1
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
2
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Speranza E. Understanding virus-host interactions in tissues. Nat Microbiol 2023; 8:1397-1407. [PMID: 37488255 DOI: 10.1038/s41564-023-01434-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Although virus-host interactions are usually studied in a single cell type using in vitro assays in immortalized cell lines or isolated cell populations, it is important to remember that what is happening inside one infected cell does not translate to understanding how an infected cell behaves in a tissue, organ or whole organism. Infections occur in complex tissue environments, which contain a host of factors that can alter the course of the infection, including immune cells, non-immune cells and extracellular-matrix components. These factors affect how the host responds to the virus and form the basis of the protective response. To understand virus infection, tools are needed that can profile the tissue environment. This Review highlights methods to study virus-host interactions in the infection microenvironment.
Collapse
Affiliation(s)
- Emily Speranza
- Cleveland Clinic Lerner Research Institute, Port Saint Lucie, FL, USA.
| |
Collapse
|
4
|
Vragel G, Gomez BD, Kostelecky RE, Noell KS, Tseng A, Cohen S, Dalwadi M, Medina EM, Nail EA, Goodspeed A, Clambey ET, van Dyk LF. Murine Gammaherpesvirus 68 Efficiently Infects Myeloid Cells Resulting In An Atypical, Restricted Form Of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545948. [PMID: 37425871 PMCID: PMC10327065 DOI: 10.1101/2023.06.21.545948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The gammaherpesviruses (γHVs) establish a lifelong infection in their hosts, with the cellular outcome of infection intimately regulated by target cell type. Murine gammaherpesvirus 68 (MHV68), a small animal model of γHV infection, infects macrophages in vivo, resulting in a range of outcomes, from lytic replication to latent infection. Here, we have further investigated the nature of MHV68 macrophage infection using reductionist and primary in vivo infection studies. While MHV68 readily infected the J774 macrophage cell line, viral gene expression and replication were significantly impaired relative to a fully permissive fibroblast cell line. Lytic replication only occurred in a small subset of MHV68-infected J774 cells, despite the fact that these cells were fully competent to support lytic replication following pre-treatment with interleukin-4, a known potentiator of replication in macrophages. In parallel, we harvested virally-infected macrophages at 16 hours after MHV68 infection in vivo and analyzed gene expression by single cell RNA-sequencing. Among virally infected macrophages, only rare (0.25%) cells had lytic cycle gene expression, characterized by detection of multiple lytic cycle RNAs. In contrast, ~50% of virally-infected macrophages were characterized by expression of ORF75A, ORF75B and/or ORF75C, in the absence of other detectable viral RNAs. Selective transcription of the ORF75 locus also occurred in MHV68-infected J774 cells. In total, these studies indicate that MHV68 efficiently infects macrophages, with the majority of cells characterized by an atypical state of restricted viral transcription, and only rare cells undergoing lytic replication.
Collapse
Affiliation(s)
- Gabrielle Vragel
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Brittany D. Gomez
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Rachael E. Kostelecky
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Kyra S. Noell
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Ashley Tseng
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Manaal Dalwadi
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Eva M. Medina
- Department of Neurology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Elizabeth A. Nail
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Linda F. van Dyk
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
5
|
Thymosin Alpha 1 Restores the Immune Homeostasis in lymphocytes during Post-Acute Sequelae of SARS-CoV-2 infection. Int Immunopharmacol 2023; 118:110055. [PMID: 36989892 PMCID: PMC10030336 DOI: 10.1016/j.intimp.2023.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.
