1
|
Lee M, Cosic A, Tobler K, Aguilar C, Fraefel C, Eichwald C. Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J. J Virol 2024; 98:e0097524. [PMID: 39194242 PMCID: PMC11423710 DOI: 10.1128/jvi.00975-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Rotaviruses (RVs) are classified into nine species, A-D and F-J, with species A being the most studied. In rotavirus of species A (RVA), replication occurs in viroplasms, which are cytosolic globular inclusions composed of main building block proteins NSP5, NSP2, and VP2. The co-expression of NSP5 with either NSP2 or VP2 in uninfected cells leads to the formation of viroplasm-like structures (VLSs). Although morphologically identical to viroplasms, VLSs do not produce viral progeny but serve as excellent tools for studying complex viroplasms. A knowledge gap exists regarding non-RVA viroplasms due to the lack of specific antibodies and suitable cell culture systems. In this study, we explored the ability of NSP5 and NSP2 from non-RVA species to form VLSs. The co-expression of these two proteins led to globular VLSs in RV species A, B, D, F, G, and I, while RVC formed filamentous VLSs. The co-expression of NSP5 and NSP2 of RV species H and J did not result in VLS formation. Interestingly, NSP5 of all RV species self-oligomerizes, with the ordered C-terminal region, termed the tail, being necessary for self-oligomerization of RV species A-C and G-J. Except for NSP5 from RVJ, all NSP5 interacted with their cognate NSP2. We also found that interspecies VLS are formed between closely related RV species B with G and D with F. Additionally, VLS from RVH and RVJ formed when the tail of NSP5 RVH and RVJ was replaced by the tail of NSP5 from RVA and co-expressed with their respective NSP2. IMPORTANCE Rotaviruses (RVs) are classified into nine species, A-D and F-J, infecting mammals and birds. Due to the lack of research tools, all cumulative knowledge on RV replication is based on RV species A (RVA). The RV replication compartments are globular cytosolic structures named viroplasms, which have only been identified in RV species A. In this study, we examined the formation of viroplasm-like structures (VLSs) by the co-expression of NSP5 with NSP2 across RV species A to J. Globular VLSs formed for RV species A, B, D, F, G, and I, while RV species C formed filamentous structures. The RV species H and J did not form VLS with their cognates NSP5 and NSP2. Similar to RVA, NSP5 self-oligomerizes in all RV species, which is required for VLS formation. This study provides basic knowledge of the non-RVA replication mechanisms, which could help develop strategies to halt virus infection across RV species.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Ariana Cosic
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Claudio Aguilar
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Zhou X, Hou X, Xiao G, Liu B, Jia H, Wei J, Mi X, Guo Q, Wei Y, Zhai SL. Emergence of a Novel G4P[6] Porcine Rotavirus with Unique Sequence Duplication in NSP5 Gene in China. Animals (Basel) 2024; 14:1790. [PMID: 38929409 PMCID: PMC11200575 DOI: 10.3390/ani14121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus is a major causative agent of diarrhoea in children, infants, and young animals around the world. The associated zoonotic risk necessitates the serious consideration of the complete genetic information of rotavirus. A segmented genome makes rotavirus prone to rearrangement and the formation of a new viral strain. Monitoring the molecular epidemiology of rotavirus is essential for its prevention and control. The quantitative RT-PCR targeting the NSP5 gene was used to detect rotavirus group A (RVA) in pig faecal samples, and two pairs of universal primers and protocols were used for amplifying the G and P genotype. The genotyping and phylogenetic analysis of 11 genes were performed by RT-PCR and a basic bioinformatics method. A unique G4P[6] rotavirus strain, designated S2CF (RVA/Pig-tc/CHN/S2CF/2023/G4P[6]), was identified in one faecal sample from a piglet with severe diarrhoea in Guangdong, China. Whole genome sequencing and analysis suggested that the 11 segments of the S2CF strain showed a unique Wa-like genotype constellation and a typical porcine RVA genomic configuration of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Notably, 4 of the 11 gene segments (VP4, VP6, VP2, and NSP5) clustered consistently with human-like RVAs, suggesting independent human-to-porcine interspecies transmission. Moreover, a unique 344-nt duplicated sequence was identified for the first time in the untranslated region of NSP5. This study further reveals the genetic diversity and potential inter-species transmission of porcine rotavirus.
Collapse
Affiliation(s)
- Xia Zhou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Xueyan Hou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guifa Xiao
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Handuo Jia
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Xiaoyun Mi
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Shao-Lun Zhai
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| |
Collapse
|
3
|
Nichols SL, Haller C, Borodavka A, Esstman SM. Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly. Viruses 2024; 16:814. [PMID: 38932107 PMCID: PMC11209291 DOI: 10.3390/v16060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2's associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah L. Nichols
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| | - Cyril Haller
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Sarah M. Esstman
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| |
Collapse
|
4
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
5
|
Vetter J, Papa G, Tobler K, Rodriguez JM, Kley M, Myers M, Wiesendanger M, Schraner EM, Luque D, Burrone OR, Fraefel C, Eichwald C. The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication. mBio 2024; 15:e0049924. [PMID: 38470055 PMCID: PMC11005421 DOI: 10.1128/mbio.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.
Collapse
Affiliation(s)
- Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Guido Papa
- Molecular Immunology Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Javier M. Rodriguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Manuel Kley
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Michael Myers
- Proteomics Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mahesa Wiesendanger
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Oscar R. Burrone
- Molecular Immunology Lab, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Borodavka A, Acker J. Seeing Biomolecular Condensates Through the Lens of Viruses. Annu Rev Virol 2023; 10:163-182. [PMID: 37040799 DOI: 10.1146/annurev-virology-111821-103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.
Collapse
Affiliation(s)
- Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
7
|
Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation. J Virol 2023; 97:e0003923. [PMID: 36749077 PMCID: PMC9973012 DOI: 10.1128/jvi.00039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.
