1
|
Heinig-Hartberger M, Hellhammer F, Becker SC. Reproductive Trade-Offs in Culex pipiens: Effects of CYV Infection and Delayed Mating. INSECTS 2025; 16:252. [PMID: 40266749 PMCID: PMC11943457 DOI: 10.3390/insects16030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025]
Abstract
Arbovirus control strategies often target vector reproductive dynamics, with insect-specific viruses (ISVs) like Culex Y virus (CYV) offering potential as eco-friendly approaches by influencing mosquito reproduction without affecting humans or animals. This study investigated the interplay between autogeny, anautogeny, nutrient availability, and viral infection and their effect on reproductive success in Culex pipiens biotype molestus and Culex pipiens quinquefasciatus. CYV infection had a minimal impact on mosquito reproductive parameters, even after a five-day incubation period. Autogeny enabled Cx. pipiens biotype molestus to produce eggs without blood meals, yet older females (3-5 days post-emergence) showed reduced reproductive success unrelated to nutrient deficiency, as blood-feeding did not restore their egg production. These findings demonstrate that age affects reproductive success in Cx. pipiens biotype molestus but not in Cx. pipiens quinquefasciatus and suggest that CYV has negligible direct effects on mosquito reproduction. This work enhances our understanding of ISV biology and vector ecology, supporting the development of innovative, sustainable arbovirus-control strategies.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; (M.H.-H.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; (M.H.-H.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; (M.H.-H.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
2
|
Debat H, Gomez-Talquenca S, Bejerman N. RNA Virus Discovery Sheds Light on the Virome of a Major Vineyard Pest, the European Grapevine Moth ( Lobesia botrana). Viruses 2025; 17:95. [PMID: 39861884 PMCID: PMC11768796 DOI: 10.3390/v17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The European grapevine moth (Lobesia botrana) poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the L. botrana virome, revealing novel and diverse RNA viruses. We characterized four new viral members belonging to distinct families, with evolutionary cues of cypoviruses (Reoviridae), sobemo-like viruses (Solemoviridae), phasmaviruses (Phasmaviridae), and carmotetraviruses (Carmotetraviridae). Phylogenetic analysis of the cypoviruses places them within the genus in affinity with other moth viruses. The bi-segmented and highly divergent sobemo-like virus showed a distinctive evolutionary trajectory of its encoding proteins at the periphery of recently reported invertebrate Sobelivirales. Notably, the presence of a novel phasmavirus, typically associated with mosquitoes, expands the known host range and diversity of this family to moths. Furthermore, the identification of a carmotetravirus branching in the same cluster as the Providence virus, a lepidopteran virus which replicates in plants, raises questions regarding the biological significance of this moth virus to the grapevine host. We further explored viral sequences in several publicly available transcriptomic datasets of the moth, indicating potential prevalence across distinct conditions. These results underscore the existence of a complex virome within L. botrana and lay the foundation for future studies investigating the ecological roles, evolutionary dynamics, and potential biocontrol applications of these viruses in the L. botrana-vineyard ecosystem.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Sebastian Gomez-Talquenca
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA), San Martín 3853, Luján de Cuyo, Mendoza 5507, Argentina
| | - Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
3
|
Matsuyama T, Miwa S, Mekata T, Kiryu I, Kuriyama I, Atsumi T, Itano T, Kawakami H. A novel birnavirus identified as the causative agent of summer atrophy of pearl oyster ( Pinctada fucata (Gould)). PeerJ 2024; 12:e17321. [PMID: 38708355 PMCID: PMC11067908 DOI: 10.7717/peerj.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The Akoya pearl oyster (Pinctada fucata (Gould)) is the most important species for pearl cultivation in Japan. Mass mortality of 0-year-old juvenile oysters and anomalies in adults, known as summer atrophy, have been observed in major pearl farming areas during the season when seawater temperatures exceed about 20 °C since 2019. In this study, we identified a novel birnavirus as the pathogen of summer atrophy and named it Pinctada birnavirus (PiBV). PiBV was first presumed to be the causative agent when it was detected specifically and frequently in the infected oysters in a comparative metatranscriptomics of experimentally infected and healthy pearl oysters. Subsequently, the symptoms of summer atrophy were reproduced by infection tests using purified PiBV. Infection of juvenile oysters with PiBV resulted in an increase in the PiBV genome followed by the atrophy of soft body and subsequent mortality. Immunostaining with a mouse antiserum against a recombinant PiBV protein showed that the virus antigen was localized mainly in the epithelial cells on the outer surface of the mantle. Although the phylogenetic analysis using maximum likelihood method placed PiBV at the root of the genus Entomobirnavirus, the identity of the bi-segmented, genomic RNA to that of known birnaviruses at the full-length amino acid level was low, suggesting that PiBV forms a new genus. The discovery of PiBV will be the basis for research to control this emerging disease.