Collapse
Key Words
- post-acute sars-cov-2 symptoms
- thymosin alpha 1
- immune regulation
- anti-inflammatory response
- a-cov, acute covid-19
- aa, ambient air
- cdc, center for desease control and prevention
- em, effector memory
- tfh, follicular helper lymphocytes
- hd, healthy donors
- pasc, post-acute sequelae of sars-cov-2 infection
- pcc, post-covid conditions
- pd-1, programmed cell death-1
- ards, respiratory stress syndrome
- resp sup, respiratory support
- rpmi, roswell park memorial institute
- sev, severe acute phase of infection
- tem, terminal effector memory
- tα1, thymosin alpha 1
Collapse
|
6
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Lytic Replication and Reactivation from B Cells Is Not Required for Establishing or Maintaining Gammaherpesvirus Latency In Vivo. J Virol 2022; 96:e0069022. [PMID: 35647668 PMCID: PMC9215232 DOI: 10.1128/jvi.00690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses (GHVs) are lymphotropic tumor viruses with a biphasic infectious cycle. Lytic replication at the primary site of infection is necessary for GHVs to spread throughout the host and establish latency in distal sites. Dissemination is mediated by infected B cells that traffic hematogenously from draining lymph nodes to peripheral lymphoid organs, such as the spleen. B cells serve as the major reservoir for viral latency, and it is hypothesized that periodic reactivation from latently infected B cells contributes to maintaining long-term chronic infection. While fundamentally important to an understanding of GHV biology, aspects of B cell infection in latency establishment and maintenance are incompletely defined, especially roles for lytic replication and reactivation in this cell type. To address this knowledge gap and overcome limitations of replication-defective viruses, we generated a recombinant murine gammaherpesvirus 68 (MHV68) in which ORF50, the gene that encodes the essential immediate-early replication and transcription activator protein (RTA), was flanked by loxP sites to enable conditional ablation of lytic replication by ORF50 deletion in cells that express Cre recombinase. Following infection of mice that encode Cre in B cells with this virus, splenomegaly and viral reactivation from splenocytes were significantly reduced; however, the number of latently infected splenocytes was equivalent to WT MHV68. Despite ORF50 deletion, MHV68 latency was maintained over time in spleens of mice at levels approximating WT, reactivation-competent MHV68. Treatment of infected mice with lipopolysaccharide (LPS), which promotes B cell activation and MHV68 reactivation ex vivo, yielded equivalent increases in the number of latently infected cells for both ORF50-deleted and WT MHV68, even when mice were simultaneously treated with the antiviral drug cidofovir to prevent reactivation. Together, these data demonstrate that productive viral replication in B cells is not required for MHV68 latency establishment and support the hypothesis that B cell proliferation facilitates latency maintenance in vivo in the absence of reactivation. IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system and place infected hosts at risk for developing lymphomas and other diseases. It is hypothesized that gammaherpesviruses must initiate acute infection in these cells to establish and maintain long-term infection, but this has not been directly tested. We report here the use of a viral genetic system that allows for cell-type-specific deletion of a viral gene that is essential for replication and reactivation. We employ this system in an in vivo model to reveal that viral replication is not required to initiate or maintain infection within B cells.
Collapse
|
8
|
Vrba SM, Hickman HD. Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity. Immunol Rev 2022; 306:200-217. [PMID: 34796538 PMCID: PMC9073719 DOI: 10.1111/imr.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
The past decade has seen near continual global public health crises caused by emerging viral infections. Extraordinary increases in our knowledge of the mechanisms underlying successful antiviral immune responses in animal models and during human infection have accompanied these viral outbreaks. Keeping pace with the rapidly advancing field of viral immunology, innovations in microscopy have afforded a previously unseen view of viral infection occurring in real-time in living animals. Here, we review the contribution of intravital imaging to our understanding of cell-mediated immune responses to viral infections, with a particular focus on studies that visualize the antiviral effector cells responding to infection as well as virus-infected cells. We discuss methods to visualize viral infection in vivo using intravital microscopy (IVM) and significant findings arising through the application of IVM to viral infection. Collectively, these works underscore the importance of developing a comprehensive spatial understanding of the relationships between immune effectors and virus-infected cells and how this has enabled unique discoveries about virus/host interactions and antiviral effector cell biology.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Perez-Zsolt D, Raïch-Regué D, Muñoz-Basagoiti J, Aguilar-Gurrieri C, Clotet B, Blanco J, Izquierdo-Useros N. HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens 2021; 11:39. [PMID: 35055987 PMCID: PMC8778849 DOI: 10.3390/pathogens11010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity. This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes has enlightened how this receptor can bind to several enveloped viruses. The outcome of these interactions can either mount effective immune responses, boost the productive infection of DCs and favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Carmen Aguilar-Gurrieri
