1
|
Goonawardane N, Yin C, Roberts GC, Zothner C, Harris M. A key role for hepatitis C virus NS5A serine 225 phosphorylation revealed by super-resolution microscopy. Sci Rep 2025; 15:9567. [PMID: 40113977 PMCID: PMC11926191 DOI: 10.1038/s41598-025-93812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
NS5A is a multi-functional phosphoprotein that plays a key role in hepatitis C virus (HCV) genome replication and assembly. The consequences of NS5A phosphorylation for HCV biology remain largely undefined. We previously identified serine 225 (S225) as a major phosphorylation site within the low complexity sequence 1 (LCSI) of NS5A and used a phosphoablatant mutant (S225A) to define the role of this phosphorylation event in genome replication, NS5A-host interactions and sub-cellular localisation. In this study, we investigate this further by raising an antiserum to S225 phosphorylated NS5A (pS225). Western blot analysis revealed that pS225 was predominantly in the hyper-phosphorylated NS5A species. Using a panel of phosphoablatant mutants of other phosphorylation sites in LCSI, we obtained evidence that is consistent with bidirectional hierarchical phosphorylation initiated by phosphorylation at S225. Using super-resolution microscopy (Airyscan and Expansion), we revealed a unique architecture of NS5A-positive punctae in HCV-infected cells; pS225 was present on the surface of these punctae, close to lipid droplets. Although S225 phosphorylation was not specifically affected by treatment with the NS5A-targeting direct acting antiviral agent daclatasvir, this resulted in the condensation of NS5A-positive punctae into larger structures, recapitulating the S225A phenotype. These data are consistent with a key role for S225 phosphorylation in the regulation of NS5A function.
Collapse
Affiliation(s)
- Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Infectious Disease Control Institute, Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, 250014, Shandong, People's Republic of China
| | - Grace C Roberts
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
3
|
Barik S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host-Virus Interactive Pathways. Int J Mol Sci 2023; 24:16100. [PMID: 38003289 PMCID: PMC10671098 DOI: 10.3390/ijms242216100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which is then proteolytically processed to yield the individual viral proteins, all of which are necessary for optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to process the large viral polyprotein into individual proteins of specific function. The exact number of HCV immune suppressors and the specificity and molecular mechanism of their action have remained unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection, and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms. Clinically, the knowledge should aid in rational interventions and the management of HCV infection, particularly in chronic hepatitis.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
4
|
Chen S, Harris M. Mutational analysis reveals a novel role for hepatitis C virus NS5A domain I in cyclophilin-dependent genome replication. J Gen Virol 2023; 104:10.1099/jgv.0.001886. [PMID: 37672027 PMCID: PMC7615712 DOI: 10.1099/jgv.0.001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The hepatitis C virus (HCV) NS5A protein is comprised of three domains (D1-3). Previously, we observed that two alanine substitutions in D1 (V67A, P145A) abrogated replication of a genotype 2a isolate (JFH-1) sub-genomic replicon (SGR) in Huh7 cells, but this phenotype was partially restored in Huh7.5 cells. Here we demonstrate that five additional residues, surface-exposed and proximal to V67 or P145, exhibited the same phenotype. In contrast, the analogous mutants in a genotype 3a isolate (DBN3a) SGR exhibited different phenotypes in each cell line, consistent with fundamental differences in the functions of genotypes 2 and 3 NS5A. The difference between Huh7 and Huh7.5 cells was reminiscent of the observation that cyclophilin inhibitors are more potent against HCV replication in the former and suggested a role for D1 in cyclophilin dependence. Consistent with this, all JFH-1 and DBN3a mutants exhibited increased sensitivity to cyclosporin A treatment compared to wild-type. Silencing of cyclophilin A (CypA) in Huh7 cells inhibited replication of both JFH-1 and DBN3a. However, in Huh7.5 cells CypA silencing did not inhibit JFH-1 wild-type, but abrogated replication of all the JFH-1 mutants, and both DBN3a wild-type and all mutants. CypB silencing in Huh7 cells had no effect on DBN3a, but abrogated replication of JFH-1. CypB silencing in Huh7.5 cells had no effect on either SGR. Lastly, we confirmed that JFH-1 NS5A D1 interacted with CypA in vitro. These data demonstrate both a direct involvement of NS5A D1 in cyclophilin-dependent genome replication and functional differences between genotype 2 and 3 NS5A.
Collapse
Affiliation(s)
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Chen S, Harris M. NS5A domain I antagonises PKR to facilitate the assembly of infectious hepatitis C virus particles. PLoS Pathog 2023; 19:e1010812. [PMID: 36795772 PMCID: PMC9977016 DOI: 10.1371/journal.ppat.1010812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Hepatitis C virus NS5A is a multifunctional phosphoprotein comprised of three domains (DI, DII and DIII). DI and DII have been shown to function in genome replication, whereas DIII has a role in virus assembly. We previously demonstrated that DI in genotype 2a (JFH1) also plays a role in virus assembly, exemplified by the P145A mutant which blocked infectious virus production. Here we extend this analysis to identify two other conserved and surface exposed residues proximal to P145 (C142 and E191) that exhibited no defect in genome replication but impaired virus production. Further analysis revealed changes in the abundance of dsRNA, the size and distribution of lipid droplets (LD) and the co-localisation between NS5A and LDs in cells infected with these mutants, compared to wildtype. In parallel, to investigate the mechanism(s) underpinning this role of DI, we assessed the involvement of the interferon-induced double-stranded RNA-dependent protein kinase (PKR). In PKR-silenced cells, C142A and E191A exhibited levels of infectious virus production, LD size and co-localisation between NS5A and LD that were indistinguishable from wildtype. Co-immunoprecipitation and in vitro pulldown experiments confirmed that wildtype NS5A domain I (but not C142A or E191A) interacted with PKR. We further showed that the assembly phenotype of C142A and E191A was restored by ablation of interferon regulatory factor-1 (IRF1), a downstream effector of PKR. These data suggest a novel interaction between NS5A DI and PKR that functions to evade an antiviral pathway that blocks virus assembly through IRF1.
Collapse
Affiliation(s)
- Shucheng Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Studies of the symmetric binding mode of daclatasvir and analogs using a new homology model of HCV NS5A GT-4a. J Mol Model 2023; 29:25. [PMID: 36580076 PMCID: PMC9800351 DOI: 10.1007/s00894-022-05420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
CONTEXT Egypt has a high prevalence of the hepatitis C virus (HCV) genotype 4a (GT-4a). Unfortunately, the high resistance it exhibited still was not given the deserved attention in the scientific community. There is currently no consensus on the NS5A binding site because the crystal structure of HCV NS5A has not been resolved. The prediction of the binding modes of direct-acting antivirals (DAA) with the NS5A is a point of controversy due to the fact that several research groups presented different interaction models to elucidate the NS5A binding site. Consequently, a 3D model of HCV NS5A GT-4a was constructed and evaluated using molecular dynamics (MD) simulations. The generated model implies an intriguing new orientation of the AH relative to domain I. Additionally, the probable binding modes of marketed NS5A inhibitors were explored. MD simulations validated the stability of the predicted protein-ligand complexes. The suggested model predicts that daclatasvir and similar drugs bind symmetrically to HCV NS5A GT-4a. This will allow for the development of new NS5A-directed drugs, which may result in reduced resistance and/or a wider range of effectiveness against HCV. METHODS The 3D model of HCV NS5A GT-4a was constructed using the comparative modeling approach of the web-based application Robetta. Its stability was tested with 200-ns MD simulations using the Desmond package of Schrodinger. The OPLS2005 force field was assigned for minimization, and the RMSD, RMSF, and rGyr were tracked throughout the MD simulations. Fpocket was used to identify druggable protein pockets (cavities) over the simulation trajectories. The binding modes of marketed NS5A inhibitors were then generated and refined with the aid of docking predictions made by FRED and AutoDock Vina. The stability of these drugs in complex with GT-4a was investigated by using energetic and structural analyses over MD simulations. The Prime MM-GBSA (molecular mechanics/generalized Born surface area) method was used as a validation tool after the docking stage and for the averaged clusters after the MD simulation stage. We utilized PyMOL and VMD to visualize the data.