Collapse
Affiliation(s)
- Tomomasa Matsuyama
- Japan Fisheries Research and Education Agency, Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Minami-Ise, Mie, Japan
| | - Satoshi Miwa
- Japan Fisheries Research and Education Agency, Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Minami-Ise, Mie, Japan
| | - Tohru Mekata
- Japan Fisheries Research and Education Agency, Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Minami-Ise, Mie, Japan
- Okayama University of Science, Department of Veterinary Medicine, Faculty of Veterinary Medicine, Imabari, Ehime, Japan
| | - Ikunari Kiryu
- Japan Fisheries Research and Education Agency, Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Minami-Ise, Mie, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, Shima, Mie, Japan
- Mie Prefectural Government Department of Agriculture, Forestry and Fisheries, Tsu, Mie, Japan
| | - Takashi Atsumi
- Mie Prefecture Fisheries Research Institute, Shima, Mie, Japan
| | | | | |
Collapse
|
4
|
Hellhammer F, Heinig-Hartberger M, Neuhof P, Teitge F, Jung-Schroers V, Becker SC. Impact of different diets on the survival, pupation, and adult emergence of Culex pipiens biotype molestus larvae, and infectability with the insect-specific Culex Y virus. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The current rapidly advancing climate change will affect the transmission of arthropod-borne viruses (arboviruses), mainly through changes in vector populations. Mosquitos of the Culex pipiens complex play a particularly prominent role in virus transmission in central Europe. Factors that contribute to the vector population density and the ability of those vectors to transmit viral pathogens (vector competence) can include nutrition during the larval stages. To test the influence of larval diet on larval survival and adult emergence, as well as vector competence, several diets varying in their nutritional composition were compared using a newly established assay. We tested the effects of 17 diets or diet combinations on the fitness of third-instar larvae of Culex pipiens biotype molestus. Larval survival rates at day 7 ranged from 43.33% to 94.44%. We then selected 3 of the 17 diets (Tetra Pleco, as the routine feed; JBL NovoTab, as the significantly inferior feed; and KG, as the significantly superior feed) and tested the effect of these diets, in combination with Culex Y virus infection, on larval survival rate. All Culex Y virus-infected larvae showed significantly lower larval survival, as well as low pupation and adult emergence rates. However, none of the tested diets in our study had a significant impact on larval survival in combination with viral infection. Furthermore, we were able to correlate several water quality parameters, such as phosphate, nitrate, and ammonium concentration, electrical conductivity, and low O2 saturations, with reduced larval survival. Thus, we were able to demonstrate that Culex Y virus could be a suitable agent to reduce mosquito population density by reducing larval density, pupation rate, and adult emergence rate. When combined with certain water quality parameters, these effects can be further enhanced, leading to a reduced mosquito population density, and reduce the cycle of transmission. Furthermore, we demonstrate, for the first time, the infection of larvae of the mosquito Culex pipiens biotype molestus with a viral pathogen.