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| |
Collapse
|
10
|
Minutolo A, Petrone V, Fanelli M, Iannetta M, Giudice M, Ait Belkacem I, Zordan M, Vitale P, Rasi G, Sinibaldi-Vallebona P, Sarmati L, Andreoni M, Malergue F, Balestrieri E, Grelli S, Matteucci C. High CD169 Monocyte/Lymphocyte Ratio Reflects Immunophenotype Disruption and Oxygen Need in COVID-19 Patients. Pathogens 2021; 10:1639. [PMID: 34959594 PMCID: PMC8715749 DOI: 10.3390/pathogens10121639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sialoadhesin (CD169) has been found to be overexpressed in the blood of COVID-19 patients and identified as a biomarker in early disease. We analyzed CD169 in the blood cells of COVID-19 patients to assess its role as a predictive marker of disease progression and clinical outcomes. METHODS The ratio of the median fluorescence intensity of CD169 between monocytes and lymphocytes (CD169 RMFI) was analyzed by flow cytometry in blood samples of COVID-19 patients (COV) and healthy donors (HDs) and correlated with immunophenotyping, inflammatory markers, cytokine mRNA expression, pulmonary involvement, and disease progression. RESULTS CD169 RMFI was high in COV but not in HDs, and it correlated with CD8 T-cell senescence and exhaustion markers, as well as with B-cell maturation and differentiation in COV. CD169 RMFI correlated with blood cytokine mRNA levels, inflammatory markers, and pneumonia severity in patients who were untreated at sampling, and was associated with the respiratory outcome throughout hospitalization. Finally, we also report the first evidence of the specific ability of the spike protein of SARS-CoV-2 to trigger CD169 RMFI in a dose-dependent manner in parallel with IL-6 and IL-10 gene transcription in HD PBMCs stimulated in vitro. CONCLUSION CD169 is induced by the spike protein and should be considered as an early biomarker for evaluating immune dysfunction and respiratory outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Ines Ait Belkacem
- CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, 13009 Marseille, France;
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, 13009 Marseille, France;
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Fabrice Malergue
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, 13009 Marseille, France;
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
- Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| |
Collapse
|
11
|
Liu Y, Xia Y, Qiu CH. Functions of CD169 positive macrophages in human diseases (Review). Biomed Rep 2020; 14:26. [PMID: 33408860 PMCID: PMC7780751 DOI: 10.3892/br.2020.1402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
CD169+ macrophages are a unique type of macrophage subset that differ from M1 and M2 macrophages. CD169+ macrophages are present in multiple tissues and organs throughout the body and are primarily expressed in secondary lymphoid organs. These cells are primarily divided across three locations in secondary lymphoid organs: The metallophilic marginal zone of the spleen, the subcapsular sinus and the medulla of the lymph nodes. Due to their unique location distribution in vivo and the presence of the CD169 molecule on their surfaces, CD169+ macrophages are reported to serve important roles in several processes, such as phagocytosis, antigen presentation, immune tolerance, viral infection and inflammatory responses. At the same time, it has been reported that CD169+ macrophages may also serve an important role in anti-tumour immunity. The present review focuses on the research progress surrounding the function of CD169+ macrophages in a variety of diseases, such as viral infection, autoimmune diseases and tumours.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chun-Hong Qiu
- Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. The lymph node at a glance - how spatial organization optimizes the immune response. J Cell Sci 2020; 133:133/5/jcs241828. [PMID: 32144196 DOI: 10.1242/jcs.241828] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs). Beyond housing these cell types in one location, LNs are highly organized structures consisting of pre-positioned cells within well-defined microanatomical niches. In this Cell Science at a Glance article and accompanying poster, we outline the key cellular populations and components of the LN microenvironment that are present at steady state and chronicle the dynamic changes in these elements following an immune response. This review highlights the LN as a staging ground for both innate and adaptive immune responses, while providing an elegant example of how structure informs function.
