1
|
Dobson DA, Fish RJ, de Vries PS, Morrison AC, Neerman-Arbez M, Wolberg AS. Regulation of fibrinogen synthesis. Thromb Res 2024; 242:109134. [PMID: 39216273 PMCID: PMC11381137 DOI: 10.1016/j.thromres.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The plasma protein fibrinogen is encoded by 3 structural genes (FGA, FGB, and FGG) that are transcribed to mRNA, spliced, and translated to 3 polypeptide chains (Aα, Bβ, and γ, respectively). These chains are targeted for secretion, decorated with post-translational modifications, and assembled into a hexameric "dimer of trimers" (AαBβγ)2. Fully assembled fibrinogen is secreted into the blood as a 340 kDa glycoprotein. Fibrinogen is one of the most prevalent coagulation proteins in blood, and its expression is induced by inflammatory cytokines, wherein circulating fibrinogen levels may increase up to 3-fold during acute inflammatory events. Abnormal levels of circulating fibrinogen are associated with bleeding and thrombotic disorders, as well as several inflammatory diseases. Notably, therapeutic strategies to modulate fibrinogen levels have shown promise in experimental models of disease. Herein, we review pathways mediating fibrinogen synthesis, from gene expression to secretion. Knowledge of these mechanisms may lead to the identification of biomarkers and new therapeutic targets to modulate fibrinogen in health and disease.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, NC, USA
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Martino C, Di Luca A, Bennato F, Ianni A, Passamonti F, Rampacci E, Henry M, Meleady P, Martino G. Label-Free Quantitative Analysis of Pig Liver Proteome after Hepatitis E Virus Infection. Viruses 2024; 16:408. [PMID: 38543773 PMCID: PMC10976091 DOI: 10.3390/v16030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis E represents an emerging zoonotic disease caused by the Hepatitis E virus (HEV), for which the main route of transmission is foodborne. In particular, infection in humans has been associated with the consumption of contaminated undercooked meat of pig origin. The aim of this study was to apply comparative proteomics to determine if porcine liver protein profiles could be used to distinguish between pigs seropositive and seronegative for HEV. Preliminarily, an ELISA was used to evaluate the presence of anti-HEV antibodies in the blood serum of 136 animals sent to slaughter. Among the analyzed samples, a seroprevalence of 72.8% was estimated, and it was also possible to identify 10 animals, 5 positive and 5 negative, coming from the same farm. This condition created the basis for the quantitative proteomics comparison between homogeneous animals, in which only the contact with HEV should represent the discriminating factor. The analysis of the proteome in all samples of liver exudate led to the identification of 554 proteins differentially expressed between the two experimental groups, with 293 proteins having greater abundance in positive samples and 261 more represented in negative exudates. The pathway enrichment analysis allowed us to highlight the effect of the interaction between HEV and the host biological system in inducing the potential enrichment of 69 pathways. Among these, carbon metabolism stands out with the involvement of 41 proteins, which were subjected to interactomic analysis. This approach allowed us to focus our attention on three enzymes involved in glycolysis: glucose-6-phosphate isomerase (GPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and fructose-bisphosphate aldolase A (ALDOA). It therefore appears that infection with HEV induced a strengthening of the process, which involves the breakdown of glucose to obtain energy and carbon residues useful for the virus's survival. In conclusion, the label-free LC-MS/MS approach showed effectiveness in highlighting the main differences induced on the porcine liver proteome by the interaction with HEV, providing crucial information in identifying a viral signature on the host metabolism.
Collapse
Affiliation(s)
- Camillo Martino
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (C.M.); (F.P.); (E.R.)
| | - Alessio Di Luca
- Department of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (A.D.L.); (F.B.); (G.M.)
| | - Francesca Bennato
- Department of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (A.D.L.); (F.B.); (G.M.)
| | - Andrea Ianni
- Department of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (A.D.L.); (F.B.); (G.M.)
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (C.M.); (F.P.); (E.R.)
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (C.M.); (F.P.); (E.R.)
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (M.H.); (P.M.)
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (M.H.); (P.M.)
| | - Giuseppe Martino
- Department of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (A.D.L.); (F.B.); (G.M.)
| |
Collapse
|
3
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:15-32. [PMID: 37223856 DOI: 10.1007/978-981-99-1304-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' non-coding region, three open reading frames (ORFs), and a 3' non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.