Collapse
|
5
|
Heinig-Hartberger M, Hellhammer F, Zöller DDJA, Dornbusch S, Bergmann S, Vocadlova K, Junglen S, Stern M, Lee KZ, Becker SC. Culex Y Virus: A Native Virus of Culex Species Characterized In Vivo. Viruses 2023; 15:235. [PMID: 36680275 PMCID: PMC9863036 DOI: 10.3390/v15010235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
6
|
Tangudu CS, Hargett AM, Laredo-Tiscareño SV, Smith RC, Blitvich BJ. Isolation of a novel rhabdovirus and detection of multiple novel viral sequences in Culex species mosquitoes in the United States. Arch Virol 2022; 167:2577-2590. [PMID: 36056958 DOI: 10.1007/s00705-022-05586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - S Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Carvalho VL, Long MT. Insect-Specific Viruses: An overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34-43. [PMID: 33631523 DOI: 10.1016/j.virol.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.
Collapse
Affiliation(s)
- Valéria L Carvalho
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, S/n, Ananindeua, Para, 67030-000, Brazil.
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA.
| |
Collapse
|
8
|
O’Brien CA, Pegg CL, Nouwens AS, Bielefeldt-Ohmann H, Huang B, Warrilow D, Harrison JJ, Haniotis J, Schulz BL, Paramitha D, Colmant AMG, Newton ND, Doggett SL, Watterson D, Hobson-Peters J, Hall RA. A Unique Relative of Rotifer Birnavirus Isolated from Australian Mosquitoes. Viruses 2020; 12:v12091056. [PMID: 32971986 PMCID: PMC7552023 DOI: 10.3390/v12091056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023] Open
Abstract
The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes.
Collapse
Affiliation(s)
- Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Cassandra L. Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Amanda S. Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Bixing Huang
- Public Health Virology, Queensland Health Forensic and Scientific Services, Brisbane, QLD 4108, Australia; (B.H.); (D.W.)
| | - David Warrilow
- Public Health Virology, Queensland Health Forensic and Scientific Services, Brisbane, QLD 4108, Australia; (B.H.); (D.W.)
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - John Haniotis
- New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (J.H.); (S.L.D.)
| | - Benjamin L. Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Devina Paramitha
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Stephen L. Doggett
- New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (J.H.); (S.L.D.)
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
- Correspondence:
| |
Collapse
|
9
|
Tesh RB, Bolling BG, Guzman H, Popov VL, Wilson A, Widen SG, Wood TG, Walker PJ, Vasilakis N. Characterization of Port Bolivar Virus, a Novel Entomobirnavirus (Birnaviridae) Isolated from Mosquitoes Collected in East Texas, USA. Viruses 2020; 12:v12040390. [PMID: 32244531 PMCID: PMC7232177 DOI: 10.3390/v12040390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
This report describes and characterizes a novel entomobirnavirus, designated Port Bolivar virus (PTBV), that was isolated from a pool of Aedes sollicitans mosquitoes collected in a saltwater marsh in East Texas, USA. Full genome sequencing and phylogenetic analyses indicate that PTBV is distinct but genetically related to Drosophila X virus and mosquito X virus, which are assigned to species in the genus Entomobirnavirus, family Birnaviridae. PTBV produced cytopathic effect (CPE) in cultures of mosquito (C6/36) cells, but not in Vero cell cultures. Ultrastructural studies of PTBV in infected C6/36 cells demonstrated unenveloped virus particles about 55 nm in diameter.
Collapse
Affiliation(s)
- Robert B. Tesh
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (R.B.T.); (H.G.); (V.L.P.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
| | - Bethany G. Bolling
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
| | - Hilda Guzman
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (R.B.T.); (H.G.); (V.L.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
| | - Vsevolod L. Popov
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (R.B.T.); (H.G.); (V.L.P.)
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
| | - Ashley Wilson
- Galveston County Mosquito Control, 5115 Highway 3, Dickinson, TX 77539, USA;
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (S.G.W.); (T.G.W.)