Collapse
|
7
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
8
|
Soni S, Singh D, Aggarwal R, Veerapu NS. Enhanced fitness of hepatitis C virus increases resistance to direct-acting antivirals. J Gen Virol 2022; 103. [PMID: 35133954 DOI: 10.1099/jgv.0.001699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug resistance mutations of hepatitis C virus (HCV) negatively impact viral replicative fitness. RNA viruses are known to change their replication behaviour when subjected to suboptimal selection pressure. Here, we assess whether mutation supply in HCV is sufficiently large to allow the selection of its variants during dual or triple direct-acting antiviral (DAA) treatment associated with augmented virus fitness or impairment. We engineered randomly mutagenized full-genome libraries to create a highly diverse population of replication-competent HCV variants in cell culture. These variants exhibited escape when treated with NS5A/NS5B inhibitors (daclatasvir/sofosbuvir), and relapse on treatment with a combination of NS3/NS5A/NS5B inhibitors (simeprevir or paritaprevir/daclatasvir/sofosbuvir). Analysis of the relationship between virus fitness and drug resistance of JFH1-derived NS5A-5B variants showed a significant positive correlation (P=0.003). At the earliest time points, intracellular RNA levels remain unchanged in both the subgenomic replicon and infection assays, whereas extracellular RNA levels increased upto ten-fold compared to wild-type JFH1. Beneficial substitutions hyperstimulated phosphatidylinositol 4-phosphate during DAA treatment, and showed decreased dependence on cyclophilins during cyclosporine A treatment, indicating an interplay of virus-host molecular mechanisms in beneficial substitution selection that may necessitate infectious virus production. This comprehensive study demonstrates a possible role for HCV fitness of overcoming drug-mediated selection pressure.
Collapse
Affiliation(s)
- Shalini Soni
- Virology Section, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Deepak Singh
- Virology Section, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Rakesh Aggarwal
- Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Naga Suresh Veerapu
- Virology Section, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
9
|
Sinha A, Singh AK, Kadni TS, Mullick J, Sahu A. Virus-Encoded Complement Regulators: Current Status. Viruses 2021; 13:v13020208. [PMID: 33573085 PMCID: PMC7912105 DOI: 10.3390/v13020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022] Open
Abstract
Viruses require a host for replication and survival and hence are subjected to host immunological pressures. The complement system, a crucial first response of the host immune system, is effective in targeting viruses and virus-infected cells, and boosting the antiviral innate and acquired immune responses. Thus, the system imposes a strong selection pressure on viruses. Consequently, viruses have evolved multiple countermeasures against host complement. A major mechanism employed by viruses to subvert the complement system is encoding proteins that target complement. Since viruses have limited genome size, most of these proteins are multifunctional in nature. In this review, we provide up to date information on the structure and complement regulatory functions of various viral proteins.
Collapse
Affiliation(s)
- Anwesha Sinha
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
| | - Anup Kumar Singh
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
| | - Trupti Satish Kadni
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
| | - Jayati Mullick
- Polio Virology Group, Microbial Containment Complex, ICMR-National Institute of Virology, Pune 411021, India;
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University Campus, Ganeskhind, Pune 411007, India; (A.S.); (A.K.S.); (T.S.K.)
- Correspondence: ; Tel.: +91-20-2570-8083; Fax: +91-20-2569-2259
| |
Collapse
|
10
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
12
|
Ward JC, Bowyer S, Chen S, Fernandes Campos GR, Ramirez S, Bukh J, Harris M. Insights into the unique characteristics of hepatitis C virus genotype 3 revealed by development of a robust sub-genomic DBN3a replicon. J Gen Virol 2020; 101:1182-1190. [PMID: 32897181 PMCID: PMC7879556 DOI: 10.1099/jgv.0.001486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen causing 400 000 chronic liver disease-related deaths annually. Until recently, the majority of laboratory-based investigations into the biology of HCV have focused on the genotype 2 isolate, JFH-1, involving replicons and infectious cell culture systems. However, genotype 2 is one of eight major genotypes of HCV and there is great sequence variation among these genotypes (>30 % nucleotide divergence). In this regard, genotype 3 is the second most common genotype and accounts for 30 % of global HCV cases. Further, genotype 3 is associated with both high levels of inherent resistance to direct-acting antiviral (DAA) therapy, and a more rapid progression to chronic liver diseases. Neither of these two attributes are fully understood, thus robust genotype 3 culture systems to unravel viral replication are required. Here we describe the generation of robust genotype 3 sub-genomic replicons (SGRs) based on the adapted HCV NS3-NS5B replicase from the DBN3a cell culture infectious clone. Such infectious cell culture-adaptive mutations could potentially promote the development of robust SGRs for other HCV strains and genotypes. The novel genotype 3 SGRs have been used both transiently and to establish stable SGR-harbouring cell lines. We show that these resources can be used to investigate aspects of genotype 3 biology, including NS5A function and DAA resistance. They will be useful tools for these studies, circumventing the need to work under the biosafety level 3 (BSL3) containment required in many countries.
