1
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Blake ME, Kleinpeter AB, Jureka AS, Petit CM. Structural Investigations of Interactions between the Influenza a Virus NS1 and Host Cellular Proteins. Viruses 2023; 15:2063. [PMID: 37896840 PMCID: PMC10612106 DOI: 10.3390/v15102063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The Influenza A virus is a continuous threat to public health that causes yearly epidemics with the ever-present threat of the virus becoming the next pandemic. Due to increasing levels of resistance, several of our previously used antivirals have been rendered useless. There is a strong need for new antivirals that are less likely to be susceptible to mutations. One strategy to achieve this goal is structure-based drug development. By understanding the minute details of protein structure, we can develop antivirals that target the most conserved, crucial regions to yield the highest chances of long-lasting success. One promising IAV target is the virulence protein non-structural protein 1 (NS1). NS1 contributes to pathogenicity through interactions with numerous host proteins, and many of the resulting complexes have been shown to be crucial for virulence. In this review, we cover the NS1-host protein complexes that have been structurally characterized to date. By bringing these structures together in one place, we aim to highlight the strength of this field for drug discovery along with the gaps that remain to be filled.
Collapse
Affiliation(s)
| | | | | | - Chad M. Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.B.)
| |
Collapse
|
3
|
Kanrai P, Mostafa A, Madhugiri R, Lechner M, Wilk E, Schughart K, Ylösmäki L, Saksela K, Ziebuhr J, Pleschka S. Identification of specific residues in avian influenza A virus NS1 that enhance viral replication and pathogenicity in mammalian systems. J Gen Virol 2016; 97:2135-2148. [PMID: 27405649 DOI: 10.1099/jgv.0.000542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reassortment of their segmented genomes allows influenza A viruses (IAV) to gain new characteristics, which potentially enable them to cross the species barrier and infect new hosts. Improved replication was observed for reassortants of the strictly avian IAV A/FPV/Rostock/34 (FPV, H7N1) containing the NS segment from A/Goose/Guangdong/1/1996 (GD, H5N1), but not for reassortants containing the NS segment of A/Mallard/NL/12/2000 (MA, H7N3). The NS1 of GD and MA differ only in 8 aa positions. Here, we show that efficient replication of FPV-NSMA-derived mutants was linked to the presence of a single substitution (D74N) and more prominently to a triple substitution (P3S+R41K+D74N) in the NS1MA protein. The substitution(s) led to (i) increased virus titres, (ii) larger plaque sizes and (iii) increased levels and faster kinetics of viral mRNA and protein accumulation in mammalian cells. Interestingly, the NS1 substitutions did not affect viral growth characteristics in avian cells. Furthermore, we show that an FPV mutant with N74 in the NS1 (already possessing S3+K41) is able to replicate and cause disease in mice, demonstrating a key role of NS1 in the adaptation of avian IAV to mammalian hosts. Our data suggest that (i) adaptation to mammalian hosts does not necessarily compromise replication in the natural (avian) host and (ii) very few genetic changes may pave the way for zoonotic transmission. The study reinforces the need for close surveillance and characterization of circulating avian IAV to identify genetic signatures that indicate a potential risk for efficient transmission of avian strains to mammalian hosts.
Collapse
Affiliation(s)
- Pumaree Kanrai
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Center (NRC), 12311 Dokki, Giza, Egypt
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Marcus Lechner
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Leena Ylösmäki
- Department of Virology, University of Helsinki, PO Box 21 (Haartmaninkatu 3) 00014, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, PO Box 21 (Haartmaninkatu 3) 00014, Finland
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
4
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|
5
|
Abstract
During infection, the influenza A virus non-structural protein 1 (NS1) interacts with a diverse range of viral and cellular factors to antagonize host antiviral defences and promote viral replication. Here, I review the structural basis for some of these functions and discuss the emerging view that NS1 cannot simply be regarded as a 'static' protein with a single structure. Rather, the dynamic property of NS1 to adopt various quaternary conformations is critical for its multiple activities. Understanding NS1 plasticity, and the mechanisms governing this plasticity, will be essential for assessing both fundamental protein function and the consequences of strain-dependent polymorphisms in this important virulence factor.
Collapse
Affiliation(s)
- Benjamin G Hale
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, UK
| |
Collapse
|
6
|
Trapp S, Soubieux D, Marty H, Esnault E, Hoffmann TW, Chandenier M, Lion A, Kut E, Quéré P, Larcher T, Ledevin M, Munier S, Naffakh N, Marc D. Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J Gen Virol 2014; 95:1233-1243. [DOI: 10.1099/vir.0.063776-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80–84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.