Collapse
Affiliation(s)
- Yan Zhou
- RegCMC, Great Regulatory Affairs, Sanofi (China) Investment Co., Ltd, Beijing, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yabin Tian
- Division II of In Vitro Diagnostics for Infectious Diseases, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
5
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|
6
|
The Viral ORF3 Protein Is Required for Hepatitis E Virus Apical Release and Efficient Growth in Polarized Hepatocytes and Humanized Mice. J Virol 2021; 95:e0058521. [PMID: 34523963 DOI: 10.1128/jvi.00585-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV), an enterically transmitted RNA virus, is a major cause of acute hepatitis worldwide. Additionally, HEV genotype 3 (gt3) can frequently persist in immunocompromised individuals with an increased risk for developing severe liver disease. Currently, no HEV-specific treatment is available. The viral open reading frame 3 (ORF3) protein facilitates HEV egress in vitro and is essential for establishing productive infection in macaques. Thus, ORF3, which is unique to HEV, has the potential to be explored as a target for antiviral therapy. However, significant gaps exist in our understanding of the critical functions of ORF3 in HEV infection in vivo. Here, we utilized a polarized hepatocyte culture model and a human liver chimeric mouse model to dissect the roles of ORF3 in gt3 HEV release and persistent infection. We show that ORF3's absence substantially decreased HEV replication and virion release from the apical surface but not the basolateral surface of polarized hepatocytes. While wild-type HEV established a persistent infection in humanized mice, mutant HEV lacking ORF3 (ORF3null) failed to sustain the infection despite transient replication in the liver and was ultimately cleared. Strikingly, mice inoculated with the ORF3null virus displayed no fecal shedding throughout the 6-week experiment. Overall, our results demonstrate that ORF3 is required for HEV fecal shedding and persistent infection, providing a rationale for targeting ORF3 as a treatment strategy for HEV infection. IMPORTANCE HEV infections are associated with significant morbidity and mortality. HEV gt3 additionally can cause persistent infection, which can rapidly progress to liver cirrhosis. Currently, no HEV-specific treatments are available. The poorly understood HEV life cycle hampers the development of antivirals for HEV. Here, we investigated the role of the viral ORF3 protein in HEV infection in polarized hepatocyte cultures and human liver chimeric mice. We found that two major aspects of the HEV life cycle require ORF3: fecal virus shedding and persistent infection. These results provide a rationale for targeting ORF3 to treat HEV infection.
Collapse
|
7
|
Hepatitis E Virus Assembly and Release. Viruses 2019; 11:v11060539. [PMID: 31181848 PMCID: PMC6631228 DOI: 10.3390/v11060539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E is an underestimated threat to public health, caused by the hepatitis E virus (HEV). HEV is the most common cause of acute viral hepatitis in the world, with no available direct-acting antiviral treatment. According to a recent WHO report, 20 million people become infected with HEV annually, resulting in 44,000 deaths. However, due to the scarcity of efficient in vitro cell culture systems for HEV, our knowledge of the life cycle of HEV is incomplete. Recently, significant progress has been made towards gaining a more comprehensive view of the HEV life cycle, as several in vitro culturing systems have been developed in recent years. Here, we review current knowledge and recent advances with regard to the HEV life cycle, with a particular focus on the assembly and release of viral particles. We also discuss the knowledge gaps in HEV assembly and release. Meanwhile, we highlight experimental platforms that could potentially be utilized to fill these gaps. Lastly, we offer perspectives on the future of research into HEV virology and its interaction with host cells.