Collapse
Affiliation(s)
- Joseph C. Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sebastian Bowyer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shucheng Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Guilherme Rodrigues Fernandes Campos
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Present address: São Paulo State University, Institute of Biosciences, Languages and Exact Sciences, Cristóvão Colombo Street, 2265, Post Code 15054-000, São José do Rio Preto, São Paulo State, Brazil
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Kettegård Allé 30, DK-2650 Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Kettegård Allé 30, DK-2650 Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Ma YY, Li JR, Peng ZG, Zhang JP. IL28A protein homotetramer structure is required for autolysosomal degradation of HCV-NS5A in vitro. Cell Death Dis 2020; 11:200. [PMID: 32205851 PMCID: PMC7090004 DOI: 10.1038/s41419-020-2400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/03/2022]
Abstract
Interferon lambda-2 (IL28A) has a wide antiviral effect with fewer side-effects. Autophagy is a host mechanism to maintain intracellular homeostasis and defends invasion of pathogenic microorganisms. HCV NS5A can disable host defense systems to support HCV replication. Thus, molecular mechanism of interaction among interferon lambda, autophagy, and HCV was concerned and explored in this study. We report that HCV NS5A activated an incomplete autophagy by promoting the autophagic ubiquitylation-like enzymes ATG3, ATG5, ATG7, ATG10, and autophagosome maker LC3B, but blocked autophagy flux; IL28A bound to NS5A at NS5A-ISDR region, and degraded HCV-NS5A by promoting autolysosome formations in HepG2 cells. A software prediction of IL28A protein conformation indicated a potential structure of IL28A homotetramer; the first α-helix of IL28A locates in the interfaces among the four IL28A chains to maintain IL28A homotetrameric conformation. Co-IP and cell immunofluorescence experiments with sequential deletion mutants demonstrate that IL28A preferred a homotetramer conformation to a monomer in the cells; the IL28A homotetramer is positively correlated with autolysosomal degradation of HCV NS5A and the other HCV proteins. Summarily, the first α-helix of IL28A protein is the key domain for maintaining IL28A homotetramer which is required for promoting formation of autolysosomes and degradation of HCV proteins in vitro.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jian-Rui Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zong-Gen Peng
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
14
|
Nguyen LP, Tran SC, Suetsugu S, Lim YS, Hwang SB. PACSIN2 Interacts with Nonstructural Protein 5A and Regulates Hepatitis C Virus Assembly. J Virol 2020; 94:e01531-19. [PMID: 31801866 PMCID: PMC7022371 DOI: 10.1128/jvi.01531-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. HCV is highly dependent on cellular machinery for viral propagation. Using protein microarray analysis, we previously identified 90 cellular proteins as nonstructural 5A (NS5A) interacting partners. Of these, protein kinase C and casein kinase substrate in neurons protein 2 (PACSIN2) was selected for further study. PACSIN2 belongs to the PACSIN family, which is involved in the formation of caveolae. Protein interaction between NS5A and PACSIN2 was confirmed by pulldown assay and further verified by both coimmunoprecipitation and immunofluorescence assays. We showed that PACSIN2 interacted with domain I of NS5A and the Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) region of PACSIN2. Interestingly, NS5A specifically attenuated protein kinase C alpha (PKCα)-mediated phosphorylation of PACSIN2 at serine 313 by interrupting PACSIN2 and PKCα interaction. In fact, mutation of the serine 313 to alanine (S313A) of PACSIN2 increased protein interaction with NS5A. Silencing of PACSIN2 decreased both viral RNA and protein expression levels of HCV. Ectopic expression of the small interfering RNA (siRNA)-resistant PACSIN2 recovered the viral infectivity, suggesting that PACSIN2 was specifically required for HCV propagation. PACSIN2 was involved in viral assembly without affecting other steps of the HCV life cycle. Indeed, overexpression of PACSIN2 promoted NS5A and core protein (core) interaction. We further showed that inhibition of PKCα increased NS5A and core interaction, suggesting that phosphorylation of PACSIN2 might influence HCV assembly. Moreover, PACSIN2 was required for lipid droplet formation via modulating extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Taken together, these data indicate that HCV modulates PACSIN2 via NS5A to promote virion assembly.IMPORTANCE PACSIN2 is a lipid-binding protein that triggers the tubulation of the phosphatidic acid-containing membranes. The functional involvement of PACSIN2 in the virus life cycle has not yet been demonstrated. We showed that phosphorylation of PACSIN2 displayed a negative effect on NS5A and core interaction. The most significant finding is that NS5A prevents PKCα from binding to PACSIN2. Therefore, the phosphorylation level of PACSIN2 is decreased in HCV-infected cells. We showed that HCV NS5A interrupted PKCα-mediated PACSIN2 phosphorylation at serine 313, thereby promoting NS5A-PACSIN2 interaction. We further demonstrated that PACSIN2 modulated lipid droplet formation through ERK1/2 phosphorylation. These data provide evidence that PACSIN2 is a proviral cellular factor required for viral propagation.
Collapse
Affiliation(s)
- Lap P Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Si C Tran
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Shiro Suetsugu
- Laboratory of Molecular Medicine and Cell Biology, Graduate School of Biosciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Soon B Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| |
Collapse
|
15
|
A role for domain I of the hepatitis C virus NS5A protein in virus assembly. PLoS Pathog 2018; 14:e1006834. [PMID: 29352312 PMCID: PMC5792032 DOI: 10.1371/journal.ppat.1006834] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/31/2018] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
The NS5A protein of hepatitis C virus (HCV) plays roles in both virus genome replication and assembly. NS5A comprises three domains, of these domain I is believed to be involved exclusively in genome replication. In contrast, domains II and III are required for the production of infectious virus particles and are largely dispensable for genome replication. Domain I is highly conserved between HCV and related hepaciviruses, and is highly structured, exhibiting different dimeric conformations. To investigate the functions of domain I in more detail, we conducted a mutagenic study of 12 absolutely conserved and surface-exposed residues within the context of a JFH-1-derived sub-genomic replicon and infectious virus. Whilst most of these abrogated genome replication, three mutants (P35A, V67A and P145A) retained the ability to replicate but showed defects in virus assembly. P35A exhibited a modest reduction in infectivity, however V67A and P145A produced no infectious virus. Using a combination of density gradient fractionation, biochemical analysis and high resolution confocal microscopy we demonstrate that V67A and P145A disrupted the localisation of NS5A to lipid droplets. In addition, the localisation and size of lipid droplets in cells infected with these two mutants were perturbed compared to wildtype HCV. Biophysical analysis revealed that V67A and P145A abrogated the ability of purified domain I to dimerize and resulted in an increased affinity of binding to HCV 3’UTR RNA. Taken together, we propose that domain I of NS5A plays multiple roles in assembly, binding nascent genomic RNA and transporting it to lipid droplets where it is transferred to Core. Domain I also contributes to a change in lipid droplet morphology, increasing their size. This study reveals novel functions of NS5A domain I in assembly of infectious HCV and provides new perspectives on the virus lifecycle. Hepatitis C virus infects 170 million people worldwide, causing long term liver disease. Recently new therapies comprising direct-acting antivirals (DAAs), small molecule inhibitors of virus proteins, have revolutionised treatment for infected patients. Despite this, we have a limited understanding of how the virus replicates in infected liver cells. Here we identify a previously uncharacterised function of the NS5A protein–a target for one class of DAAs. NS5A is comprised of three domains–we show that the first of these (domain I) plays a role in the production of new, infectious virus particles. Previously it was thought that domain I was only involved in replicating the virus genome. Mutations in domain I perturb dimer formation, enhanced binding to the 3’ end of the virus RNA genome and prevented NS5A from interacting with lipid droplets, cellular lipid storage organelles that are required for assembly of new viruses. We propose that domain I of NS5A plays multiple roles in virus assembly. As domain I is the putative target for one class of DAAs, our observations may have implications for the as yet undefined mode of action of these compounds.
Collapse
|
16
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
17
|
Goonawardane N, Ross-Thriepland D, Harris M. Regulation of hepatitis C virus replication via threonine phosphorylation of the NS5A protein. J Gen Virol 2017; 99:62-72. [PMID: 29139348 PMCID: PMC5882090 DOI: 10.1099/jgv.0.000975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis C virus non-structural 5A (NS5A) protein is highly phosphorylated and plays roles in both virus genome replication and assembly of infectious virus particles. NS5A comprises three domains separated by low complexity sequences (LCS). Mass spectrometry analysis of NS5A revealed the existence of a singly phosphorylated tryptic peptide corresponding to the end of LCS I and the beginning of domain II that contained a number of potential phosphorylatable residues (serines and threonines). Here we use a mutagenic approach to investigate the potential role of three of these threonine residues. Phosphomimetic mutations of two of these (T242E and T244E) resulted in significant reductions in virus genome replication and the production of infectious virus, suggesting that the phosphorylation of these residues negatively regulated virus RNA synthesis. Mutation of T245 had no effect, however when T245E was combined with the other two phosphomimetic mutations (TripleE) the inhibitory effect on replication was less pronounced. Effects of the mutations on the ratio of basally/hyperphosphorylated NS5A, together with the apparent molecular weight of the basally phosphorylated species were also observed. Lastly, two of the mutations (T245A and TripleE) resulted in a perinuclear restricted localization of NS5A. These data add further complexity to NS5A phosphorylation and suggest that this analysis be extended outwith the serine-rich cluster within LCS I.