Collapse
Affiliation(s)
- Sascha Trapp
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Denis Soubieux
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Hélène Marty
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Evelyne Esnault
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thomas W. Hoffmann
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Margaux Chandenier
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Adrien Lion
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Emmanuel Kut
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Pascale Quéré
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thibaut Larcher
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Mireille Ledevin
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Sandie Munier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Nadia Naffakh
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| |
Collapse
|
7
|
Aramini JM, Hamilton K, Ma LC, Swapna GVT, Leonard PG, Ladbury JE, Krug RM, Montelione GT. (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus. Structure 2014; 22:515-525. [PMID: 24582435 DOI: 10.1016/j.str.2014.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/19/2022]
Abstract
Nonstructural protein 1 of influenza A virus (NS1A) is a conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply (19)F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the (19)F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. (19)F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. (19)F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection.
Collapse
Affiliation(s)
- James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Keith Hamilton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Li-Chung Ma
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Paul G Leonard
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - John E Ladbury
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Robert M Krug
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Center for Infectious Disease, University of Texas, Austin, Texas 78712, U.S.A
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, U.S.A
| |
Collapse
|
8
|
Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol 2014; 88:4877-96. [PMID: 24522919 DOI: 10.1128/jvi.00107-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection.
Collapse
|
9
|
Vergara-Alert J, Busquets N, Ballester M, Chaves AJ, Rivas R, Dolz R, Wang Z, Pleschka S, Majó N, Rodríguez F, Darji A. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens. Vet Res 2014; 45:7. [PMID: 24460592 PMCID: PMC3922795 DOI: 10.1186/1297-9716-45-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/17/2014] [Indexed: 12/25/2022] Open
Abstract
Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.
Collapse
Affiliation(s)
- Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Forbes N, Selman M, Pelchat M, Jia JJ, Stintzi A, Brown EG. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression. PLoS One 2013; 8:e84673. [PMID: 24391972 PMCID: PMC3877356 DOI: 10.1371/journal.pone.0084673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022] Open
Abstract
The NS1 protein of influenza A virus (IAV) is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2) (HK) to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30). Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt) virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR) phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I), the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K) were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.
Collapse
Affiliation(s)
- Nicole Forbes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Emerging Pathogens Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammed Selman
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Emerging Pathogens Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jian Jun Jia
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Earl G. Brown
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Emerging Pathogens Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Post J, Peeters B, Cornelissen JBWJ, Vervelde L, Rebel JMJ. Contribution of the NS1 gene of H7 avian influenza virus strains to pathogenicity in chickens. Viral Immunol 2013; 26:396-403. [PMID: 24236854 DOI: 10.1089/vim.2013.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using reverse genetics (rg), we generated two reassortant viruses carrying the NS1 gene of two closely related HPAIV and LPAIV H7N1 variants (designated rgH7N7 HP(HPNS1) and rgH7N7 HP(LPNS1), respectively) in the backbone of the HP H7N7 strain A/Chicken/Netherlands/621557/03 (rgH7N7 HP). Comparison of these reassortants allowed us to determine the effect of amino acid differences in the nuclear export and nucleolar localization sequences of NS1 on pathogenesis in chickens. Compared to rgH7N7 HP(LPNS1), a delay in weight gain and an increase in mortality were observed for rgH7N7 HP(HPNS1). Furthermore, an increase in viral load in brains, lungs, and cloacal swabs, as well as an increased induction of mRNA for type I interferons and pro-inflammatory cytokines in brains, were observed for rgH7N7 HP(HPNS1). Comparison of rgH7N7 HP(LPNS1) with the backbone strain rgH7N7 HP allowed us to examine differences in pathogenesis due to differences in NS1 alleles. rgH7N7 HP, which contained allele A of NS1 showed a higher in vitro replication rate and proved to be more virulent than the isogenic virus carrying allele B of NS1(rgH7N7 HP(LPNS1)). In addition, higher virus accumulation in the lungs and brains, and an increased induction of host gene responses, especially in the brains, were found for rgH7N7 HP compared to rgH7N7 HP(LPNS1). No large differences were observed in type I interferon expression in the lungs of chickens infected with any of the viruses, suggesting that differences in virulence due to differences in NS1 could be related to differences in the induction of pro-inflammatory cytokines in vital organs such as the brains.
Collapse
Affiliation(s)
- Jacob Post
- 1 Central Veterinary Institute of Wageningen UR , Lelystad, The Netherlands
| | | | | | | | | |
Collapse
|