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (S.G.W.); (T.G.W.)
| | - Peter J. Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (R.B.T.); (H.G.); (V.L.P.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
- Correspondence: ; Tel.: +1-(409)-747-0650
| |
Collapse
|
10
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
11
|
Franzke K, Leggewie M, Sreenu VB, Jansen S, Heitmann A, Welch SR, Brennan B, Elliott RM, Tannich E, Becker SC, Schnettler E. Detection, infection dynamics and small RNA response against Culex Y virus in mosquito-derived cells. J Gen Virol 2018; 99:1739-1745. [PMID: 30394867 DOI: 10.1099/jgv.0.001173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many insect cell lines are persistently infected with insect-specific viruses (ISV) often unrecognized by the scientific community. Considering recent findings showing the possibility of interference between arbovirus and ISV infections, it is important to pay attention to ISV-infected cell lines. One example is the Entomobirnavirus, Culex Y virus (CYV). Here we describe the detection of CYV using a combination of small RNA sequencing, electron microscopy and PCR in mosquito cell lines Aag2, U4.4 and C7-10. We found CYV-specific small RNAs in all three cell lines. Interestingly, the magnitude of the detected viral RNA genome is variable among cell passages and leads to irregular detection via electron microscopy. Gaining insights into the presence of persistent ISV infection in commonly used mosquito cells and their interactions with the host immune system is beneficial for evaluating the outcome of co-infections with arboviruses of public health concern.
Collapse
Affiliation(s)
- Kati Franzke
- 1Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mayke Leggewie
- 2Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,3German Centre for Infection research, partner side Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Stephanie Jansen
- 2Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Anna Heitmann
- 2Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Stephen R Welch
- 4MRC - University of Glasgow Centre of Virus Research, Glasgow, UK
| | - Benjamin Brennan
- 4MRC - University of Glasgow Centre of Virus Research, Glasgow, UK
| | | | - Egbert Tannich
- 2Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,3German Centre for Infection research, partner side Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Stefanie C Becker
- 5Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Esther Schnettler
- 4MRC - University of Glasgow Centre of Virus Research, Glasgow, UK.,2Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,3German Centre for Infection research, partner side Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
12
|
Sadeghi M, Altan E, Deng X, Barker CM, Fang Y, Coffey LL, Delwart E. Virome of > 12 thousand Culex mosquitoes from throughout California. Virology 2018; 523:74-88. [DOI: 10.1016/j.virol.2018.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
|
13
|
Weger-Lucarelli J, Rückert C, Grubaugh ND, Misencik MJ, Armstrong PM, Stenglein MD, Ebel GD, Brackney DE. Adventitious viruses persistently infect three commonly used mosquito cell lines. Virology 2018; 521:175-180. [PMID: 29957338 DOI: 10.1016/j.virol.2018.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/26/2022]
Abstract
Mosquito cell lines have been used extensively in research to isolate and propagate arthropod-borne viruses and understand virus-vector interactions. Despite their utility as an in vitro tool, these cell lines are poorly defined and may harbor insect-specific viruses. Accordingly, we screened four commonly-used mosquito cell lines, C6/36 and U4.4 cells from Aedes albopictus, Aag2 cells from Aedes aegypti, and Hsu cells from Culex quinquefasciatus, for the presence of adventitious (i.e. exogenous) viruses. All four cell lines stained positive for double-stranded RNA, indicative of RNA virus replication. We subsequently identified viruses infecting Aag2, U4.4 and Hsu cell lines using untargeted next-generation sequencing, but not C6/36 cells. PCR confirmation revealed that these sequences stem from active viral replication and/or integration into the cellular genome. Our results show that these commonly-used mosquito cell lines are persistently-infected with several viruses. This finding may be critical to interpreting data generated in these systems.
Collapse
Affiliation(s)
- James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael J Misencik
- The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA.