Collapse
|
8
|
Chandra P, Banerjee S, Saha P, Chawla-Sarkar M, Patra U. Sneaking into the viral safe-houses: Implications of host components in regulating integrity and dynamics of rotaviral replication factories. Front Cell Infect Microbiol 2022; 12:977799. [PMID: 36189370 PMCID: PMC9515456 DOI: 10.3389/fcimb.2022.977799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The biology of the viral life cycle essentially includes two structural and functional entities—the viral genome and protein machinery constituting the viral arsenal and an array of host cellular components which the virus closely associates with—to ensure successful perpetuation. The obligatory requirements of the virus to selectively evade specific host cellular factors while exploiting certain others have been immensely important to provide the platform for designing host-directed antiviral therapeutics. Although the spectrum of host-virus interaction is multifaceted, host factors that particularly influence viral replication have immense therapeutic importance. During lytic proliferation, viruses usually form replication factories which are specialized subcellular structures made up of viral proteins and replicating nucleic acids. These viral niches remain distinct from the rest of the cellular milieu, but they effectively allow spatial proximity to selective host determinants. Here, we will focus on the interaction between the replication compartments of a double stranded RNA virus rotavirus (RV) and the host cellular determinants of infection. RV, a diarrheagenic virus infecting young animals and children, forms replication bodies termed viroplasms within the host cell cytoplasm. Importantly, viroplasms also serve as the site for transcription and early morphogenesis of RVs and are very dynamic in nature. Despite advances in the understanding of RV components that constitute the viroplasmic architecture, knowledge of the contribution of host determinants to viroplasm dynamicity has remained limited. Emerging evidence suggests that selective host determinants are sequestered inside or translocated adjacent to the RV viroplasms. Functional implications of such host cellular reprogramming are also ramifying—disarming the antiviral host determinants and usurping the pro-viral components to facilitate specific stages of the viral life cycle. Here, we will provide a critical update on the wide variety of host cellular pathways that have been reported to regulate the spatial and temporal dynamicity of RV viroplasms. We will also discuss the methods used so far to study the host-viroplasm interactions and emphasize on the potential host factors which can be targeted for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Pritam Chandra
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shreya Banerjee
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Priyanka Saha
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
- *Correspondence: Mamta Chawla-Sarkar, , ; Upayan Patra,
| | - Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- *Correspondence: Mamta Chawla-Sarkar, , ; Upayan Patra,
| |
Collapse
|
9
|
Abstract
Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
Collapse
|
10
|
Sander WJ, Kemp G, Hugo A, Pohl CH, O’Neill HG. Rotavirus-Mediated Prostaglandin E2 Production in MA104 Cells Promotes Virus Attachment and Internalisation, Resulting in an Increased Viral Load. Front Physiol 2022; 13:805565. [PMID: 35153833 PMCID: PMC8831913 DOI: 10.3389/fphys.2022.805565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Rotaviruses are one of the leading causes of severe dehydrating diarrhoea in infants and children under the age of five. Despite the introduction of vaccines, disease burden remains high in sub-Saharan Africa, with no known anti-viral treatments available. During early infection rotavirus attaches to several cellular receptors and enters the cells by either clathrin-dependent or -independent endocytosis. Prostaglandin E2, an abundant eicosanoid, is produced from arachidonic acid during rotavirus infection and inhibition of prostaglandin E2 formation have a deleterious effect on rotavirus infection. In this study, MA104 cells were supplemented with γ-linolenic acid (GLA), a precursor of arachidonic acid. Infection of supplemented cells with rotavirus SA11 led to a depletion in the relative percentages of GLA and arachidonic acid which coincided with an increased production of prostaglandin E2 as monitored by ELISA. Confocal microscopy demonstrated that prostaglandin E2 co-localises with the viroplasm-forming proteins, NSP5 and NSP2. Due to the known association of viroplasms with lipid droplets and the fact that lipid droplets are sites for prostaglandin E2 production, our results indicate a possible role for viroplasms in the production of rotavirus-induced prostaglandin E2. Replication kinetics showed that inhibitors, targeting the biosynthesis of prostaglandin E2, had negative effects on rotavirus yield, especially during the early stages of infection. Using flow cytometry and prostaglandin E2 addback experiments, we show that prostaglandin E2 enhances the attachment and internalisation of rotavirus in MA104 cells indicating a possible role for prostaglandin E2 during clathrin-mediated rotavirus entry. The production of prostaglandin E2 during rotavirus infection could serve as a possible target for anti-viral treatment.
Collapse
Affiliation(s)
- Willem J. Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Gabré Kemp
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Arnold Hugo
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Hester G. O’Neill,
| |
Collapse
|
11
|
Geiger F, Acker J, Papa G, Wang X, Arter WE, Saar KL, Erkamp NA, Qi R, Bravo JPK, Strauss S, Krainer G, Burrone OR, Jungmann R, Knowles TPJ, Engelke H, Borodavka A. Liquid-liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO J 2021; 40:e107711. [PMID: 34524703 PMCID: PMC8561643 DOI: 10.15252/embj.2021107711] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Florian Geiger
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julia Acker
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Guido Papa
- International Center for Genetic Engineering and BiotechnologyTriesteItaly
- Present address:
Medical Research Council Laboratory of Molecular Biology (MRC LMB)CambridgeUK
| | - Xinyu Wang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Kadi L Saar
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Nadia A Erkamp
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Runzhang Qi
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Jack PK Bravo
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Present address:
Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Sebastian Strauss
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| | - Georg Krainer
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Oscar R Burrone
- International Center for Genetic Engineering and BiotechnologyTriesteItaly
| | - Ralf Jungmann
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| | | | - Hanna Engelke
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Institute of Pharmaceutical SciencesKarl‐Franzens‐Universität GrazGrazAustria
| | - Alexander Borodavka
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| |
Collapse
|
12
|
Rotaviral nonstructural protein 5 (NSP5) promotes proteasomal degradation of up-frameshift protein 1 (UPF1), a principal mediator of nonsense-mediated mRNA decay (NMD) pathway, to facilitate infection. Cell Signal 2021; 89:110180. [PMID: 34718106 DOI: 10.1016/j.cellsig.2021.110180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Nonsense-mediated mRNA decay (NMD), a cellular RNA quality system, has been shown to be an ancestral form of cellular antiviral response that can restrict viral infection by targeting viral RNA for degradation or other various mechanisms. In support to this hypothesis, emerging evidences unraveled that viruses have evolved numerous mechanisms to circumvent or modulate the NMD pathway to ensure unhindered replication within the host cell. In this study, we investigated the potential interplay between the cellular NMD pathway and rotavirus (RV). Our data suggested that rotavirus infection resulted in global inhibition of NMD pathway by downregulating the expression of UPF1 in a strain independent manner. UPF1 expression was found to be regulated at the post-transcriptional level by ubiquitin-proteasome mediated degradation pathway. Subsequent studies revealed rotaviral non-structural protein 5 (NSP5) associates with UPF1 and promotes its cullin-dependent proteasome mediated degradation. Furthermore, ectopic expression of UPF1 during RV infection resulted in reduced expression of viral proteins and viral RNAs leading to diminished production of infective rotavirus particles, suggesting the anti-rotaviral role of UPF1. Finally, the delayed degradation kinetics of transfected rotaviral RNA in UPF1 and UPF2 depleted cells and the association of UPF1 and UPF2 with viral RNAs suggested that NMD targets rotaviral RNAs for degradation. Collectively, the present study demonstrates the antiviral role of NMD pathway during rotavirus infection and also reveals the underlying mechanism by which rotavirus overwhelms NMD pathway to establish successful replication.
Collapse
|
13
|
Papa G, Venditti L, Braga L, Schneider E, Giacca M, Petris G, Burrone OR. CRISPR-Csy4-Mediated Editing of Rotavirus Double-Stranded RNA Genome. Cell Rep 2021; 32:108205. [PMID: 32997981 PMCID: PMC7523552 DOI: 10.1016/j.celrep.2020.108205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-nucleases have been widely applied for editing cellular and viral genomes, but nuclease-mediated genome editing of double-stranded RNA (dsRNA) viruses has not yet been reported. Here, by engineering CRISPR-Csy4 nuclease to localize to rotavirus viral factories, we achieve the nuclease-mediated genome editing of rotavirus, an important human and livestock pathogen with a multisegmented dsRNA genome. Rotavirus replication intermediates cleaved by Csy4 is edited through the formation of precise deletions in the targeted genome segments in a single replication cycle. Using CRISPR-Csy4-mediated editing of rotavirus genome, we label the products of rotavirus secondary transcription made by newly assembled viral particles during rotavirus replication, demonstrating that this step largely contributes to the overall production of viral proteins. We anticipate that the nuclease-mediated cleavage of dsRNA virus genomes will promote an advanced level of understanding of viral replication and host-pathogen interactions, also offering opportunities to develop therapeutics.
Collapse
Affiliation(s)
- Guido Papa
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| | - Luca Venditti
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Edoardo Schneider
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Oscar R Burrone
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
14
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
15
|
Abstract
Group A rotaviruses (RVAs) are the major cause of severe acute gastroenteritis (AGE) in children under 5 years of age, annually resulting in nearly 130,000 deaths worldwide. Social conditions in developing countries that contribute to decreased oral rehydration and vaccine efficacy and the lack of approved antiviral drugs position RVA as a global health concern. In this minireview, we present an update in the field of antiviral compounds, mainly in relation to the latest findings in RVA virion structure and the viral replication cycle. In turn, we attempt to provide a perspective on the possible treatments for RVA-associated AGE, with special focus on novel approaches, such as those representing broad-spectrum therapeutic options. In this context, the modulation of host factors, lipid droplets, and the viral polymerase, which is highly conserved among AGE-causing viruses, are analyzed as possible drug targets.