Collapse
|
8
|
Activities of Thrombin and Factor Xa Are Essential for Replication of Hepatitis E Virus and Are Possibly Implicated in ORF1 Polyprotein Processing. J Virol 2018; 92:JVI.01853-17. [PMID: 29321328 DOI: 10.1128/jvi.01853-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 01/11/2023] Open
Abstract
Hepatitis E virus (HEV) is a clinically important positive-sense RNA virus. The ORF1 of HEV encodes a nonstructural polyprotein of 1,693 amino acids. It is not clear whether the ORF1 polyprotein (pORF1) is processed into distinct enzymatic domains. Many researchers have attempted to understand the mechanisms of pORF1 processing. However, these studies gave various results and could never convincingly establish the mechanism of pORF1 processing. In this study, we demonstrated the possible role of thrombin and factor Xa in pORF1 processing. We observed that the HEV pORF1 polyprotein bears conserved cleavage sites of thrombin and factor Xa. Using a reverse genetics approach, we demonstrated that an HEV replicon having mutations in the cleavage sites of either thrombin or factor Xa could not replicate efficiently in cell culture. Further, we demonstrated in vitro processing when we incubated recombinant pORF1 fragments with thrombin, and we observed the processing of pORF1 polyprotein. The treatment of a liver cell line with a serine protease inhibitor as well as small interfering RNA (siRNA) knockdown of thrombin and factor Xa resulted in significant reduction in the replication of HEV. Thrombin and factor Xa have been well studied for their roles in blood clotting. Both of these proteins are believed to be present in the active form in the blood plasma. Interestingly, in this report, we demonstrated the presence of biologically active thrombin and factor Xa in a liver cell line. The results suggest that factor Xa and thrombin are essential for the replication of HEV and may be involved in pORF1 polyprotein processing of HEV.IMPORTANCE Hepatitis E virus (HEV) causes a liver disorder called hepatitis in humans, which is mostly an acute and self-limiting infection in adults. A high mortality rate of about 30% is observed in HEV-infected pregnant women in developing countries. There is no convincing opinion about HEV ORF1 polyprotein processing owing to the variability of study results obtained so far. HEV pORF1 has cleavage sites for two host cellular serine proteases, thrombin and factor Xa, that are conserved among HEV genotypes. For the first time, this study demonstrated that thrombin and factor Xa cleavage sites on HEV pORF1 are obligatory for HEV replication. Intracellular biochemical activities of the said serine proteases are also essential for efficient HEV replication in cell culture and must be involved in pORF1 processing. This study sheds light on the presence and roles of clotting factors with respect to virus replication in the cells.
Collapse
|
9
|
Abstract
At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million symptomatic cases and ∼60,000 fatalities. Hepatitis E is generally self-limiting, with a case fatality rate of 0.5-3% in young adults. However, it can cause up to 30% mortality in pregnant women in the third trimester and can become chronic in immunocompromised individuals, such as those receiving organ transplants or chemotherapy and individuals with HIV infection. HEV is transmitted primarily via the faecal-oral route and was previously thought to be a public health concern only in developing countries. It is now also being frequently reported in industrialized countries, where it is transmitted zoonotically or through organ transplantation or blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. Additionally, no effective, non-teratogenic and specific treatments against HEV infections are currently available. Although progress has been made in characterizing HEV biology, the scarcity of adequate experimental platforms has hampered further research. In this Review, we focus on providing an update on the HEV life cycle. We will further discuss existing cell culture and animal models and highlight platforms that have proven to be useful and/or are emerging for studying other hepatotropic (viral) pathogens.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
10
|
Pérez-Gracia MT, Suay-García B, Mateos-Lindemann ML. Hepatitis E and pregnancy: current state. Rev Med Virol 2017; 27:e1929. [PMID: 28318080 DOI: 10.1002/rmv.1929] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/17/2022]
Abstract
Hepatitis E virus (HEV) is responsible for more than 50% of acute viral hepatitis cases in endemic countries. Approximately 2 billion individuals live in hepatitis E-endemic areas and, therefore, are at risk of infection. According to World Health Organization, HEV causes about 20.1 million infections and 70 000 deaths every year. In developing countries with poor sanitation, this disease is transmitted through contaminated water and is associated with large outbreaks, affecting hundreds or thousands of people. In developed countries, autochthonous cases of HEV have been increasingly recognized in the past several years. Hepatitis E virus typically causes an acute, self-limiting illness similar to other acute viral hepatitis, such as hepatitis A or B, with about 0.2% to 1% mortality rate in the general population. However, the course of hepatitis E in pregnancy is different than the mild self-constraining infection described in other populations. During pregnancy, HEV infection can take a fulminant course, resulting in fulminant hepatic failure, membrane rupture, spontaneous abortions, and stillbirths. Studies from various developing countries have shown a high incidence of HEV infection in pregnancy with a significant proportion of pregnant women progressing to fulminant hepatitis with a fatality rate of up to 30%. The present review will highlight new aspects of the HEV infection and pregnancy.