Collapse
Affiliation(s)
- Spencer M Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Meng Lou
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Li Yao
- Science Education Department, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Parekh NJ, Krouse TE, Reider IE, Hobbs RP, Ward BM, Norbury CC. Type I interferon-dependent CCL4 is induced by a cGAS/STING pathway that bypasses viral inhibition and protects infected tissue, independent of viral burden. PLoS Pathog 2019; 15:e1007778. [PMID: 31603920 PMCID: PMC6808495 DOI: 10.1371/journal.ppat.1007778] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/23/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (T1-IFN) are critical in the innate immune response, acting upon infected and uninfected cells to initiate an antiviral state by expressing genes that inhibit multiple stages of the lifecycle of many viruses. T1-IFN triggers the production of Interferon-Stimulated Genes (ISGs), activating an antiviral program that reduces virus replication. The importance of the T1-IFN response is highlighted by the evolution of viral evasion strategies to inhibit the production or action of T1-IFN in virus-infected cells. T1-IFN is produced via activation of pathogen sensors within infected cells, a process that is targeted by virus-encoded immunomodulatory molecules. This is probably best exemplified by the prototypic poxvirus, Vaccinia virus (VACV), which uses at least 6 different mechanisms to completely block the production of T1-IFN within infected cells in vitro. Yet, mice lacking aspects of T1-IFN signaling are often more susceptible to infection with many viruses, including VACV, than wild-type mice. How can these opposing findings be rationalized? The cytosolic DNA sensor cGAS has been implicated in immunity to VACV, but has yet to be linked to the production of T1-IFN in response to VACV infection. Indeed, there are two VACV-encoded proteins that effectively prevent cGAS-mediated activation of T1-IFN. We find that the majority of VACV-infected cells in vivo do not produce T1-IFN, but that a small subset of VACV-infected cells in vivo utilize cGAS to sense VACV and produce T1-IFN to protect infected mice. The protective effect of T1-IFN is not mediated via ISG-mediated control of virus replication. Rather, T1-IFN drives increased expression of CCL4, which recruits inflammatory monocytes that constrain the VACV lesion in a virus replication-independent manner by limiting spread within the tissue. Our findings have broad implications in our understanding of pathogen detection and viral evasion in vivo, and highlight a novel immune strategy to protect infected tissue.
Collapse
Affiliation(s)
- Nikhil J. Parekh
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Tracy E. Krouse
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Irene E. Reider
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ryan P. Hobbs
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
14
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
15
|
Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD, Barrett BS, Santiago ML, Bjorkman PJ, Kassiotis G, Sewald X, Mothes W. A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus. Cell Host Microbe 2019; 25:87-100.e10. [PMID: 30595553 PMCID: PMC6331384 DOI: 10.1016/j.chom.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/08/2018] [Accepted: 11/05/2018] [Indexed: 01/23/2023]
Abstract
Lymph- and blood-borne retroviruses exploit CD169/Siglec-1-mediated capture by subcapsular sinus and marginal zone metallophilic macrophages for trans-infection of permissive lymphocytes. However, the impact of CD169-mediated virus capture on retrovirus dissemination and pathogenesis in vivo is unknown. In a murine model of the splenomegaly-inducing retrovirus Friend virus complex (FVC) infection, we find that while CD169 promoted draining lymph node infection, it limited systemic spread to the spleen. At the spleen, CD169-expressing macrophages captured incoming blood-borne retroviruses and limited their spread to the erythroblasts in the red pulp where FVC manifests its pathogenesis. CD169-mediated retroviral capture activated conventional dendritic cells 1 (cDC1s) and promoted cytotoxic CD8+ T cell responses, resulting in efficient clearing of FVC-infected cells. Accordingly, CD169 blockade led to higher viral loads and accelerated death in susceptible mouse strains. Thus, CD169 plays a protective role during FVC pathogenesis by reducing viral dissemination to erythroblasts and eliciting an effective cytotoxic T lymphocyte response via cDC1s.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark S Ladinsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John D Ventura
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brad S Barrett
- Division of Infectious Diseases, University of Colorado Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Pamela J Bjorkman
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George Kassiotis
- Retrovirus Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xaver Sewald
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
16
|
Moran I, Grootveld AK, Nguyen A, Phan TG. Subcapsular Sinus Macrophages: The Seat of Innate and Adaptive Memory in Murine Lymph Nodes. Trends Immunol 2018; 40:35-48. [PMID: 30502023 DOI: 10.1016/j.it.2018.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023]
Abstract
Subcapsular sinus (SCS) macrophages are strategically positioned at the lymph-tissue interface in the lymph node to trap and present antigen to B cells. Recent murine data has shown that SCS macrophages also prevent the systemic spread of lymph-borne pathogens and are capable of activating a diverse range of innate effector and adaptive memory cells, including follicular memory T cells and memory B cells (Bmems), that are either pre-positioned or rapidly recruited to the subcapsular niche following infection and inflammation. Furthermore, Bmems are rapidly reactivated to differentiate into plasma cells in subcapsular proliferative foci (SPF). Thus, understanding how SCS macrophages coordinate both innate and adaptive memory responses in the subcapsular niche can provide new opportunities to bolster immunity against pathogens and cancer.