Collapse
|
16
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Abid N, Pietrucci D, Salemi M, Chillemi G. New Insights into the Effect of Residue Mutations on the Rotavirus VP1 Function Using Molecular Dynamic Simulations. J Chem Inf Model 2020; 60:5011-5025. [PMID: 32786703 DOI: 10.1021/acs.jcim.0c00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rotavirus group A remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious questions. Thirteen VP1 structures with mutations mapping to the RNA entry site were analyzed using molecular dynamics simulations, and the results were combined with the experimental findings reported previously. The results revealed structural fluctuations in the protein-protein recognition sites and in the bottleneck of the RNA entry site that may affect the interaction of different proteins and delay the initiation of the viral replication, respectively. Altogether, the structural analysis of VP1 in the region crucial for the initiation of the viral replication, mainly the bottleneck site, may boost efforts to develop antivirals, as they might complement the available vaccines.
Collapse
Affiliation(s)
- Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia.,High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, 2020 Ariana-Tunis, Tunisia
| | - Daniele Pietrucci
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, University of Florida, P.O. Box 100009, Gainesville, Florida 32610-3633, United States
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems, DIBAF, University of Tuscia, Via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| |
Collapse
|
18
|
Criglar JM, Crawford SE, Zhao B, Smith HG, Stossi F, Estes MK. A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets. J Virol 2020; 94:e00972-20. [PMID: 32461314 PMCID: PMC7375380 DOI: 10.1128/jvi.00972-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Many RNA viruses replicate in cytoplasmic compartments (virus factories or viroplasms) composed of viral and cellular proteins, but the mechanisms required for their formation remain largely unknown. Rotavirus (RV) replication in viroplasms requires interactions between virus nonstructural proteins NSP2 and NSP5, which are associated with components of lipid droplets (LDs). We previously identified two forms of NSP2 in RV-infected cells, a cytoplasmically dispersed form (dNSP2) and a viroplasm-specific form (vNSP2), which interact with hypophosphorylated and hyperphosphorylated NSP5, respectively, indicating that a coordinated phosphorylation cascade controls viroplasm assembly. The cellular kinase CK1α phosphorylates NSP2 on serine 313, triggering the localization of vNSP2 to sites of viroplasm assembly and its association with hyperphosphorylated NSP5. Using reverse genetics, we generated a rotavirus with a phosphomimetic NSP2 (S313D) mutation to directly evaluate the role of CK1α NSP2 phosphorylation in viroplasm formation. Recombinant rotavirus NSP2 S313D (rRV NSP2 S313D) is significantly delayed in viroplasm formation and in virus replication and interferes with wild-type RV replication in coinfection. Taking advantage of the delay in viroplasm formation, the NSP2 phosphomimetic mutant was used as a tool to observe very early events in viroplasm assembly. We show that (i) viroplasm assembly correlates with NSP5 hyperphosphorylation and (ii) vNSP2 S313D colocalizes with RV-induced LDs without NSP5, suggesting that vNSP2 phospho-S313 is sufficient for interacting with LDs and may be the virus factor required for RV-induced LD formation. Further studies with the rRV NSP2 S313D virus are expected to reveal new aspects of viroplasm and LD initiation and assembly.IMPORTANCE Reverse genetics was used to generate a recombinant rotavirus with a single phosphomimetic mutation in nonstructural protein 2 (NSP2 S313D) that exhibits delayed viroplasm formation, delayed replication, and an interfering phenotype during coinfection with wild-type rotavirus, indicating the importance of this amino acid during virus replication. Exploiting the delay in viroplasm assembly, we found that viroplasm-associated NSP2 colocalizes with rotavirus-induced lipid droplets prior to the accumulation of other rotavirus proteins that are required for viroplasm formation and that NSP5 hyperphosphorylation is required for viroplasm assembly. These data suggest that NSP2 phospho-S313 is sufficient for interaction with lipid droplets and may be the virus factor that induces lipid droplet biogenesis in rotavirus-infected cells. Lipid droplets are cellular organelles critical for the replication of many viral and bacterial pathogens, and thus, understanding the mechanism of NSP2-mediated viroplasm/lipid droplet initiation and interaction will lead to new insights into this important host-pathogen interaction.
Collapse
Affiliation(s)
- Jeanette M Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hunter G Smith
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Conserved Rotavirus NSP5 and VP2 Domains Interact and Affect Viroplasm. J Virol 2020; 94:JVI.01965-19. [PMID: 31915278 DOI: 10.1128/jvi.01965-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/21/2019] [Indexed: 01/15/2023] Open
Abstract
One step of the life cycle common to all rotaviruses (RV) studied so far is the formation of viroplasms, membrane-less cytosolic inclusions providing a microenvironment for early morphogenesis and RNA replication. Viroplasm-like structures (VLS) are simplified viroplasm models consisting of complexes of nonstructural protein 5 (NSP5) with the RV core shell VP2 or NSP2. We identified and characterized the domains required for NSP5-VP2 interaction and VLS formation. VP2 mutations L124A, V865A, and I878A impaired both NSP5 hyperphosphorylation and NSP5/VP2 VLS formation. Moreover, NSP5-VP2 interaction does not depend on NSP5 hyperphosphorylation. The NSP5 tail region is required for VP2 interaction. Notably, VP2 L124A expression acts as a dominant-negative element by disrupting the formation of either VLS or viroplasms and blocking RNA synthesis. In silico analyses revealed that VP2 L124, V865, and I878 are conserved among RV species A to H. Detailed knowledge of the protein interaction interface required for viroplasm formation may facilitate the design of broad-spectrum antivirals to block RV replication.IMPORTANCE Alternative treatments to combat rotavirus infection are a requirement for susceptible communities where vaccines cannot be applied. This demand is urgent for newborn infants, immunocompromised patients, adults traveling to high-risk regions, and even for the livestock industry. Aside from structural and physiological divergences among RV species studied before now, all replicate within cytosolic inclusions termed viroplasms. These inclusions are composed of viral and cellular proteins and viral RNA. Viroplasm-like structures (VLS), composed of RV protein NSP5 with either NSP2 or VP2, are models for investigating viroplasms. In this study, we identified a conserved amino acid in the VP2 protein, L124, necessary for its interaction with NSP5 and the formation of both VLSs and viroplasms. As RV vaccines cover a narrow range of viral strains, the identification of VP2 L124 residue lays the foundations for the design of drugs that specifically block NSP5-VP2 interaction as a broad-spectrum RV antiviral.
Collapse
|
20
|
MicroRNA-7 Inhibits Rotavirus Replication by Targeting Viral NSP5 In Vivo and In Vitro. Viruses 2020; 12:v12020209. [PMID: 32069901 PMCID: PMC7077326 DOI: 10.3390/v12020209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Rotavirus (RV) is the major causes of severe diarrhea in infants and young children under five years of age. There are no effective drugs for the treatment of rotavirus in addition to preventive live attenuated vaccine. Recent evidence demonstrates that microRNAs (miRNAs) can affect RNA virus replication. However, the antiviral effect of miRNAs during rotavirus replication are largely unknown. Here, we determined that miR-7 is upregulated during RV replication and that it targets the RV NSP5 (Nonstructural protein 5). Results suggested that miR-7 affected viroplasm formation and inhibited RV replication by down-regulating RV NSP5 expression. Up-regulation of miR-7 expression is a common regulation method of different G-type RV-infected host cells. Then, we further revealed the antiviral effect of miR-7 in diarrhea suckling mice model. MiR-7 is able to inhibit rotavirus replication in vitro and in vivo. These data provide that understanding the role of cellular miR-7 during rotaviral replication may help in the identification of novel therapeutic small RNA molecule drug for anti-rotavirus.
