicken and egg production chains. J Appl Microbiol 2016; 121:672-81. [DOI: 10.1111/jam.13184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- M. Long
- College of Resources; Sichuan Agricultural University; Chengdu China
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - H. Lai
- College of Food Science; Sichuan Agricultural University; Ya'an China
| | - W. Deng
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - K. Zhou
- College of Food Science; Sichuan Agricultural University; Ya'an China
| | - B. Li
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - S. Liu
- College of Food Science; Sichuan Agricultural University; Ya'an China
| | - L. Fan
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - H. Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; School of Life Science; Sichuan University; Chengdu China
| | - L. Zou
- College of Resources; Sichuan Agricultural University; Chengdu China
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| |
Collapse
|
46
|
Curiao T, Marchi E, Grandgirard D, León-Sampedro R, Viti C, Leib SL, Baquero F, Oggioni MR, Martinez JL, Coque TM. Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics 2016; 17:491. [PMID: 27411385 PMCID: PMC4943003 DOI: 10.1186/s12864-016-2778-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Background Biocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces (occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes resulting from biocide exposure, which was the aim of this work. Results Exposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant mutants showed increased susceptibility to compounds acting on the cell wall (β-lactams) or the cell membranes (poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins, cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility. Conclusions Multiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with global stress, or involving metabolic and membrane alterations, and eventually causing “collateral sensitivity” to other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2778-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tânia Curiao
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Emmanuela Marchi
- Department of Agrifood Production and Environmental Sciences, University of Florence, Firenze, Italy
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, Bern, Switzerland
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlo Viti
- Department of Agrifood Production and Environmental Sciences, University of Florence, Firenze, Italy
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, Bern, Switzerland
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - José Luis Martinez
- Unidad de Resistencia a Antibióticos y Virulencia bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, Madrid, 28049, Spain
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Unidad de Resistencia a Antibióticos y Virulencia bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
47
|
Malheiro J, Araújo P, Machado I, Lemos M, Mergulhão F, Melo L, Simões M. The Effects of Selected Brominated and Chlorinated Chemicals onPseudomonas fluorescensPlanktonic Cells and Flow-Generated Biofilms. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J. Malheiro
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| | - P. Araújo
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| | - I. Machado
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| | - M. Lemos
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
- Department of Chemical Engineering & Biotechnology; New Museums Site; Cambridge UK
| | - F. Mergulhão
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| | - L. Melo
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| | - M. Simões
- LEPABE; Department of Chemical Engineering; Faculty of Engineering; University of Porto; Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| |
Collapse
|
48
|
Pentanol and Benzyl Alcohol Attack Bacterial Surface Structures Differently. Appl Environ Microbiol 2015; 82:402-8. [PMID: 26519389 DOI: 10.1128/aem.02515-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022] Open
Abstract
The genus Methylobacterium tolerates hygiene agents like benzalkonium chloride (BAC), and infection with this organism is an important public health issue. Here, we found that the combination of BAC with particular alcohols at nonlethal concentrations in terms of their solitary uses significantly reduced bacterial viability after only 5 min of exposure. Among the alcohols, Raman spectroscopic analyses showed that pentanol (pentyl alcohol [PeA]) and benzyl alcohol (BzA) accelerated the cellular accumulation of BAC. Fluorescence spectroscopic assays and morphological assays with giant vesicles indicated that PeA rarely attacked membrane structures, while BzA increased the membrane fluidity and destabilized the structures. Other fluorescent spectroscopic assays indicated that PeA and BzA inactivate bacterial membrane proteins, including an efflux pump for BAC transportation. These findings suggested that the inactivation of membrane proteins by PeA and BzA led to the cellular accumulation but that only BzA also enhanced BAC penetration by membrane fluidization at nonlethal concentrations.
Collapse
|
49
|
Induction of Antimicrobial Resistance in Escherichia coli and Non-Typhoidal Salmonella Strains after Adaptation to Disinfectant Commonly Used on Farms in Vietnam. Antibiotics (Basel) 2015; 4:480-94. [PMID: 27025637 PMCID: PMC4790309 DOI: 10.3390/antibiotics4040480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
In Vietnam, commercial disinfectants containing quaternary ammonium compounds (QACs) are commonly used in pig and poultry farms to maintain hygiene during production. We hypothesized that sustained exposure to sub-bactericidal concentrations of QAC-based disinfectants may result in increased levels of antimicrobial resistance (AMR) among Enterobacteriacea due to the increase of efflux pump expression. To test this hypothesis we exposed six antimicrobial-susceptible Escherichia coli (E. coli) and six antimicrobial-susceptible non-typhoidal Salmonella (NTS) isolates to increasing concentrations of a commonly used commercial disinfectant containing a mix of benzalkonium chloride and glutaraldehyde. Over the 12-day experiment, strains exhibited a significant change in their minimum inhibitory concentration (MIC) of the disinfectant product (mean increase of 31% (SD ± 40)) (p = 0.02, paired Wilcoxon test). Increases in MIC for the disinfectant product were strongly correlated with increases in MIC (or decreases in inhibition zone) for all antimicrobials (Pearson’s correlation coefficient 0.71–0.83, all p < 0.01). The greatest increases in MIC (or decreases in inhibition zone) were observed for ampicillin, tetracycline, ciprofloxacin, and chloramphenicol, and the smallest for gentamicin, trimethoprim/sulphamethoxazole. The treatment of 155 representative E. coli isolates from farmed and wild animals in the Mekong Delta (Vietnam) with phenyl-arginine beta-naphthylamide (PAβN), a generic efflux pump inhibitor, resulted in reductions in the prevalence of AMR ranging from 0.7% to 3.3% in these organisms, indicating a small contribution of efflux pumps on the observed prevalence of AMR on farms. These results suggest that the mass usage of commercial disinfectants, many of which contain QACs, is potentially a contributing factor on the generation and maintenance of AMR in animal production in Vietnam.
Collapse
|
50
|
Zhong J, Xiao C, Gu W, Du G, Sun X, He QY, Zhang G. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress. PLoS Genet 2015; 11:e1005302. [PMID: 26090660 PMCID: PMC4474833 DOI: 10.1371/journal.pgen.1005302] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. All organisms need to respond quickly to sudden environmental changes. Translational regulation can occur in response to environmental stresses within minutes, which is much faster than transcriptional regulation, and thus normally provides immediate adaptation. Eukaryotic cells can manipulate their tRNA molecules, mainly in a reversible manner, to suppress translation. Here, we showed for the first time that bacteria respond to oxidative stress by adjusting the translational system in a manner that differs from that of eukaryotes. The bacteria nonspecifically, irreversibly, and enzymatically degrade tRNAs to block protein synthesis. Interestingly, we showed that elevated tRNA concentrations lead to opposing effects by causing increased protein aggregation, which impairs fitness under normal conditions but facilitates adaptation under oxidative stress, including that caused by antibiotics. Our results provide a new understanding of the role of global adjustments to the entire translation system during stress adaptation in bacteria. This mechanism may also be involved in the development of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Jiayong Zhong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chuanle Xiao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei Gu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gaofei Du
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (QYH); (GZ)
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (QYH); (GZ)
| |
Collapse
|