Collapse
Affiliation(s)
- Imogen Moran
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Abigail K Grootveld
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Biology and Biochemistry, Faculty of Science, University of Bath, Bath, UK
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
17
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Salinas E, Gupta A, Sifford JM, Oldenburg DG, White DW, Forrest JC. Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection. PLoS Pathog 2018; 14:e1006865. [PMID: 29364981 PMCID: PMC5798852 DOI: 10.1371/journal.ppat.1006865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/05/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis. Gammaherpesviruses (GHVs), including the human pathogens Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, establish lifelong infections that can lead to cancer. Defining the functions of viral gene products in acute replication and chronic infection is important for understanding how these viruses cause disease. Infection of mice with the related GHV, murine gammaherpesvirus 68 (MHV68), provides a tractable small animal model for defining how viral gene products function in chronic infection and understanding how host factors limit disease. Here we describe the development of a new viral genetic platform that enables the targeted deletion of specific genes from the viral genome in discrete host cells or at distinct times during infection. We utilize this system to better define requirements for the conserved latency-associated nuclear antigen in MHV68 lytic replication and latency in mice. This work highlights the utility of this MHV68 genetic platform for defining mechanisms of GHV infection and disease.
Collapse
Affiliation(s)
- Eduardo Salinas
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arundhati Gupta
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - J. Craig Forrest
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Type I Interferon Signaling to Dendritic Cells Limits Murid Herpesvirus 4 Spread from the Olfactory Epithelium. J Virol 2017; 91:JVI.00951-17. [PMID: 28904198 DOI: 10.1128/jvi.00951-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.
Collapse
|
21
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
22
|
Davies ML, Parekh NJ, Kaminsky LW, Soni C, Reider IE, Krouse TE, Fischer MA, van Rooijen N, Rahman ZSM, Norbury CC. A systemic macrophage response is required to contain a peripheral poxvirus infection. PLoS Pathog 2017; 13:e1006435. [PMID: 28614386 PMCID: PMC5484545 DOI: 10.1371/journal.ppat.1006435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/26/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
The goal of the innate immune system is to reduce pathogen spread prior to the initiation of an effective adaptive immune response. Following an infection at a peripheral site, virus typically drains through the lymph to the lymph node prior to entering the blood stream and being systemically disseminated. Therefore, there are three distinct spatial checkpoints at which intervention to prevent systemic spread of virus can occur, namely: 1) the site of infection, 2) the draining lymph node via filtration of lymph or 3) the systemic level via organs that filter the blood. We have previously shown that systemic depletion of phagocytic cells allows viral spread after dermal infection with Vaccinia virus (VACV), which infects naturally through the skin. Here we use multiple depletion methodologies to define both the spatial checkpoint and the identity of the cells that prevent systemic spread of VACV. Subcapsular sinus macrophages of the draining lymph node have been implicated as critical effectors in clearance of lymph borne viruses following peripheral infection. We find that monocyte populations recruited to the site of VACV infection play a critical role in control of local pathogenesis and tissue damage, but do not prevent dissemination of virus. Following infection with virulent VACV, the subcapsular sinus macrophages within the draining lymph node become infected, but are not exclusively required to prevent systemic spread. Rather, small doses of VACV enter the bloodstream and the function of systemic macrophages, but not dendritic cells, is required to prevent further spread. The results illustrate that a systemic innate response to a peripheral virus infection may be required to prevent widespread infection and pathology following infection with virulent viruses, such as poxviruses.