Collapse
|
21
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
22
|
Abid N, Chillemi G, Salemi M. Coding-Gene Coevolution Analysis of Rotavirus Proteins: A Bioinformatics and Statistical Approach. Genes (Basel) 2019; 11:genes11010028. [PMID: 31878331 PMCID: PMC7016848 DOI: 10.3390/genes11010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023] Open
Abstract
Rotavirus remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious question. The distribution of unusual genotypes subject to viral fitness is influenced by interactions among viral proteins. The present work aimed at analyzing the genetic constellation and the coevolution of rotavirus coding genes for the available rotavirus genotypes. Seventy-two full genome sequences of different genetic constellations were analyzed using a genetic algorithm. The results revealed an extensive genome-wide covariance network among the 12 viral proteins. Altogether, the emergence of new genotypes represents a challenge to the outcome and success of vaccination and the coevolutionary analysis of rotavirus proteins may boost efforts to better understand the interaction networks of proteins during viral replication/transcription.
Collapse
Affiliation(s)
- Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, Monastir 5000, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, Ariana-Tunis 2020, Tunisia
- Correspondence: or ; Tel.: +216-92–974-000
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, DIBAF, University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, P.O. Box 100009, Gainesville, FL 32610-3633, USA;
| |
Collapse
|
23
|
Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories. J Virol 2019; 94:JVI.01110-19. [PMID: 31619556 PMCID: PMC6912106 DOI: 10.1128/jvi.01110-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms. Rotavirus (RV) replicates in round-shaped cytoplasmic viral factories, although how they assemble remains unknown. During RV infection, NSP5 undergoes hyperphosphorylation, which is primed by the phosphorylation of a single serine residue. The role of this posttranslational modification in the formation of viroplasms and its impact on virus replication remain obscure. Here, we investigated the role of NSP5 during RV infection by taking advantage of a modified fully tractable reverse-genetics system. A trans-complementing cell line stably producing NSP5 was used to generate and characterize several recombinant rotaviruses (rRVs) with mutations in NSP5. We demonstrate that an rRV lacking NSP5 was completely unable to assemble viroplasms and to replicate, confirming its pivotal role in rotavirus replication. A number of mutants with impaired NSP5 phosphorylation were generated to further interrogate the function of this posttranslational modification in the assembly of replication-competent viroplasms. We showed that the rRV mutant strains exhibited impaired viral replication and the ability to assemble round-shaped viroplasms in MA104 cells. Furthermore, we investigated the mechanism of NSP5 hyperphosphorylation during RV infection using NSP5 phosphorylation-negative rRV strains, as well as MA104-derived stable transfectant cell lines expressing either wild-type NSP5 or selected NSP5 deletion mutants. Our results indicate that NSP5 hyperphosphorylation is a crucial step for the assembly of round-shaped viroplasms, highlighting the key role of the C-terminal tail of NSP5 in the formation of replication-competent viral factories. Such a complex NSP5 phosphorylation cascade may serve as a paradigm for the assembly of functional viral factories in other RNA viruses. IMPORTANCE The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms.
Collapse
|
24
|
Garcés Suárez Y, Martínez JL, Torres Hernández D, Hernández HO, Pérez-Delgado A, Méndez M, Wood CD, Rendon-Mancha JM, Silva-Ayala D, López S, Guerrero A, Arias CF. Nanoscale organization of rotavirus replication machineries. eLife 2019; 8:e42906. [PMID: 31343403 PMCID: PMC6692110 DOI: 10.7554/elife.42906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Rotavirus genome replication and assembly take place in cytoplasmic electron dense inclusions termed viroplasms (VPs). Previous conventional optical microscopy studies observing the intracellular distribution of rotavirus proteins and their organization in VPs have lacked molecular-scale spatial resolution, due to inherent spatial resolution constraints. In this work we employed super-resolution microscopy to reveal the nanometric-scale organization of VPs formed during rotavirus infection, and quantitatively describe the structural organization of seven viral proteins within and around the VPs. The observed viral components are spatially organized as five concentric layers, in which NSP5 localizes at the center of the VPs, surrounded by a layer of NSP2 and NSP4 proteins, followed by an intermediate zone comprised of the VP1, VP2, VP6. In the outermost zone, we observed a ring of VP4 and finally a layer of VP7. These findings show that rotavirus VPs are highly organized organelles.
Collapse
Affiliation(s)
- Yasel Garcés Suárez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Jose L Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - David Torres Hernández
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Haydee Olinca Hernández
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Arianna Pérez-Delgado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Mayra Méndez
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
| | - Christopher D Wood
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Juan Manuel Rendon-Mancha
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
| | - Daniela Silva-Ayala
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
25
|
Tenorio R, Fernández de Castro I, Knowlton JJ, Zamora PF, Sutherland DM, Risco C, Dermody TS. Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Viruses 2019; 11:v11030288. [PMID: 30901959 PMCID: PMC6466366 DOI: 10.3390/v11030288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Most viruses that replicate in the cytoplasm of host cells form neoorganelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Reoviruses are common pathogens of mammals that have been linked to celiac disease and show promise for oncolytic applications. These viruses form nonenveloped, double-shelled virions that contain ten segments of double-stranded RNA. Replication organelles in reovirus-infected cells are nucleated by viral nonstructural proteins µNS and σNS. Both proteins partition the endoplasmic reticulum to form the matrix of these structures. The resultant membranous webs likely serve to anchor viral RNA⁻protein complexes for the replication of the reovirus genome and the assembly of progeny virions. Ongoing studies of reovirus replication organelles will advance our knowledge about the strategies used by viruses to commandeer host biosynthetic pathways and may expose new targets for therapeutic intervention against diverse families of pathogenic viruses.
Collapse
Affiliation(s)
- Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Jonathan J Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
26
|
Zhang J, Guo H, Zhang F, Chen Q, Chang M, Fang Q. NS38 is required for aquareovirus replication via interaction with viral core proteins and host eIF3A. Virology 2019; 529:216-225. [DOI: 10.1016/j.virol.2019.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
27
|
Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proc Natl Acad Sci U S A 2018; 115:E12015-E12023. [PMID: 30509975 DOI: 10.1073/pnas.1717944115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rotavirus (RV) genome is replicated and packaged into virus progeny in cytoplasmic inclusions called viroplasms, which require interactions between RV nonstructural proteins NSP2 and NSP5. How viroplasms form remains unknown. We previously found two forms of NSP2 in RV-infected cells: a cytoplasmically dispersed dNSP2, which interacts with hypophosphorylated NSP5; and a viroplasm-specific vNSP2, which interacts with hyperphosphorylated NSP5. Other studies report that CK1α, a ubiquitous cellular kinase, hyperphosphorylates NSP5, but requires NSP2 for reasons that are unclear. Here we show that silencing CK1α in cells before RV infection resulted in (i) >90% decrease in RV replication, (ii) disrupted vNSP2 and NSP5 interaction, (iii) dispersion of vNSP2 throughout the cytoplasm, and (iv) reduced vNSP2 protein levels. Together, these data indicate that CK1α directly affects NSP2. Accordingly, an in vitro kinase assay showed that CK1α phosphorylates serine 313 of NSP2 and triggers NSP2 octamers to form a lattice structure as demonstrated by crystallographic analysis. Additionally, a dual-specificity autokinase activity for NSP2 was identified and confirmed by mass spectrometry. Together, our studies show that phosphorylation of NSP2 involving CK1α controls viroplasm assembly. Considering that CK1α plays a role in the replication of other RNA viruses, similar phosphorylation-dependent mechanisms may exist for other virus pathogens that require cytoplasmic virus factories for replication.