Collapse
Affiliation(s)
- Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Present address: AstraZeneca, Cambridge Biomedical Campus, Cambridge, CB20AA, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
Abstract
Hepatitis C virus (HCV) consists of envelope proteins, core proteins, and genome RNA. The structural genes and non-structural genes in the open reading frame of its genome encode functional proteins essential to viral life cycles, ranging from virus attachment to progeny virus secretion. After infection, the host cells suffer damage from virus-induced oxidative stress, steatosis, and activation of proto-oncogenes. Every process during the viral life cycle can be considered as targets for direct acting antivirals. However, protective immunity cannot be easily acquired for the volatility in HCV antigenic epitopes. Understanding its molecular characteristics, especially pathogenesis and targets the drugs act on, not only helps professionals to make optimal therapeutic decisions, but also helps clinicians who do not specialize in infectious diseases/hepatology to provide better management for patients. This review serves to provide an insight for clinicians and this might provide a possible solution for any possible collision.
Collapse
Affiliation(s)
- Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China. E-mail.
| | | |
Collapse
|
19
|
Moore TO, Paradowski M, Ward SE. An atom-efficient and convergent approach to the preparation of NS5A inhibitors by C-H activation. Org Biomol Chem 2016; 14:3307-13. [PMID: 26936019 DOI: 10.1039/c6ob00340k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel approach of the convergent functionalisation of aryl dibromides to form NS5A type inhibitors using C-H activation is reported. The focus of investigation was to reduce the formation of homodimeric side product, as well as to investigate the scope of different aryl dibromides that were tolerated under the reaction conditions. The C-H activation methodology was found to give a viable synthetic route to NS5A inhibitors, with late stage functionalisation of the core portion of the molecule, albeit with some chemical functionalities not tolerated.
Collapse
Affiliation(s)
- Thomas O Moore
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, UK.
| | - Michael Paradowski
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, UK.
| | - Simon E Ward
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, UK.
| |
Collapse
|
20
|
Ngure M, Issur M, Shkriabai N, Liu HW, Cosa G, Kvaratskhelia M, Götte M. Interactions of the Disordered Domain II of Hepatitis C Virus NS5A with Cyclophilin A, NS5B, and Viral RNA Show Extensive Overlap. ACS Infect Dis 2016; 2:839-851. [PMID: 27676132 DOI: 10.1021/acsinfecdis.6b00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Domain II of the nonstructural protein 5 (NS5A) of the hepatitis C virus (HCV) is involved in intermolecular interactions with the viral RNA genome, the RNA-dependent RNA polymerase NS5B, and the host factor cyclophilin A (CypA). However, domain II of NS5A (NS5ADII) is largely disordered, which makes it difficult to characterize the protein-protein or protein-nucleic acid interfaces. Here we utilized a mass spectrometry-based protein footprinting approach in attempts to characterize regions forming contacts between NS5ADII and its binding partners. In particular, we compared surface topologies of lysine and arginine residues in the context of free and bound NS5ADII. These experiments have led to the identification of an RNA binding motif (305RSRKFPR311) in an arginine-rich region of NS5ADII. Furthermore, we show that K308 is indispensable for both RNA and NS5B binding, whereas W316, further downstream, is essential for protein-protein interactions with CypA and NS5B. Most importantly, NS5ADII binding to NS5B involves a region associated with RNA binding within NS5B. This interaction down-regulated RNA synthesis by NS5B, suggesting that NS5ADII modulates the activity of NS5B and potentially regulates HCV replication.
Collapse
Affiliation(s)
- Marianne Ngure
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hsiao-Wei Liu
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Gonzalo Cosa
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 0B8, Canada
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthias Götte
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
21
|
Preclinical and Clinical Resistance Profile of EDP-239, a Novel Hepatitis C Virus NS5A Inhibitor. Antimicrob Agents Chemother 2016; 60:6216-26. [PMID: 27503644 DOI: 10.1128/aac.00815-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
EDP-239, a potent and selective hepatitis C virus (HCV) nonstructural protein 5A (NS5A) inhibitor developed for the treatment of HCV infection, has been investigated in vitro and in vivo This study sought to characterize genotypic changes in the HCV NS5A sequence of genotype 1 (GT1) replicons and to compare those changes to GT1 viral RNA mutations isolated from clinical trial patients. Resistance selection experiments in vitro using a subgenomic replicon identified resistance-associated mutations (RAMs) at GT1a NS5A amino acid positions 24, 28, 30, 31, and 93 that confer various degrees of resistance to EDP-239. Key RAMs were similarly identified in GT1b NS5A at amino acid positions 31 and 93. Mutations F36L in GT1a and A92V in GT1b do not confer resistance to EDP-239 individually but were found to enhance the resistance of GT1a K24R and GT1b Y93H. RAMs were identified in GT1 patients at baseline or after dosing with EDP-239 that were similar to those detected in vitro Baseline RAMs identified at NS5A position 93 in GT1, or positions 28 or 30 in GT1a only, correlated with a reduced treatment response. RAMs at additional positions were also detected and may have contributed to reduced EDP-239 efficacy. The most common GT1a and GT1b RAMs found to persist up to weeks 12, 24, or 48 were those at NS5A positions 28, 30, 31, 58 (GT1a only), and 93. Those RAMs persisting at the highest frequencies up to weeks 24 or 48 were L31M and Q30H/R for GT1a and L31M and Y93H for GT1b. (This study has been registered at ClinicalTrials.gov under identifier NCT01856426.).
Collapse
|
22
|
Meanwell NA. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. J Med Chem 2016; 59:7311-51. [PMID: 27501244 DOI: 10.1021/acs.jmedchem.6b00915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development , Wallingford, Connecticut 06492, United States
| |
Collapse
|
23
|
In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir. Antimicrob Agents Chemother 2016; 60:1847-1853. [PMID: 26824950 DOI: 10.1128/aac.02524-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/02/2016] [Indexed: 12/25/2022] Open
Abstract
Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type.
Collapse
|
24
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
25
|
Arginine 112 is involved in HCV translation modulation by NS5A domain I. Biochem Biophys Res Commun 2015; 465:95-100. [DOI: 10.1016/j.bbrc.2015.07.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
26
|
Li S, Feng S, Wang JH, He WR, Qin HY, Dong H, Li LF, Yu SX, Li Y, Qiu HJ. eEF1A Interacts with the NS5A Protein and Inhibits the Growth of Classical Swine Fever Virus. Viruses 2015; 7:4563-81. [PMID: 26266418 PMCID: PMC4576194 DOI: 10.3390/v7082833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/23/2022] Open
Abstract
The NS5A protein of classical swine fever virus (CSFV) is involved in the RNA synthesis and viral replication. However, the NS5A-interacting cellular proteins engaged in the CSFV replication are poorly defined. Using yeast two-hybrid screen, the eukaryotic elongation factor 1A (eEF1A) was identified to be an NS5A-binding partner. The NS5A-eEF1A interaction was confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown and laser confocal microscopy assays. The domain I of eEF1A was shown to be critical for the NS5A-eEF1A interaction. Overexpression of eEF1A suppressed the CSFV growth markedly, and conversely, knockdown of eEF1A enhanced the CSFV replication significantly. Furthermore, eEF1A, as well as NS5A, was found to reduce the translation efficiency of the internal ribosome entry site (IRES) of CSFV in a dose-dependent manner, as demonstrated by luciferase reporter assay. Streptavidin pulldown assay revealed that eEF1A could bind to the CSFV IRES. Collectively, our results suggest that eEF1A interacts with NS5A and negatively regulates the growth of CSFV.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China
| | - Shuo Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Jing-Han Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Wen-Rui He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Hua-Yang Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Hong Dong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Shao-Xiong Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
27
|
Hoffman B, Shi Q, Liu Q. K312 and E446 are involved in HCV RNA translation modulation by NS5A domains II and III. Virus Res 2015; 208:207-14. [PMID: 26183879 DOI: 10.1016/j.virusres.2015.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
HCV NS5A plays a critical role in the HCV life cycle. We previously demonstrated that NS5A down-regulates viral translation through a mechanism requiring the polyU/UC region of the viral 3'UTR and that each of the three domains is capable of carrying out this function individually. In this study, we mapped the regions and amino acid residues within domains II and III involved in the modulation of viral translation. Using a series of deletion and amino acid substitution mutants, we found that K312 and E446 play important roles in the modulation of viral translation by NS5A domains II and III, respectively. In the context of full-length NS5A, mutations of K312 and E446 alone or in combination again abrogate translation down-regulation. In a transient replication assay using HCV subgenomic replicons, the K312A mutation alone does not affect HCV replication throughout a 96-h time course. While the E446A mutation can increase HCV replication at early time points (4-24 h), the K312A and E446A double mutation can enhance viral replication at 24-96 h, suggesting both residues are involved. Our results shed more light on the functions of NS5A.