Collapse
Affiliation(s)
- Michael L. Davies
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Nikhil J. Parekh
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Lauren W. Kaminsky
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Chetna Soni
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Irene E. Reider
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Tracy E. Krouse
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Matthew A. Fischer
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, BT Amsterdam, The Netherlands
| | - Ziaur S. M. Rahman
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Farrell HE, Bruce K, Lawler C, Cardin RD, Davis-Poynter NJ, Stevenson PG. Type 1 Interferons and NK Cells Limit Murine Cytomegalovirus Escape from the Lymph Node Subcapsular Sinus. PLoS Pathog 2016; 12:e1006069. [PMID: 27926941 PMCID: PMC5142805 DOI: 10.1371/journal.ppat.1006069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Cytomegaloviruses (CMVs) establish chronic, systemic infections. Peripheral infection spreads via lymph nodes, which are also a focus of host defence. Thus, this is a point at which systemic infection spread might be restricted. Subcapsular sinus macrophages (SSM) captured murine CMV (MCMV) from the afferent lymph and poorly supported its replication. Blocking the type I interferon (IFN-I) receptor (IFNAR) increased MCMV infection of SSM and of the fibroblastic reticular cells (FRC) lining the subcapsular sinus, and accelerated viral spread to the spleen. Little splenic virus derived from SSM, arguing that they mainly induce an anti-viral state in the otherwise susceptible FRC. NK cells also limited infection, killing infected FRC and causing tissue damage. They acted independently of IFN-I, as IFNAR blockade increased NK cell recruitment, and NK cell depletion increased infection in IFNAR-blocked mice. Thus SSM restricted MCMV infection primarily though IFN-I, with NK cells providing a second line of defence. The capacity of innate immunity to restrict MCMV escape from the subcapsular sinus suggested that enhancing its recruitment might improve infection control. Cytomegaloviruses (CMVs) infect most people and are a common cause of fetal damage. We lack an effective vaccine. Our knowledge of human CMV is largely limited to chronic infection, which is hard to treat. Vaccination must target early infection. Related animal viruses therefore provide a vital source of information. Lymph nodes are a bottleneck in murine CMV spread from local to systemic infection. We show that viral passage through lymph nodes is restricted by interferons and NK cells. These defences alone cannot contain infection, but boosting their recruitment by vaccination has the potential to keep infection locally contained.
Collapse
Affiliation(s)
- Helen E. Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
- * E-mail:
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Rhonda D. Cardin
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | | | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Fontana MF, de Melo GL, Anidi C, Hamburger R, Kim CY, Lee SY, Pham J, Kim CC. Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection. PLoS Pathog 2016; 12:e1006046. [PMID: 27923070 PMCID: PMC5140069 DOI: 10.1371/journal.ppat.1006046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Dynamic regulation of leukocyte population size and activation state is crucial for an effective immune response. In malaria, Plasmodium parasites elicit robust host expansion of macrophages and monocytes, but the underlying mechanisms remain unclear. Here we show that myeloid expansion during P. chabaudi infection is dependent upon both CD4+ T cells and the cytokine Macrophage Colony Stimulating Factor (MCSF). Single-cell RNA-Seq analysis on antigen-experienced T cells revealed robust expression of Csf1, the gene encoding MCSF, in a sub-population of CD4+ T cells with distinct transcriptional and surface phenotypes. Selective deletion of Csf1 in CD4+ cells during P. chabaudi infection diminished proliferation and activation of certain myeloid subsets, most notably lymph node-resident CD169+ macrophages, and resulted in increased parasite burden and impaired recovery of infected mice. Depletion of CD169+ macrophages during infection also led to increased parasitemia and significant host mortality, confirming a previously unappreciated role for these cells in control of P. chabaudi. This work establishes the CD4+ T cell as a physiologically relevant source of MCSF in vivo; probes the complexity of the CD4+ T cell response during type 1 infection; and delineates a novel mechanism by which T helper cells regulate myeloid cells to limit growth of a blood-borne intracellular pathogen.
Collapse
Affiliation(s)
- Mary F. Fontana
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (MFF); (CCK)
| | - Gabrielly L. de Melo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Chioma Anidi
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Rebecca Hamburger
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Chris Y. Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - So Youn Lee
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jennifer Pham
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Charles C. Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (MFF); (CCK)
| |
Collapse
|
25
|
Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol 2016; 90:9046-57. [PMID: 27466430 DOI: 10.1128/jvi.01108-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection.
Collapse
|
26
|
Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol 2016; 90:8661-72. [PMID: 27440876 DOI: 10.1128/jvi.00881-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control.
Collapse
|
27
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
28
|
Viruses exploit the tissue physiology of the host to spread in vivo. Curr Opin Cell Biol 2016; 41:81-90. [PMID: 27149407 DOI: 10.1016/j.ceb.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Viruses are pathogens that strictly depend on their host for propagation. Over years of co-evolution viruses have become experts in exploiting the host cell biology and physiology to ensure efficient replication and spread. Here, we will first summarize the concepts that have emerged from in vitro cell culture studies to understand virus spread. We will then review the results from studies in living animals that reveal how viruses exploit the natural flow of body fluids, specific tissue architecture, and patterns of cell circulation and migration to spread within the host. Understanding tissue physiology will be critical for the design of antiviral strategies that prevent virus dissemination.
Collapse
|