Collapse
Affiliation(s)
- María Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Moncada, Spain
| | - Beatriz Suay-García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Moncada, Spain
| | | |
Collapse
|
11
|
Takahashi M, Kobayashi T, Tanggis, Jirintai S, Mulyanto, Nagashima S, Nishizawa T, Kunita S, Okamoto H. Production of monoclonal antibodies against the ORF3 protein of rat hepatitis E virus (HEV) and demonstration of the incorporation of the ORF3 protein into enveloped rat HEV particles. Arch Virol 2016; 161:3391-3404. [DOI: 10.1007/s00705-016-3047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
|
12
|
Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7:1419. [PMID: 27656178 PMCID: PMC5013053 DOI: 10.3389/fmicb.2016.01419] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College ParkMD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park MD, USA
| |
Collapse
|
13
|
Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins. Sci Rep 2016; 6:25133. [PMID: 27113483 PMCID: PMC4844956 DOI: 10.1038/srep25133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/12/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV.
Collapse
|
14
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 948:17-38. [PMID: 27738977 DOI: 10.1007/978-94-024-0942-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in cultured cells and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome but is also involved in many important physiological activities, such as virus assembly, infection, and host interaction. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity.
Collapse
Affiliation(s)
- Yan Zhou
- Division of Drug and Cosmetics Inspection, Center for Food and Drug Inspection, China Food and Drug Administration, No.11 Fa Hua Nan Li, Dongcheng District, Beijing, 100061, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Yabin Tian
- Division of Diagnosis, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
15
|
Kenney SP, Wentworth JL, Heffron CL, Meng XJ. Replacement of the hepatitis E virus ORF3 protein PxxP motif with heterologous late domain motifs affects virus release via interaction with TSG101. Virology 2015; 486:198-208. [PMID: 26457367 DOI: 10.1016/j.virol.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The ORF3 protein of hepatitis E virus (HEV) contains a "PSAP" amino acid late domain motif, which allows for interaction with the endosomal sorting complexes required for transport (ESCRT) pathway aiding virion release. Late domain motifs are interchangeable with other viral late domain motifs in several enveloped viruses, however, it remains unknown whether HEV shares this functional interchangeability and what implications this might have on viral replication. In this study, by substituting heterologous late domain motifs (PPPY, YPDL, and PSAA) for the HEV ORF3 late domain (PSAP), we demonstrated that deviation from the PSAP motif reduces virus release as measured by viral RNA in culture media. Virus release could not be restored by insertion of a heterologous late domain motif or by supplying wild-type ORF3 in trans, suggesting that the HEV PSAP motif is required for viral exit which cannot be bypassed by the use of alternative heterologous late domains.
Collapse
Affiliation(s)
- Scott P Kenney
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | | | - Connie L Heffron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis in the world with an estimated 20 million infections per year. Although the mortality rate is < 1% among the general population, pregnant women can have a fatality rate of up to 30%. Additionally, chronic hepatitis E has increasingly become a significant clinical problem in immunocompromised individuals. Effective antivirals against HEV are needed. AREAS COVERED This review article addresses the current state of knowledge of HEV infections with regard to animal and cell culture model systems that are important for antiviral discovery and testing, our current understanding of the molecular mechanisms of virus replication, our understanding of how each viral protein functions, and areas that can potentially be exploited as therapeutic targets. EXPERT OPINION Lack of an efficient cell culture system for HEV propagation, the limited knowledge of HEV lifecycle, and the inherent self-limiting infection within the normal populace make the development of new therapeutic agents against HEV challenging. There are many promising therapeutic targets, and the tools for identifying and testing potential antivirals are rapidly evolving. The development of effective therapeutics against HEV in immunocompromised and pregnant patient populations is warranted.