Collapse
Affiliation(s)
- Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qing Shi
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
28
|
Novel benzidine and diaminofluorene prolinamide derivatives as potent hepatitis C virus NS5A inhibitors. Eur J Med Chem 2015; 101:163-78. [PMID: 26134551 DOI: 10.1016/j.ejmech.2015.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
Our study describes the discovery of a series of highly potent hepatitis C virus (HCV) NS5A inhibitors based on symmetrical prolinamide derivatives of benzidine and diaminofluorene. Through modification of benzidine, l-proline, and diaminofluorene derivatives, we developed novel inhibitor structures, which allowed us to establish a library of potent HCV NS5A inhibitors. After optimizing the benzidine prolinamide backbone, we identified inhibitors embedding meta-substituted benzidine core structures that exhibited the most potent anti-HCV activities. Furthermore, through a battery of studies including hERG ligand binding assay, CYP450 binding assay, rat plasma stability test, human liver microsomal stability test, and pharmacokinetic studies, the identified compounds 24, 26, 27, 42, and 43 are found to be nontoxic, and are expected to be effective therapeutic anti-HCV agents.
Collapse
|
29
|
Abstract
Chronic hepatitis C virus (HCV) infection results in a progressive disease that may end in cirrhosis and, eventually, in hepatocellular carcinoma. In the last several years, tremendous progress has been made in understanding the HCV life cycle and in the development of small molecule compounds for the treatment of chronic hepatitis C. Nevertheless, the complete understanding of HCV assembly and particle release as well as the detailed characterization and structure of HCV particles is still missing. One of the most important events in the HCV assembly is the nucleocapsid formation which is driven by the core protein, that can oligomerize upon interaction with viral RNA, and is orchestrated by viral and host proteins. Despite a growing number of new factors involved in HCV assembly process, we do not know the three-dimensional structure of the core protein or its topology in the nucleocapsid. Since the core protein contains a hydrophobic C-terminal domain responsible for the binding to cellular membranes, the assembly pathway of HCV virions might proceed via coassembly at endoplasmic reticulum membranes. Recently, new mechanisms involving viral proteins and host factors in HCV particle formation and egress have been described. The present review aims to summarize the advances in our understanding of HCV assembly with an emphasis on the core protein as a structural component of virus particles that possesses the ability to interact with a variety of cellular components and is potentially an attractive target for the development of a novel class of anti-HCV agents.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | | |
Collapse
|
30
|
Masaki T, Suzuki T. NS5A phosphorylation: its functional role in the life cycle of hepatitis C virus. Future Virol 2015. [DOI: 10.2217/fvl.15.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABSTRACT Hepatitis C virus (HCV) is a major cause of liver disease. HCV RNA replicates in a membrane-associated replication complex. Nonstructural protein 5A (NS5A) is phosphorylated on multiple serine and threonine residues and exists in basally phosphorylated and hyperphosphorylated forms. To date, studies have identified several serine/threonine kinases responsible for NS5A phosphorylation. Although NS5A has no known enzymatic activity, it is a multifunctional protein required for HCV RNA replication and virion assembly. The phosphorylation status of NS5A is considered to have a significant impact on its function and the viral life cycle. Furthermore, NS5A inhibitors represent a new class of direct acting antivirals and have become a key component for effective combination therapies against HCV infection.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| |
Collapse
|
31
|
Janardhan SV, Reau NS. Should NS5A inhibitors serve as the scaffold for all-oral anti-HCV combination therapies? ACTA ACUST UNITED AC 2015; 7:11-20. [PMID: 25926761 PMCID: PMC4403691 DOI: 10.2147/hmer.s79584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infection represents a global health problem that affects up to 130–150 million people worldwide. The HCV treatment landscape has been transformed recently by the introduction of direct-acting antiviral (DAA) agents that target viral proteins, including the NS3 protease, the NS5B polymerase, and the NS5A protein. Treatment with multiple DAAs in combination has been shown to result in high rates of sustained virologic response, without the need for pegylated interferon, and a shorter duration of therapy compared with interferon-based regimens; however, the optimal combination of DAAs has yet to be determined. The class of NS5A inhibitors has picomolar potency with pangenotypic activity, and recent clinical studies have shown these inhibitors to be an important component of DAA combination regimens. This review discusses the rational design of an optimal anti-HCV DAA cocktail, with a focus on the role of NS5A in the HCV life cycle, the attributes of the NS5A class of inhibitors, and the potential for NS5A inhibitors to act as a scaffold for DAA-only treatment regimens.
Collapse
Affiliation(s)
- Sujit V Janardhan
- Center for Liver Diseases, Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nancy S Reau
- Center for Liver Diseases, Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Igloi Z, Kazlauskas A, Saksela K, Macdonald A, Mankouri J, Harris M. Hepatitis C virus NS5A protein blocks epidermal growth factor receptor degradation via a proline motif- dependent interaction. J Gen Virol 2015; 96:2133-2144. [PMID: 25872741 PMCID: PMC4681064 DOI: 10.1099/vir.0.000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) establishes a persistent infection that in many cases leads to cirrhosis and hepatocellular carcinoma. The non-structural 5A protein (NS5A) has been implicated in this process as it contains a C-terminal polyproline motif (termed P2) that binds to Src homology 3 (SH3) domains to regulate cellular signalling and trafficking pathways. We have shown previously that NS5A impaired epidermal growth factor (EGF) receptor (EGFR) endocytosis, thereby inhibiting EGF-stimulated EGFR degradation by a mechanism that remained unclear. As EGFR has been implicated in HCV cell entry and trafficking of the receptor involves several SH3-domain containing proteins, we investigated in more detail the mechanisms by which NS5A perturbs EGFR trafficking. We demonstrated that the P2 motif was required for the NS5A-mediated disruption to EGFR trafficking. We further demonstrated that the P2 motif was required for an interaction between NS5A and CMS, a homologue of CIN85 that has previously been implicated in EGFR endocytosis. We provided evidence that CMS was involved in the NS5A-mediated perturbation of EGFR trafficking. We also showed that NS5A effected a loss of EGFR ubiquitination in a P2-motif-dependent fashion. These data provide clues to the mechanism by which NS5A regulates the trafficking of a key cellular receptor and demonstrate for the first time the ability of NS5A to regulate host cell ubiquitination pathways.