Collapse
|
28
|
Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. Curr Opin Virol 2018; 33:106-112. [PMID: 30145433 PMCID: PMC6289821 DOI: 10.1016/j.coviro.2018.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Segmented double-stranded (ds)RNA viruses share remarkable similarities in their replication strategy and capsid structure. During virus replication, positive-sense single-stranded (+)RNAs are packaged into procapsids, where they serve as templates for dsRNA synthesis, forming progeny particles containing a complete equimolar set of genome segments. How the +RNAs are recognized and stoichiometrically packaged remains uncertain. Whereas bacteriophages of the Cystoviridae family rely on specific RNA-protein interactions to select appropriate +RNAs for packaging, viruses of the Reoviridae instead rely on specific inter-molecular interactions between +RNAs that guide multi-segmented genome assembly. While these families use distinct mechanisms to direct +RNA packaging, both yield progeny particles with a complete set of genomic dsRNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ulrich Desselberger
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
29
|
Rotavirus Induces Formation of Remodeled Stress Granules and P Bodies and Their Sequestration in Viroplasms To Promote Progeny Virus Production. J Virol 2018; 92:JVI.01363-18. [PMID: 30258011 DOI: 10.1128/jvi.01363-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Rotavirus replicates in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), the composition and structure of which have yet to be understood. Based on the analysis of a few proteins, earlier studies reported that rotavirus infection inhibits stress granule (SG) formation and disrupts P bodies (PBs). However, the recent demonstration that rotavirus infection induces cytoplasmic relocalization and colocalization with VMs of several nuclear hnRNPs and AU-rich element-binding proteins (ARE-BPs), which are known components of SGs and PBs, suggested the possibility of rotavirus-induced remodeling of SGs and PBs, prompting us to analyze a large number of the SG and PB components to understand the status of SGs and PBs in rotavirus-infected cells. Here we demonstrate that rotavirus infection induces molecular triage by selective exclusion of a few proteins of SGs (G3BP1 and ZBP1) and PBs (DDX6, EDC4, and Pan3) and sequestration of the remodeled/atypical cellular organelles, containing the majority of their components, in the VM. The punctate SG and PB structures are seen at about 4 h postinfection (hpi), coinciding with the appearance of small VMs, many of which fuse to form mature large VMs with progression of infection. By use of small interfering RNA (siRNA)-mediated knockdown and/or ectopic overexpression, the majority of the SG and PB components, except for ADAR1, were observed to inhibit viral protein expression and virus growth. In conclusion, this study demonstrates that VMs are highly complex supramolecular structures and that rotavirus employs a novel strategy of sequestration in the VM and harnessing of the remodeled cellular RNA recycling bins to promote its growth.IMPORTANCE Rotavirus is known to replicate in specialized virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), but the composition and structure of VMs are not yet understood. Here we demonstrate that rotavirus interferes with normal SG and PB assembly but promotes formation of atypical SG-PB structures by selective exclusion of a few components and employs a novel strategy of sequestration of the remodeled SG-PB granules in the VMs to promote virus growth by modulating their negative influence on virus infection. Rotavirus VMs appear to be complex supramolecular structures formed by the union of the triad of viral replication complexes and remodeled SGs and PBs, as well as other host factors, and designed to promote productive virus infection. These observations have implications for the planning of future research with the aim of understanding the structure of the VM, the mechanism of morphogenesis of the virus, and the detailed roles of host proteins in rotavirus biology.
Collapse
|
30
|
Cytoplasmic Relocalization and Colocalization with Viroplasms of Host Cell Proteins, and Their Role in Rotavirus Infection. J Virol 2018; 92:JVI.00612-18. [PMID: 29769336 DOI: 10.1128/jvi.00612-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Rotavirus replicates in the cytoplasm of infected cells in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), which are nucleated by two essential viral nonstructural proteins, NSP2 and NSP5. However, the precise composition of the VM, the intracellular localization of host proteins during virus infection, and their association with VMs or role in rotavirus growth remained largely unexplored. Mass spectrometry analyses revealed the presence of several host heterogeneous nuclear ribonucleoproteins (hnRNPs), AU-rich element-binding proteins (ARE-BPs), and cytoplasmic proteins from uninfected MA104 cell extracts in the pulldown (PD) complexes of the purified viroplasmic proteins NSP2 and NSP5. Immunoblot analyses of PD complexes from RNase-treated and untreated cell extracts, analyses of coimmunoprecipitation complexes using RNase-treated infected cell lysates, and direct binding assays using purified recombinant proteins further demonstrated that the interactions of the majority of the hnRNPs and ARE-BPs with viroplasmic proteins are RNA independent. Time course immunoblot analysis of the nuclear and cytoplasmic fractions from rotavirus-infected and mock-infected cells and immunofluorescence confocal microscopy analyses of virus-infected cells revealed a surprising sequestration of the majority of the relocalized host proteins in viroplasms. Analyses of ectopic overexpression and small interfering RNA (siRNA)-mediated downregulation of expression revealed that host proteins either promote or inhibit viral protein expression and progeny virus production in virus-infected cells. This study demonstrates that rotavirus induces the cytoplasmic relocalization and sequestration of a large number of nuclear and cytoplasmic proteins in viroplasms, subverting essential cellular processes in both compartments to promote rapid virus growth, and reveals that the composition of rotavirus viroplasms is much more complex than is currently understood.IMPORTANCE Rotavirus replicates exclusively in the cytoplasm. Knowledge on the relocalization of nuclear proteins to the cytoplasm or the role(s) of host proteins in rotavirus infection is very limited. In this study, it is demonstrated that rotavirus infection induces the cytoplasmic relocalization of a large number of nuclear RNA-binding proteins (hnRNPs and AU-rich element-binding proteins). Except for a few, most nuclear hnRNPs and ARE-BPs, nuclear transport proteins, and some cytoplasmic proteins directly interact with the viroplasmic proteins NSP2 and NSP5 in an RNA-independent manner and become sequestered in the viroplasms of infected cells. The host proteins differentially affected viral gene expression and virus growth. This study demonstrates that rotavirus induces the relocalization and sequestration of a large number of host proteins in viroplasms, affecting host processes in both compartments and generating conditions conducive for virus growth in the cytoplasm of infected cells.