Collapse
Affiliation(s)
- Scott P Kenney
- Virginia Polytechnic Institute and State University (Virginia Tech), College of Veterinary Medicine, Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology , CRC-Integrated Life Sciences Building (0913), 1981 Kraft Drive, Blacksburg, VA 24061-0913 , USA +1 540 231 6912 ; +1 540 231 3414 ;
| | | |
Collapse
|
17
|
Zhou Y, Geng Y, Yang J, Zhao C, Harrison TJ, Wang Y. Hepatitis E virus open reading frame 3 protein interacts with porcine liver-specific plasminogen and α2-antiplasmin. J Med Virol 2013; 86:487-95. [DOI: 10.1002/jmv.23800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Yan Zhou
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Yansheng Geng
- Health Science Center; Hebei University; Baoding China
| | - Jun Yang
- Department of Surgery; St Jude Children's Research Hospital; Memphis Tennessee
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Tim J. Harrison
- Division of Medicine; University College London Medical School; London UK
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| |
Collapse
|
18
|
Cheng Y, Du L, Shi Q, Jiao H, Zhang X, Hao Y, Rong H, Zhang J, Jia X, Guo S, Kuang W, Zhang H, Chen C, Wang F. Identification of miR-221 and -222 as important regulators in genotype IV swine hepatitis E virus ORF3-expressing HEK 293 cells. Virus Genes 2013; 47:49-55. [PMID: 23579640 DOI: 10.1007/s11262-013-0912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Hepatitis E virus (HEV) has emerged as an important cause of epidemic and sporadic acute viral hepatitis worldwide, which is a major public health challenge. A better understanding of the interaction between the virus and the host cell would be very helpful for its therapy. Swine HEV (SHEV) open reading frame 3 (ORF3) is a regulatory protein that alters the activity of selected transcription factors and cytoplasmic signaling pathways. MicroRNAs (miRNAs) are potent post-transcriptional regulators of protein-coding genes and represent an interesting lead to study SHEV infection and to identify new therapeutic targets. To explore how SHEV ORF3 affects miRNAs in host cells, we used miRNA array analysis to compare the expression patterns of miRNAs in stable cell lines that expressed or did not express SHEV ORF3. We found a significant down-regulation of miR-221 and -222 in ORF3 expressing human embryonic kidney 293 cell line. Among the 116 candidate targets genes of miR-221 and -222 that we detected in silico, we demonstrated that the expression of the cyclin-dependent kinase inhibitor 1B, also named p27(kip1), was directly regulated by these miRNAs. We hypothesize that SHEV ORF3-induced miR-221/222 downregulation enhances p27(kip1) expression in HEK293 cells. This provides new avenues for future exploration of the precise roles of miRNAs in SHEV infection.
Collapse
Affiliation(s)
- Ying Cheng
- College of Agriculture, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Haidian Island, Haikou 570228, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Geng Y, Yang J, Huang W, Harrison TJ, Zhou Y, Wen Z, Wang Y. Virus host protein interaction network analysis reveals that the HEV ORF3 protein may interrupt the blood coagulation process. PLoS One 2013; 8:e56320. [PMID: 23418552 PMCID: PMC3571956 DOI: 10.1371/journal.pone.0056320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/08/2013] [Indexed: 01/14/2023] Open
Abstract
Hepatitis E virus (HEV) is endemic worldwide and a major cause of acute liver disease in developing countries. However, the molecular mechanisms of liver pathology and clinical disease are not well understood for HEV infection. Open reading frame 3 (ORF3) of HEV encodes a small phosphoprotein, which is assumed to be involved in liver pathology and clinical disease. In this study, the interactions between the HEV ORF3 protein and human proteins were investigated using a stringent, high-throughput yeast two-hybrid (Y2H) analysis. Thirty two proteins were shown to interact with genotype 1 ORF3, 28 of which have not been reported previously. These novel interactions were evaluated by coimmunoprecipitation of protein complexes from transfected cells. We found also that the ORF3 proteins of genotype 4 and rabbit HEV interacted with all of the human proteins identified by the genotype 1 ORF3 protein. However, the putative ORF3 protein derived from avian HEV did not interact with the majority of these human proteins. The identified proteins were used to infer an overall interaction map linking the ORF3 protein with components of the host cellular networks. Analysis of this interaction map, based on functional annotation with the Gene Ontology features and KEGG pathways, revealed an enrichment of host proteins involved in complement coagulation, cellular iron ion homeostasis and oxidative stress. Additional canonical pathway analysis highlighted the enriched biological pathways relevant to blood coagulation and hemostasis. Consideration of the clinical manifestations of hepatitis E reported previously and the results of biological analysis from this study suggests that the ORF3 protein is likely to lead to an imbalance of coagulation and fibrinolysis by interacting with host proteins and triggering the corresponding pathological processes. These results suggest critical approaches to further study of the pathogenesis of the HEV ORF3 protein.