Collapse
Affiliation(s)
- Zsofia Igloi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Arunas Kazlauskas
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Hoffman B, Li Z, Liu Q. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR. J Gen Virol 2015; 96:2114-2121. [PMID: 25862017 DOI: 10.1099/vir.0.000141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.
Collapse
Affiliation(s)
- Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zhubing Li
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
34
|
Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection. J Virol 2015; 89:5462-77. [PMID: 25740981 DOI: 10.1128/jvi.03197-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 12/27/2022] Open
Abstract
The ubiquitous ATP-dependent RNA helicase DDX3X is involved in many cellular functions, including innate immunity, and is a pivotal host factor for hepatitis C virus (HCV) infection. Recently, we showed that DDX3X specifically recognizes the HCV 3' untranslated region (UTR), leading to the activation of IKK-α and a cascade of lipogenic signaling to facilitate lipid droplet biogenesis and viral assembly (Q. Li, V. Pene, S. Krishnamurthy, H. Cha, and T. J. Liang, Nat Med 19:722-729, 2013, http://dx.doi.org/10.1038/nm.3190). The interaction of DDX3X with HCV core protein seems to be dispensable for its proviral role. In this study, through systematic imaging and biochemical and virologic approaches, we identified a dynamic association between DDX3X and various cellular compartments and viral elements mediating multiple functions of DDX3X in productive HCV infection. Upon HCV infection, the HCV 3'UTR interacts with DDX3X and IKK-α, which redistribute to speckle-like cytoplasmic structures shown to be stress granules (SGs). As viral proteins accumulate in infected cells, DDX3X granules together with SG-associated proteins redistribute and colocalize with HCV core protein around lipid droplets (LDs). IKK-α, however, does not relocate to the LD but translocates to the nucleus. In HCV-infected cells, various HCV nonstructural proteins also interact or colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the replication complex and the assembly site at the surface of LDs. Short interfering RNA (siRNA)-mediated silencing of DDX3X and multiple SG components markedly inhibits HCV infection. Our data suggest that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV RNA and proteins, IKK-α, SG, and LD surfaces for its crucial role in the HCV life cycle. IMPORTANCE DDX3X is a proviral host factor for HCV infection. Recently, we showed that DDX3X binds to the HCV 3'UTR, activating IKK-α and cellular lipogenesis to facilitate viral assembly (Q. Li et al., Nat Med 19:722-729, 2013, http://dx.doi.org/10.1038/nm.3190). Here, we report associations of DDX3X with various cellular compartments and viral elements that mediate its multiple functions in the HCV life cycle. Upon infection, the HCV 3'UTR redistributes DDX3X and IKK-α to speckle-like cytoplasmic structures shown to be SGs. Subsequently, interactions between DDX3X, SG, and HCV proteins facilitate the translocation of DDX3X-SG complexes to the LD surface. HCV nonstructural proteins are shown to colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the HCV replication complex and assembly site at the LD surface. Our data demonstrate that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV elements, IKK-α, SGs, and LDs for its critical role in HCV infection.
Collapse
|
35
|
Tuplin A, Struthers M, Cook J, Bentley K, Evans DJ. Inhibition of HCV translation by disrupting the structure and interactions of the viral CRE and 3' X-tail. Nucleic Acids Res 2015; 43:2914-26. [PMID: 25712095 PMCID: PMC4357731 DOI: 10.1093/nar/gkv142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA–RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with ‘open’ and ‘closed’ conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Madeleine Struthers
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kirsten Bentley
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
36
|
Khachatoorian R, Ruchala P, Waring A, Jung CL, Ganapathy E, Wheatley N, Sundberg C, Arumugaswami V, Dasgupta A, French SW. Structural characterization of the HSP70 interaction domain of the hepatitis C viral protein NS5A. Virology 2015; 475:46-55. [PMID: 25462345 PMCID: PMC4284078 DOI: 10.1016/j.virol.2014.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
We previously identified the NS5A/HSP70 binding site to be a hairpin moiety at C-terminus of NS5A domain I and showed a corresponding cyclized polyarginine-tagged synthetic peptide (HCV4) significantly blocks virus production. Here, sequence comparison confirmed five residues to be conserved. Based on NS5A domain I crystal structure, Phe171, Val173, and Tyr178 were predicted to form the binding interface. Substitution of Phe171 and Val173 with more hydrophobic unusual amino acids improved peptide antiviral activity and HSP70 binding, while similar substitutions at Tyr178 had a negative effect. Substitution of non-conserved residues with arginines maintained antiviral activity and HSP70 binding and dispensed with polyarginine tag for cellular entry. Peptide cyclization improved antiviral activity and HSP70 binding. The cyclic retro-inverso analog displayed the best antiviral properties. FTIR spectroscopy confirmed a secondary structure consisting of an N-terminal beta-sheet followed by a turn and a C-terminal beta-sheet. These peptides constitute a new class of anti-HCV compounds.
Collapse
Affiliation(s)
- Ronik Khachatoorian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Alan Waring
- Division of Molecular Medicine at the Department of Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Chun-Ling Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Ekambaram Ganapathy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Nicole Wheatley
- Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Christopher Sundberg
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Vaithilingaraja Arumugaswami
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
- Department of Surgery, The Board of Governors Regenerative Medicine Institute at Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - Asim Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Serine phosphorylation of the hepatitis C virus NS5A protein controls the establishment of replication complexes. J Virol 2014; 89:3123-35. [PMID: 25552726 PMCID: PMC4337517 DOI: 10.1128/jvi.02995-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein is highly phosphorylated and involved in both virus genome replication and virion assembly. We and others have identified serine 225 in NS5A to be a phosphorylation site, but the function of this posttranslational modification in the virus life cycle remains obscure. Here we describe the phenotype of mutants with mutations at serine 225; this residue was mutated to either alanine (S225A; phosphoablatant) or aspartic acid (S225D; phosphomimetic) in the context of both the JFH-1 cell culture infectious virus and a corresponding subgenomic replicon. The S225A mutant exhibited a 10-fold reduction in genome replication, whereas the S225D mutant replicated like the wild type. By confocal microscopy, we show that, in the case of the S225A mutant, the replication phenotype correlated with an altered subcellular distribution of NS5A. This phenotype was shared by viruses with other mutations in the low-complexity sequence I (LCS I), namely, S229D, S232A, and S235D, but not by viruses with mutations that caused a comparable replication defect that mapped to domain II of NS5A (P315A, L321A). Together with other components of the genome replication complex (NS3, double-stranded RNA, and cellular lipids, including phosphatidylinositol 4-phosphate), the mutation in NS5A was restricted to a perinuclear region. This phenotype was not due to cell confluence or another environmental factor and could be partially transcomplemented by wild-type NS5A. We propose that serine phosphorylation within LCS I may regulate the assembly of an active genome replication complex. IMPORTANCE The mechanisms by which hepatitis C virus replicates its RNA genome remain poorly characterized. We show here that phosphorylation of the viral nonstructural protein NS5A at serine residues is important for the efficient assembly of a complex that is able to replicate the viral genome. This research implicates cellular protein kinases in the control of virus replication and highlights the need to further understand the interplay between the virus and the host cell in order to develop potential avenues for future antiviral therapy.