Collapse
|
31
|
Eichwald C, De Lorenzo G, Schraner EM, Papa G, Bollati M, Swuec P, de Rosa M, Milani M, Mastrangelo E, Ackermann M, Burrone OR, Arnoldi F. Identification of a Small Molecule That Compromises the Structural Integrity of Viroplasms and Rotavirus Double-Layered Particles. J Virol 2018; 92:e01943-17. [PMID: 29142132 PMCID: PMC5774888 DOI: 10.1128/jvi.01943-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023] Open
Abstract
Despite the availability of two attenuated vaccines, rotavirus (RV) gastroenteritis remains an important cause of mortality among children in developing countries, causing about 215,000 infant deaths annually. Currently, there are no specific antiviral therapies available. RV is a nonenveloped virus with a segmented double-stranded RNA genome. Viral genome replication and assembly of transcriptionally active double-layered particles (DLPs) take place in cytoplasmic viral structures called viroplasms. In this study, we describe strong impairment of the early stages of RV replication induced by a small molecule known as an RNA polymerase III inhibitor, ML-60218 (ML). This compound was found to disrupt already assembled viroplasms and to hamper the formation of new ones without the need for de novo transcription of cellular RNAs. This phenotype was correlated with a reduction in accumulated viral proteins and newly made viral genome segments, disappearance of the hyperphosphorylated isoforms of the viroplasm-resident protein NSP5, and inhibition of infectious progeny virus production. In in vitro transcription assays with purified DLPs, ML showed dose-dependent inhibitory activity, indicating the viral nature of its target. ML was found to interfere with the formation of higher-order structures of VP6, the protein forming the DLP outer layer, without compromising its ability to trimerize. Electron microscopy of ML-treated DLPs showed dose-dependent structural damage. Our data suggest that interactions between VP6 trimers are essential, not only for DLP stability, but also for the structural integrity of viroplasms in infected cells.IMPORTANCE Rotavirus gastroenteritis is responsible for a large number of infant deaths in developing countries. Unfortunately, in the countries where effective vaccines are urgently needed, the efficacy of the available vaccines is particularly low. Therefore, the development of antivirals is an important goal, as they might complement the available vaccines or represent an alternative option. Moreover, they may be decisive in fighting the acute phase of infection. This work describes the inhibitory effect on rotavirus replication of a small molecule initially reported as an RNA polymerase III inhibitor. The molecule is the first chemical compound identified that is able to disrupt viroplasms, the viral replication machinery, and to compromise the stability of DLPs by targeting the viral protein VP6. This molecule thus represents a starting point in the development of more potent and less cytotoxic compounds against rotavirus infection.
Collapse
Affiliation(s)
| | - Giuditta De Lorenzo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | - Guido Papa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Michela Bollati
- Biophysics Institute of the National Research Council (CNR-IBF), Department of Biosciences, University of Milan, Milan, Italy
| | - Paolo Swuec
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biosciences, University of Milan, Milan, Italy
| | - Matteo de Rosa
- Biophysics Institute of the National Research Council (CNR-IBF), Department of Biosciences, University of Milan, Milan, Italy
| | - Mario Milani
- Biophysics Institute of the National Research Council (CNR-IBF), Department of Biosciences, University of Milan, Milan, Italy
| | - Eloise Mastrangelo
- Biophysics Institute of the National Research Council (CNR-IBF), Department of Biosciences, University of Milan, Milan, Italy
| | | | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Arnoldi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
32
|
Abstract
In infected cells rotavirus (RV) replicates in viroplasms, cytosolic structures that require a stabilized microtubule (MT) network for their assembly, maintenance of the structure and perinuclear localization. Therefore, we hypothesized that RV could interfere with the MT-breakdown that takes place in mitosis during cell division. Using synchronized RV-permissive cells, we show that RV infection arrests the cell cycle in S/G2 phase, thus favoring replication by improving viroplasms formation, viral protein translation, and viral assembly. The arrest in S/G2 phase is independent of the host or viral strain and relies on active RV replication. RV infection causes cyclin B1 down-regulation, consistent with blocking entry into mitosis. With the aid of chemical inhibitors, the cytoskeleton network was linked to specific signaling pathways of the RV-induced cell cycle arrest. We found that upon RV infection Eg5 kinesin was delocalized from the pericentriolar region to the viroplasms. We used a MA104-Fucci system to identify three RV proteins (NSP3, NSP5, and VP2) involved in cell cycle arrest in the S-phase. Our data indicate that there is a strong correlation between the cell cycle arrest and RV replication.
Collapse
|
33
|
A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity. J Virol 2017; 91:JVI.00062-17. [PMID: 28100623 DOI: 10.1128/jvi.00062-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase.IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid mutation in VP1, which is the enzyme responsible for copying the viral RNA genome. The mutation is located in a poorly understood region of the polymerase called the N-terminal domain. In this study, we determined that the mutation reduces the ability of VP1 to properly localize within infected cells at high temperatures, as well as reduced the ability of the enzyme to copy viral RNA in a test tube. The results of this study explain the temperature sensitivity of SA11-tsC and shed new light on functional protein-protein interaction sites of VP1.
Collapse
|
34
|
The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication. PLoS One 2016; 11:e0148550. [PMID: 26871941 PMCID: PMC4752286 DOI: 10.1371/journal.pone.0148550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 11/21/2022] Open
Abstract
Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1–471) of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.
Collapse
|
35
|
Chen Q, Chen H, Jia D, Mao Q, Xei L, Wei T. Nonstructural protein Pns12 of rice dwarf virus is a principal regulator for viral replication and infection in its insect vector. Virus Res 2015. [PMID: 26200955 DOI: 10.1016/j.virusres.2015.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. The molecular mechanisms underling the formation of the viroplasm during infection of rice dwarf virus (RDV), a plant reovirus, in its leafhopper vector cells remain poorly understood. Viral nonstructural protein Pns12 forms viroplasm-like inclusions in the absence of viral infection, suggesting that the viroplasm matrix is basically composed of Pns12. Here, we demonstrated that core capsid protein P3 and nonstructural protein Pns11 were recruited in the viroplasm by direct interaction with Pns12, whereas nonstructural protein Pns6 was recruited through interaction with Pns11. The introduction of dsRNA from Pns12 gene into cultured insect vector cells or intact insect strongly inhibited such viroplasm formation, preventing efficient viral spread in the leafhopper in vitro and in vivo. Thus, nonstructural protein Pns12 of RDV is a principal regulator for viral replication and infection in its insect vector.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lianhui Xei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
36
|
Yan L, Zhang J, Guo H, Yan S, Chen Q, Zhang F, Fang Q. Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies. PLoS One 2015; 10:e0126127. [PMID: 25938226 PMCID: PMC4418822 DOI: 10.1371/journal.pone.0126127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/30/2015] [Indexed: 11/18/2022] Open
Abstract
Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsid proteins (VP5 and VP7), within VIBs in co-transfected or infected cells. Further co-immunoprecipitation analysis confirmed that NS80 could interact with each core protein respectively. In addition, we found that newly synthesized viral RNAs co-localized with VIBs. Furthermore, time-course analysis of viral structural proteins expression showed that the expression of NS80 was detected first, followed by the detection of inner shell protein VP3, and then of other inner-capsid proteins, suggesting that VIBs were essential for the formation of viral core frame or progeny virion. Moreover, knockdown of NS80 by shRNA not only inhibited the expression of aquareovirus structural proteins, but also inhibited viral infection. These results indicated that NS80-based VIBs were formed at earlier stage of infection, and NS80 was able to coordinate the expression of viral structural proteins and viral replication.
Collapse
Affiliation(s)
- Liming Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hong Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shicui Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingxiu Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fuxian Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qin Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- * E-mail:
| |
Collapse
|
37
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [PMID: 25016036 DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
38
|
Wu X, Qi X, Liang M, Li C, Cardona CJ, Li D, Xing Z. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. FASEB J 2014; 28:2504-16. [PMID: 24599967 DOI: 10.1096/fj.13-243857] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses.