Collapse
Affiliation(s)
- Yansheng Geng
- Department of Cell Biology, National Institutes for Food and Drug Control, No 2 Tian Tan Xi Li, Beijing, China
- Health Science Center, Hebei University, Baoding, China
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Weijin Huang
- Department of Cell Biology, National Institutes for Food and Drug Control, No 2 Tian Tan Xi Li, Beijing, China
| | - Tim J. Harrison
- Division of Medicine, University College London Medical School, London, United Kingdom
| | - Yan Zhou
- Department of Cell Biology, National Institutes for Food and Drug Control, No 2 Tian Tan Xi Li, Beijing, China
| | - Zhiheng Wen
- Department of Cell Biology, National Institutes for Food and Drug Control, No 2 Tian Tan Xi Li, Beijing, China
| | - Youchun Wang
- Department of Cell Biology, National Institutes for Food and Drug Control, No 2 Tian Tan Xi Li, Beijing, China
| |
Collapse
|
20
|
Cao D, Meng XJ. Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect 2012; 1:e17. [PMID: 26038426 PMCID: PMC3630916 DOI: 10.1038/emi.2012.7] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/21/2012] [Accepted: 04/08/2012] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), a single-stranded, positive-sense RNA virus, is responsible for acute hepatitis E epidemics in many developing countries, and the virus is also endemic in some industrialized countries. Hepatitis E is a recognized zoonotic disease, and several animal species, including pigs, are potential reservoirs for HEV. The genome of HEV contains three open reading frames (ORFs). ORF1 encodes the nonstructural proteins, ORF2 encodes the capsid protein, and ORF3 encodes a small multifunctional protein. The ORF2 and ORF3 proteins are translated from a single, bicistronic mRNA. The coding sequences for these two ORFs overlap each other, but neither overlaps with ORF1. Whereas the mechanisms underlying HEV replication are poorly understood, the construction of infectious viral clones, the identification of cell lines that support HEV replication, and the development of small animal models have allowed for more detailed study of the virus. As result of these advances, recently, our understanding of viral entry, genomic replication and viral egress has improved. Furthermore, the determination of the T=1 and T=3 structure of HEV virus-like particles has furthered our understanding of the replication of HEV. This article reviews the latest developments in the molecular biology of HEV with an emphasis on the genomic organization, the expression and function of genes, and the structure and replication of HEV.
Collapse
Affiliation(s)
- Dianjun Cao
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech) , Blacksburg, VA 24061-0913, USA
| | - Xiang-Jin Meng
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech) , Blacksburg, VA 24061-0913, USA
| |
Collapse
|
21
|
The PSAP motif within the ORF3 protein of an avian strain of the hepatitis E virus is not critical for viral infectivity in vivo but plays a role in virus release. J Virol 2012; 86:5637-46. [PMID: 22438540 DOI: 10.1128/jvi.06711-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.
Collapse
|
22
|
Gaur P, Ranjan P, Sharma S, Patel JR, Bowzard JB, Rahman SK, Kumari R, Gangappa S, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK. Influenza A virus neuraminidase protein enhances cell survival through interaction with carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) protein. J Biol Chem 2012; 287:15109-17. [PMID: 22396546 DOI: 10.1074/jbc.m111.328070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influenza virus neuraminidase (NA) protein primarily aids in the release of progeny virions from infected cells. Here, we demonstrate a novel role for NA in enhancing host cell survival by activating the Src/Akt signaling axis via an interaction with carcinoembryonic antigen-related cell adhesion molecule 6/cluster of differentiation 66c (C6). NA/C6 interaction leads to increased tyrosyl phosphorylation of Src, FAK, Akt, GSK3β, and Bcl-2, which affects cell survival, proliferation, migration, differentiation, and apoptosis. siRNA-mediated suppression of C6 resulted in a down-regulation of activated Src, FAK, and Akt, increased apoptosis, and reduced expression of viral proteins and viral titers in influenza virus-infected human lung adenocarcinoma epithelial and normal human bronchial epithelial cells. These findings indicate that influenza NA not only aids in the release of progeny virions, but also cell survival during viral replication.
Collapse
Affiliation(s)
- Pratibha Gaur
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ahmad I, Holla RP, Jameel S. Molecular virology of hepatitis E virus. Virus Res 2011; 161:47-58. [PMID: 21345356 PMCID: PMC3130092 DOI: 10.1016/j.virusres.2011.02.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/13/2011] [Accepted: 02/13/2011] [Indexed: 12/15/2022]
Abstract
This review details the molecular virology of the hepatitis E virus (HEV). While replicons and in vitro infection systems have recently become available, a lot of information on HEV has been generated through comparisons with better-studied positive-strand RNA viruses and through subgenomic expression of viral open reading frames. These models are now being verified with replicon and infection systems. We provide here the current knowledge on the HEV genome and its constituent proteins--ORF1, ORF2 and ORF3. Based on the available information, we also modify the existing model of the HEV life cycle.
Collapse
Affiliation(s)
- Imran Ahmad
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|