Collapse
|
38
|
Levin A, Neufeldt CJ, Pang D, Wilson K, Loewen-Dobler D, Joyce MA, Wozniak RW, Tyrrell DLJ. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web. PLoS One 2014; 9:e114629. [PMID: 25485706 PMCID: PMC4259358 DOI: 10.1371/journal.pone.0114629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1), importin β3 (IPO5/kap β3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.
Collapse
Affiliation(s)
- Aviad Levin
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (AL); (RWW); (DLJT)
| | | | - Daniel Pang
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kristen Wilson
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Darci Loewen-Dobler
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W. Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (AL); (RWW); (DLJT)
| | - D. Lorne J Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (AL); (RWW); (DLJT)
| |
Collapse
|
39
|
Ross-Thriepland D, Harris M. Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J Gen Virol 2014; 96:727-738. [PMID: 25481754 DOI: 10.1099/jgv.0.000009] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since one of us co-authored a review on NS5A a decade ago, the hepatitis C virus (HCV) field has changed dramatically, primarily due to the advent of the JFH-1 cell culture infectious clone, which allowed the study of all aspects of the virus life cycle from entry to exit. This review will describe advances in our understanding of NS5A biology over the past decade, highlighting how the JFH-1 system has allowed us to determine that NS5A is essential not only in genome replication but also in the assembly of infectious virions. We shall review the recent structural insights - NS5A is predicted to comprise three domains; X-ray crystallography has revealed the structure of domain I but there is a lack of detailed structural information about the other two domains, which are predicted to be largely unstructured. Recent insights into the phosphorylation of NS5A will be discussed, and we shall highlight a few pertinent examples from the ever-expanding list of NS5A-binding partners identified over the past decade. Lastly, we shall review the literature showing that NS5A is a potential target for a new class of highly potent small molecules that function to inhibit virus replication. These direct-acting antivirals (DAAs) are now either licensed, or in the late stages of approval for clinical use both in the USA and in the UK/Europe. In combination with other DAAs targeting the viral protease (NS3) and polymerase (NS5B), they are revolutionizing treatment for HCV infection.
Collapse
Affiliation(s)
- Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
40
|
In vitro and in vivo antiviral activity and resistance profile of ombitasvir, an inhibitor of hepatitis C virus NS5A. Antimicrob Agents Chemother 2014; 59:979-87. [PMID: 25451055 DOI: 10.1128/aac.04226-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ombitasvir (ABT-267) is a hepatitis C virus (HCV) NS5A inhibitor with picomolar potency, pan-genotypic activity, and 50% effective concentrations (EC50s) of 0.82 to 19.3 pM against HCV genotypes 1 to 5 and 366 pM against genotype 6a. Ombitasvir retained these levels of potency against a panel of 69 genotype 1 to 6 chimeric replicons containing the NS5A gene derived from HCV-infected patients, despite the existence of natural sequence diversity within NS5A. In vitro resistance selection identified variants that conferred resistance to ombitasvir in the HCV NS5A gene at amino acid positions 28, 30, 31, 58, and 93 in genotypes 1 to 6. Ombitasvir was evaluated in vivo in a 3-day monotherapy study in 12 HCV genotype 1-infected patients at 5, 25, 50, or 200 mg dosed once daily. All patients in the study were HCV genotype 1a infected and were without preexisting resistant variants at baseline as determined by clonal sequencing. Decreases in HCV RNA up to 3.1 log10 IU/ml were observed. Resistance-associated variants at position 28, 30, or 93 in NS5A were detected in patient samples 48 hours after the first dose. Clonal sequencing analysis indicated that wild-type virus was largely suppressed by ombitasvir during 3-day monotherapy, and at doses higher than 5 mg, resistant variant M28V was also suppressed. Ombitasvir was well tolerated at all doses, and there were no serious or severe adverse events. These data support clinical development of ombitasvir in combination with inhibitors targeting HCV NS3/4A protease (ABT-450 with ritonavir) and HCV NS5B polymerase (ABT-333, dasabuvir) for the treatment of chronic HCV genotype 1 infection. (Study M12-116 is registered at ClinicalTrials.gov under registration no. NCT01181427.).
Collapse
|
41
|
Nettles JH, Stanton RA, Broyde J, Amblard F, Zhang H, Zhou L, Shi J, McBrayer TR, Whitaker T, Coats SJ, Kohler JJ, Schinazi RF. Asymmetric binding to NS5A by daclatasvir (BMS-790052) and analogs suggests two novel modes of HCV inhibition. J Med Chem 2014; 57:10031-43. [PMID: 25365735 PMCID: PMC4266333 DOI: 10.1021/jm501291c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Symmetric, dimeric daclatasvir (BMS-790052) is the clinical lead for a class of picomolar inhibitors of HCV replication. While specific, resistance-bearing mutations at positions 31 and 93 of domain I strongly suggest the viral NS5A as target, structural mechanism(s) for the drugs' activities and resistance remains unclear. Several previous models suggested symmetric binding modes relative to the homodimeric target; however, none can fully explain SAR details for this class. We present semiautomated workflows to model potential receptor conformations for docking. Surprisingly, ranking docked hits with our library-derived 3D-pharmacophore revealed two distinct asymmetric binding modes, at a conserved poly-proline region between 31 and 93, consistent with SAR. Interfering with protein-protein interactions at this membrane interface can explain potent inhibition of replication-complex formation, resistance, effects on lipid droplet distribution, and virion release. These detailed interaction models and proposed mechanisms of action will allow structure-based design of new NS5A directed compounds with higher barriers to HCV resistance.
Collapse
Affiliation(s)
- James H Nettles
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Atoom AM, Taylor NGA, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology 2014; 462-463:377-87. [PMID: 25001174 PMCID: PMC7112009 DOI: 10.1016/j.virol.2014.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden with 2–3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy. This review paper provides an overview of the literature investigating HCV. The content focuses on p7 structural and functional details. We summarize the developments to date regarding potential anti-p7 compounds.
Collapse
Affiliation(s)
- Ali M Atoom
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Nathan G A Taylor
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Rodney S Russell
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada.
| |
Collapse
|
43
|
Eberle CA, Zayas M, Stukalov A, Pichlmair A, Alvisi G, Müller AC, Bennett KL, Bartenschlager R, Superti-Furga G. The lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production. Virology 2014; 462-463:34-41. [PMID: 25092459 PMCID: PMC4139193 DOI: 10.1016/j.virol.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/28/2014] [Accepted: 05/14/2014] [Indexed: 01/19/2023]
Abstract
Hepatitis C virus (HCV) is a considerable global health and economic burden. The HCV nonstructural protein (NS) 5A is essential for the viral life cycle. The ability of NS5A to interact with different host and viral proteins allow it to manipulate cellular pathways and regulate viral processes, including RNA replication and virus particle assembly. As part of a proteomic screen, we identified several NS5A-binding proteins, including the lysine methyltransferase SET and MYND domain containing protein 3 (SMYD3). We confirmed the interaction in the context of viral replication by co-immunoprecipitation and co-localization studies. Mutational analyses revealed that the MYND-domain of SMYD3 and domain III of NS5A are required for the interaction. Overexpression of SMYD3 resulted in decreased intracellular and extracellular virus titers, whilst viral RNA replication remained unchanged, suggesting that SMYD3 negatively affects HCV particle production in a NS5A-dependent manner. Identification of SMYD3 as interactor of the HCV protein NS5A using a proteomic approach. Confirmation of SMYD3 as interactor of NS5A in the context of active viral replication. Identification of SMYD3 as negative regulator of HCV infectious particle assembly.