Collapse
Affiliation(s)
- Xiaodong Wu
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Mifang Liang
- China Center for Disease Prevention and Control, Beijing, China; and
| | - Chuan Li
- China Center for Disease Prevention and Control, Beijing, China; and
| | - Carol J Cardona
- Veterinary and Biomedical Sciences, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Dexin Li
- China Center for Disease Prevention and Control, Beijing, China; and
| | - Zheng Xing
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; Veterinary and Biomedical Sciences, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
39
|
Development of continuous cell culture of brown planthopper to trace the early infection process of oryzaviruses in insect vector cells. J Virol 2014; 88:4265-74. [PMID: 24478421 DOI: 10.1128/jvi.03466-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rice ragged stunt virus (RRSV), an oryzavirus in the family Reoviridae, is transmitted by the brown planthopper, Nilaparvata lugens, in a persistent-propagative manner. Here, we established a continuous cell line of brown planthopper to investigate the mechanism underlying the formation of the viroplasm, the putative site for viral replication and assembly, during infection of RRSV in its insect vector cells. Within 24 h of viral infection of cultured cells, the viroplasm had formed and contained the viral nonstructural proteins Pns6 and Pns10, known to be constituents of viroplasm. Core capsid protein P3, core particles, and newly synthesized viral RNAs were accumulated inside the viroplasm, while outer capsid protein P8 and virions were accumulated at the periphery of the viroplasm, confirming that the viroplasm induced by RRSV infection was the site for viral replication and assembly. Pns10 formed viroplasm-like inclusions in the absence of viral infection, suggesting that the viroplasm matrix was largely composed of Pns10. Pns6 was recruited in the viroplasm by direct interaction with Pns10. Core capsid protein P3 was recruited to the viroplasm through specific association with Pns6. Knockdown of Pns6 and Pns10 expression using RNA interference inhibited viroplasm formation, virion assembly, viral protein expression, and viral double-stranded RNA synthesis. Thus, the present study shows that both Pns6 and Pns10 of RRSV play important roles in the early stages of viral life cycle in its insect vector cells, by recruiting or retaining components necessary for viral replication and assembly. IMPORTANCE The brown planthopper, a commonly distributed pest of rice in Asia, is the host of numerous insect endosymbionts, and the major vector of two rice viruses (RRSV and rice grassy stunt virus). For the first time, we successfully established the continuous cell line of brown planthopper. The unique uniformity of brown planthopper cells in the monolayer can support a consistent, synchronous infection by endosymbionts or viral pathogens, improving our understanding of molecular insect-microbe interactions.
Collapse
|
40
|
A novel form of rotavirus NSP2 and phosphorylation-dependent NSP2-NSP5 interactions are associated with viroplasm assembly. J Virol 2013; 88:786-98. [PMID: 24198401 DOI: 10.1128/jvi.03022-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rotavirus (RV) replication occurs in cytoplasmic inclusions called viroplasms whose formation requires the interactions of RV proteins NSP2 and NSP5; however, the specific role(s) of NSP2 in viroplasm assembly remains largely unknown. To study viroplasm formation in the context of infection, we characterized two new monoclonal antibodies (MAbs) specific for NSP2. These MAbs show high-affinity binding to NSP2 and differentially recognize distinct pools of NSP2 in RV-infected cells; a previously unrecognized cytoplasmically dispersed NSP2 (dNSP2) is detected by an N-terminal binding MAb, and previously known viroplasmic NSP2 (vNSP2) is detected by a C-terminal binding MAb. Kinetic experiments in RV-infected cells demonstrate that dNSP2 is associated with NSP5 in nascent viroplasms that lack vNSP2. As viroplasms mature, dNSP2 remains in viroplasms, and the amount of diffuse cytoplasmic dNSP2 increases. vNSP2 is detected in increasing amounts later in infection in the maturing viroplasm, suggesting a conversion of dNSP2 into vNSP2. Immunoprecipitation experiments and reciprocal Western blot analysis confirm that there are two different forms of NSP2 that assemble in complexes with NSP5, VP1, VP2, and tubulin. dNSP2 associates with hypophosphorylated NSP5 and acetylated tubulin, which is correlated with stabilized microtubules, while vNSP2 associates with hyperphosphorylated NSP5. Mass spectroscopy analysis of NSP2 complexes immunoprecipitated from RV-infected cell lysates show both forms of NSP2 are phosphorylated, with a greater proportion of vNSP2 being phosphorylated compared to dNSP2. Together, these data suggest that dNSP2 interacts with viral proteins, including hypophosphorylated NSP5, to initiate viroplasm formation, while viroplasm maturation includes phosphorylation of NSP5 and vNSP2.
Collapse
|
41
|
Sun L, Xie L, Andika IB, Tan Z, Chen J. Non-structural protein P6 encoded by rice black-streaked dwarf virus is recruited to viral inclusion bodies by binding to the viroplasm matrix protein P9-1. J Gen Virol 2013; 94:1908-1916. [PMID: 23636822 DOI: 10.1099/vir.0.051698-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other members of the family Reoviridae, rice black-streaked dwarf virus (RBSDV, genus Fijivirus) is thought to replicate and assemble within cytoplasmic viral inclusion bodies, commonly called viroplasms. RBSDV P9-1 is the key protein for the formation of viroplasms, but little is known about the other proteins of the viroplasm or the molecular interactions amongst its components. RBSDV non-structural proteins were screened for their association with P9-1 using a co-immunoprecipitation assay. Only P6 was found to directly interact with P9-1, an interaction that was confirmed by bimolecular fluorescence complementation assay in Spodoptera frugiperda (Sf9) cells. Immunoelectron microscopy showed that P6 and P9-1 co-localized in electron-dense inclusion bodies, indicating that P6 is a constituent of the viroplasm. In addition, non-structural protein P5 also localized to viroplasms and interacted with P6. In Sf9 cells, P6 was diffusely distributed throughout the cytoplasm when expressed alone, but localized to inclusions when co-expressed with P9-1, suggesting that P6 is recruited to viral inclusion bodies by binding to P9-1. P5 localized to the inclusions formed by P9-1 when co-expressed with P6 but did not when P6 was absent, suggesting that P5 is recruited to viroplasms by binding to P6. This study provides a model by which viral non-structural proteins are recruited to RBSDV viroplasms.
Collapse
Affiliation(s)
- Liying Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Li Xie
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zilong Tan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| |
Collapse
|
42
|
Campagna M, Marcos-Villar L, Arnoldi F, de la Cruz-Herrera CF, Gallego P, González-Santamaría J, González D, Lopitz-Otsoa F, Rodriguez MS, Burrone OR, Rivas C. Rotavirus viroplasm proteins interact with the cellular SUMOylation system: implications for viroplasm-like structure formation. J Virol 2013; 87:807-17. [PMID: 23115286 PMCID: PMC3554093 DOI: 10.1128/jvi.01578-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/25/2012] [Indexed: 01/27/2023] Open
Abstract
Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.
Collapse
Affiliation(s)
| | | | - Francesca Arnoldi
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, University of Trieste, Trieste, Italy
| | | | - Pedro Gallego
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | | - Manuel S. Rodriguez
- Proteomics Unit, CIC bioGUNE, CIBERehd, Derio, Spain
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, Gipuzkoa, Spain
| | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carmen Rivas
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
43
|
Eichwald C, Arnoldi F, Laimbacher AS, Schraner EM, Fraefel C, Wild P, Burrone OR, Ackermann M. Rotavirus viroplasm fusion and perinuclear localization are dynamic processes requiring stabilized microtubules. PLoS One 2012; 7:e47947. [PMID: 23110139 PMCID: PMC3479128 DOI: 10.1371/journal.pone.0047947] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
Rotavirus viroplasms are cytosolic, electron-dense inclusions corresponding to the viral machinery of replication responsible for viral template transcription, dsRNA genome segments replication and assembly of new viral cores. We have previously observed that, over time, those viroplasms increase in size and decrease in number. Therefore, we hypothesized that this process was dependent on the cellular microtubular network and its associated dynamic components. Here, we present evidence demonstrating that viroplasms are dynamic structures, which, in the course of an ongoing infection, move towards the perinuclear region of the cell, where they fuse among each other, thereby gaining considerably in size and, simultaneouly, explaining the decrease in numbers. On the viral side, this process seems to depend on VP2 for movement and on NSP2 for fusion. On the cellular side, both the temporal transition and the maintenance of the viroplasms are dependent on the microtubular network, its stabilization by acetylation, and, surprisingly, on a kinesin motor of the kinesin-5 family, Eg5. Thus, we provide for the first time deeper insights into the dynamics of rotavirus replication, which can explain the behavior of viroplasms in the infected cell.
Collapse
|
44
|
Repeated circulation over 6years of intergenogroup mono-reassortant G2P[4] rotavirus strains with genotype N1 of the NSP2 gene. INFECTION GENETICS AND EVOLUTION 2012; 12:1202-12. [DOI: 10.1016/j.meegid.2012.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/18/2022]
|
45
|
Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BVV. Rotavirus non-structural proteins: structure and function. Curr Opin Virol 2012; 2:380-8. [PMID: 22789743 DOI: 10.1016/j.coviro.2012.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
The replication of rotavirus is a complex process that is orchestrated by an exquisite interplay between the rotavirus non-structural and structural proteins. Subsequent to particle entry and genome transcription, the non-structural proteins coordinate and regulate viral mRNA translation and the formation of electron-dense viroplasms that serve as exclusive compartments for genome replication, genome encapsidation and capsid assembly. In addition, non-structural proteins are involved in antagonizing the antiviral host response and in subverting important cellular processes to enable successful virus replication. Although far from complete, new structural studies, together with functional studies, provide substantial insight into how the non-structural proteins coordinate rotavirus replication. This brief review highlights our current knowledge of the structure-function relationships of the rotavirus non-structural proteins, as well as fascinating questions that remain to be understood.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | | | | |
Collapse
|
46
|
De Lorenzo G, Eichwald C, Schraner EM, Nicolin V, Bortul R, Mano M, Burrone OR, Arnoldi F. Production of in vivo-biotinylated rotavirus particles. J Gen Virol 2012; 93:1474-1482. [DOI: 10.1099/vir.0.040089-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although inserting exogenous viral genome segments into rotavirus particles remains a hard challenge, this study describes the in vivo incorporation of a recombinant viral capsid protein (VP6) into newly assembled rotavirus particles. In vivo biotinylation technology was exploited to biotinylate a recombinant VP6 protein fused to a 15 aa biotin-acceptor peptide (BAP) by the bacterial biotin ligase BirA contextually co-expressed in mammalian cells. To avoid toxicity of VP6 overexpression, a stable HEK293 cell line was constructed with tetracycline-inducible expression of VP6–BAP and constitutive expression of BirA. Following tetracycline induction and rotavirus infection, VP6–BAP was biotinylated, recruited into viroplasms and incorporated into newly assembled virions. The biotin molecules in the capsid allowed the use of streptavidin-coated magnetic beads as a purification technique instead of CsCl gradient ultracentrifugation. Following transfection, double-layered particles attached to beads were able to induce viroplasm formation and to generate infective viral progeny.
Collapse
Affiliation(s)
- G. De Lorenzo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - C. Eichwald
- Institute of Virology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - E. M. Schraner
- Institute of Veterinary Anatomy, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
- Institute of Virology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - V. Nicolin
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
| | - R. Bortul
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
| | - M. Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - O. R. Burrone
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - F. Arnoldi
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
47
|
HSV-1 amplicon vectors launch the production of heterologous rotavirus-like particles and induce rotavirus-specific immune responses in mice. Mol Ther 2012; 20:1810-20. [PMID: 22713696 DOI: 10.1038/mt.2012.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Virus-like particles (VLPs) are promising vaccine candidates because they represent viral antigens in the authentic conformation of the virion and are therefore readily recognized by the immune system. As VLPs do not contain genetic material they are safer than attenuated virus vaccines. In this study, herpes simplex virus type 1 (HSV-1) amplicon vectors were constructed to coexpress the rotavirus (RV) structural genes VP2, VP6, and VP7 and were used as platforms to launch the production of RV-like particles (RVLPs) in vector-infected mammalian cells. Despite the observed splicing of VP6 RNA, full-length VP6 protein and RVLPs were efficiently produced. Intramuscular injection of mice with the amplicon vectors as a two-dose regimen without adjuvants resulted in RV-specific humoral immune responses and, most importantly, immunized mice were partially protected at the mucosal level from challenge with live wild-type (wt) RV. This work provides proof of principle for the application of HSV-1 amplicon vectors that mediate the efficient production of heterologous VLPs as genetic vaccines.
Collapse
|
48
|
In vivo subcellular localization of Mal de Río Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions. Virology 2012; 430:81-9. [PMID: 22608534 DOI: 10.1016/j.virol.2012.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/30/2012] [Accepted: 04/19/2012] [Indexed: 12/31/2022]
Abstract
The in vivo subcellular localization of Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and α-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.
Collapse
|
49
|
Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME. Rotavirus infection activates the UPR but modulates its activity. Virol J 2011; 8:359. [PMID: 21774819 PMCID: PMC3149005 DOI: 10.1186/1743-422x-8-359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022] Open
Abstract
Background Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by rotavirus infection. Methods 2D-DIGE and image analysis were used to identify cellular proteins that changed in levels of expression in response to rotavirus infection, IFN treatment, or IFN treatment prior to infection. Immunofluorescence microscopy was used to determine the subcellular localization of proteins associated with the unfolded protein response (UPR). Results The data show changes in the levels of multiple proteins associated with cellular stress in infected cells, including levels of ER chaperones GRP78 and GRP94. Further investigations showed that GRP78, GRP94 and other proteins with roles in the ER-initiated UPR including PERK, CHOP and GADD34, were localized to viroplasms in infected cells. Conclusions Together the results suggest rotavirus infection activates the UPR, but modulates its effects by sequestering sensor, transcription factor, and effector proteins in viroplasms. The data consequently also suggest that viroplasms may directly or indirectly play a fundamental role in regulating signaling pathways associated with cellular defense responses.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | |
Collapse
|
50
|
Donker NC, Foley M, Tamvakis DC, Bishop R, Kirkwood CD. Identification of an antibody-binding epitope on the rotavirus A non-structural protein NSP2 using phage display analysis. J Gen Virol 2011; 92:2374-2382. [PMID: 21697352 DOI: 10.1099/vir.0.032599-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The non-structural protein 2 (NSP2) of rotavirus has important roles in rotavirus replication associated with RNA binding, hydrolysis of NTPs and RNA, and helix destabilizing properties. A cell-culture assay using an NSP2-specific mAb and polyclonal antiserum to block virus replication showed a 73 and 96 % reduction in the amount of virus produced during replication, respectively. Phage display technology was used to identify the antibody-binding region on the NSP2 protein with the motif (244)T-(Y/F)-Ø-Ø-Ø-X-K-Ø-G(252), where Ø is a hydrophilic residue and X is any amino acid. This region was mapped to the three-dimensional NSP2 crystal structure to visualize the epitope. Analysis revealed identity to a region on NSP2 that mapped to a site exposed on the surface of the protein, which could possibly interfere with a functionally important region of the protein. Antibody binding to this region could disrupt the essential roles of NSP2, such as the formation of viroplasms with NSP5 or the interaction with viral RNA, thereby indicating a possible mechanism for the observed inhibition of virus replication. Genetic analysis of the putative binding region of NSP2 revealed a high level of conservation, suggesting that the region is under strict control.
Collapse
Affiliation(s)
- Nicole C Donker
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3083, Australia
- Enteric Virus Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Michael Foley
- Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Debra C Tamvakis
- Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Ruth Bishop
- Enteric Virus Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Carl D Kirkwood
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3083, Australia
- Enteric Virus Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|