Collapse
Affiliation(s)
- Carol-Ann Eberle
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Andreas Pichlmair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gualtiero Alvisi
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany; Department of Molecular Medicine, Via Gabelli 63, 35121 Padua, Italy
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
44
|
Khachatoorian R, Ganapathy E, Ahmadieh Y, Wheatley N, Sundberg C, Jung CL, Arumugaswami V, Raychaudhuri S, Dasgupta A, French SW. The NS5A-binding heat shock proteins HSC70 and HSP70 play distinct roles in the hepatitis C viral life cycle. Virology 2014; 454-455:118-27. [PMID: 24725938 DOI: 10.1016/j.virol.2014.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
We previously identified HSP70 and HSC70 in complex with NS5A in a proteomic screen. Here, coimmunoprecipitation studies confirmed NS5A/HSC70 complex formation during infection, and immunofluorescence studies showed NS5A and HSC70 to colocalize. Unlike HSP70, HSC70 knockdown did not decrease viral protein levels. Rather, intracellular infectious virion assembly was significantly impaired by HSC70 knockdown. We also discovered that both HSC70 nucleotide binding and substrate binding domains directly bind NS5A whereas only the HSP70 nucleotide binding domain does. Knockdown of both HSC70 and HSP70 demonstrated an additive reduction in virus production. This data suggests that HSC70 and HSP70 play discrete roles in the viral life cycle. Investigation of these different functions may facilitate developing of novel strategies that target host proteins to treat HCV infection.
Collapse
Affiliation(s)
- Ronik Khachatoorian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Ekambaram Ganapathy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Yasaman Ahmadieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States of America.
| | - Nicole Wheatley
- Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Christopher Sundberg
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Chun-Ling Jung
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; Department of Surgery, Regenerative Medicine Institute at Cedars-Sinai Medical Center, Los Angeles, CA, United States of America.
| | - Santanu Raychaudhuri
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Asim Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
45
|
HCV core residues critical for infectivity are also involved in core-NS5A complex formation. PLoS One 2014; 9:e88866. [PMID: 24533158 PMCID: PMC3923060 DOI: 10.1371/journal.pone.0088866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions.
Collapse
|
46
|
Belema M, Lopez OD, Bender JA, Romine JL, St Laurent DR, Langley DR, Lemm JA, O'Boyle DR, Sun JH, Wang C, Fridell RA, Meanwell NA. Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J Med Chem 2014; 57:1643-72. [PMID: 24621191 DOI: 10.1021/jm401793m] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lead inhibitors that target the function of the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein have been identified by phenotypic screening campaigns using HCV subgenomic replicons. The demonstration of antiviral activity in HCV-infected subjects by the HCV NS5A replication complex inhibitor (RCI) daclatasvir (1) spawned considerable interest in this mechanistic approach. In this Perspective, we summarize the medicinal chemistry studies that led to the discovery of 1 and other chemotypes for which resistance maps to the NS5A protein and provide synopses of the profiles of many of the compounds currently in clinical trials. We also summarize what is currently known about the NS5A protein and the studies using NS5A RCIs and labeled analogues that are helping to illuminate aspects of both protein function and inhibitor interaction. We conclude with a synopsis of the results of notable clinical trials with HCV NS5A RCIs.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, ‡Department of Virology Discovery, and §Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ross-Thriepland D, Harris M. Insights into the complexity and functionality of hepatitis C virus NS5A phosphorylation. J Virol 2014; 88:1421-32. [PMID: 24257600 PMCID: PMC3911623 DOI: 10.1128/jvi.03017-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/11/2013] [Indexed: 01/11/2023] Open
Abstract
The hepatitis C virus nonstructural NS5A protein has roles in genome replication, virus assembly, and modulation of host pathways. NS5A is a phosphoprotein, and it has been proposed that differential phosphorylation could regulate the various roles of the protein. By SDS-PAGE, two forms of NS5A with distinct apparent molecular weights can be observed, referred to as basally phosphorylated and hyperphosphorylated species. However, the sites of phosphorylation on these two species have not been unequivocally identified, hampering our understanding of the function and regulation of NS5A. To address this, we purified tagged NS5A from cells harboring a replicating subgenomic replicon and analyzed the purified protein by mass spectrometry. We identified six peptide fragments containing 12 phosphorylated residues and were able to assign four of these to serines 146, 222, and 225 and threonine 348. A serine-rich peptide fragment spanning residues 221 to 240 was highly phosphorylated. Using mutagenesis, we identified roles for a subset of these phosphoacceptors in virus genome replication. We further showed that phosphorylation at S146 regulates hyperphosphorylation, and by generating a phospho-specific antibody targeted to pS222, we identified that S222 phosphorylation predominates in the hyperphosphorylated species. Last, by introducing phosphomimetic mutations across residues 221 to 240, we demonstrated changes in the mobility of the basally phosphorylated species suggestive of a sequential phosphorylation cascade within this serine-rich cluster. We propose that this regulation could drive a conformational switch between the dimeric structures of NS5A and could also explain the different functions of the protein in the virus life cycle.
Collapse
Affiliation(s)
- Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
48
|
Functional characterization of bovine viral diarrhea virus nonstructural protein 5A by reverse genetic analysis and live cell imaging. J Virol 2013; 88:82-98. [PMID: 24131714 DOI: 10.1128/jvi.01957-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging.
Collapse
|
49
|
Preclinical characterization of GSK2336805, a novel inhibitor of hepatitis C virus replication that selects for resistance in NS5A. Antimicrob Agents Chemother 2013; 58:38-47. [PMID: 24126581 DOI: 10.1128/aac.01363-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GSK2336805 is an inhibitor of hepatitis C virus (HCV) with picomolar activity on the standard genotype 1a, 1b, and 2a subgenomic replicons and exhibits a modest serum shift. GSK2336805 was not active on 22 RNA and DNA viruses that were profiled. We have identified changes in the N-terminal region of NS5A that cause a decrease in the activity of GSK2336805. These mutations in the genotype 1b replicon showed modest shifts in compound activity (<13-fold), while mutations identified in the genotype 1a replicon had a more dramatic impact on potency. GSK2336805 retained activity on chimeric replicons containing NS5A patient sequences from genotype 1 and patient and consensus sequences for genotypes 4 and 5 and part of genotype 6. Combination and cross-resistance studies demonstrated that GSK2336805 could be used as a component of a multidrug HCV regimen either with the current standard of care or in combination with compounds with different mechanisms of action that are still progressing through clinical development.
Collapse
|
50
|
Belema M, Meanwell NA, Bender JA, Lopez OD, Hewawasam P, Langley DR. Discovery and Clinical Validation of HCV Inhibitors Targeting the NS5A Protein. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
HCV non‐structural protein 5A (NS5A) is a multifunctional protein that plays a diverse set of roles in the replication cycle of the virus. Although a significant level of effort has been invested over the past decade at characterizing this protein, our understanding and appreciation of its full structure and function remain far from complete. Despite these drawbacks, however, great strides have been made towards discovering potent HCV NS5A inhibitors that have exhibited promising efficacy in early clinical trials, and these inhibitors have the potential to become an integral component of effective combination therapies that are expected to emerge in the near future. Highlights of the biochemical characterization of the HCV NS5A protein, aspects of the seminal drug discovery effort that culminated in the identification of daclatasvir with which clinical proof‐of‐concept was obtained for NS5A as a target and the follow‐up efforts that identified additional inhibitors, along with findings from mode‐of‐action studies, are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - David R. Langley
- Department of Computer‐Assisted Drug Design Bristol‐Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| |
Collapse
|