| |
Collapse
|
14
|
Calisher CH, Higgs S. The Discovery of Arthropod-Specific Viruses in Hematophagous Arthropods: An Open Door to Understanding the Mechanisms of Arbovirus and Arthropod Evolution? ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:87-103. [PMID: 29324047 DOI: 10.1146/annurev-ento-020117-043033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of an odd virus from hematophagous arthropods 40 years ago by Stollar and Thomas described cell fusing agent virus in cells derived from Aedes aegypti mosquitoes. Then came the report of Kamiti River virus from Ae. macintoshi in 1999, followed by worldwide reports of the discovery of other viruses of mosquitoes, ticks, and midges that replicate only in arthropods and not in vertebrates or in vertebrate cells. These viruses (now totaling at least 64 published) have genomes analogous to viruses in various families that include arboviruses and nonarboviruses. It is likely that some of these viruses have been insufficiently studied and may yet be shown to infect vertebrates. However, there is no doubt that the vast majority are restricted to arthropods alone and that they represent a recently recognized clade. Their biology, modes of transmission, worldwide distribution (some have been detected in wild-caught mosquitoes in both Asia and the United States, for example), molecular characteristics of their genomes, and potential for becoming vertebrate pathogens, or at least serving as virus reservoirs, are fascinating and may provide evidence useful in understanding virus evolution. Because metagenomics studies of arthropods have shown that arthropod genomes are the sources of arthropod virus genomes, further studies may also provide insights into the evolution of arthropods. More recently, others have published excellent papers that briefly review discoveries of arthropod viruses and that characterize certain genomic peculiarities, but, to now, there have been no reviews that encompass all these facets. We therefore anticipate that this review is published at a time and in a manner that is helpful for both virologists and entomologists to make more sense and understanding of this recently recognized and obviously important virus group. This review focuses specifically on arthropod viruses in hematophagous arthropods.
Collapse
Affiliation(s)
- Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1690;
| | - Stephen Higgs
- Kansas State University, Manhattan, Kansas 66506-7600;
| |
Collapse
|
15
|
Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK, Diclaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 2016; 498:288-299. [PMID: 27639161 DOI: 10.1016/j.virol.2016.07.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin J Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Lakin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | | | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Doug E Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
16
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015; 7:4911-28. [PMID: 26378568 PMCID: PMC4584295 DOI: 10.3390/v7092851] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023] Open
Abstract
Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Collapse
Affiliation(s)
- Bethany G Bolling
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
18
|
van Cleef KWR, van Mierlo JT, Miesen P, Overheul GJ, Fros JJ, Schuster S, Marklewitz M, Pijlman GP, Junglen S, van Rij RP. Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Res 2014; 42:8732-44. [PMID: 24939903 PMCID: PMC4117760 DOI: 10.1093/nar/gku528] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joël T van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Susan Schuster
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marco Marklewitz
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
19
|
Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol 2014; 7:19-28. [PMID: 24732439 DOI: 10.1016/j.coviro.2014.03.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/03/2023]
Abstract
The host RNA interference (RNAi) pathway of insects senses virus infection and induces an antiviral response to restrict virus replication. Dicer-2 detects viral double-stranded RNA, produced by RNA and DNA viruses, and generates viral small interfering RNAs (vsiRNAs). Recent small RNA profiling studies provided new insights into the viral RNA substrates that trigger vsiRNA biogenesis. The importance of the antiviral RNAi pathway is underscored by the observation that viruses have evolved sophisticated mechanisms to counteract this small RNA-based immune response. More recently, it was proposed that another small RNA silencing mechanism, the piRNA pathway, also processes viral RNAs in Drosophila and mosquitoes. Here, we review recent insights into the mechanism of antiviral RNAi, viral small RNA profiles, and viral counter-defense mechanisms in insects.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Cook S, Chung BYW, Bass D, Moureau G, Tang S, McAlister E, Culverwell CL, Glücksman E, Wang H, Brown TDK, Gould EA, Harbach RE, de Lamballerie X, Firth AE. Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 2013; 8:e80720. [PMID: 24260463 PMCID: PMC3832450 DOI: 10.1371/journal.pone.0080720] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.
Collapse
Affiliation(s)
- Shelley Cook
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (SC); (AEF)
| | - Betty Y.-W. Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Gregory Moureau
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Shuoya Tang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erica McAlister
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | | | - Edvard Glücksman
- Department of General Botany, University Duisburg-Essen, Essen, Germany
| | - Hui Wang
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - T. David K. Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ernest A. Gould
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Ralph E. Harbach
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Xavier de Lamballerie
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SC); (AEF)
| |
Collapse
|
21
|
Huang Y, Mi Z, Zhuang L, Ma M, An X, Liu W, Cao W, Tong Y. Presence of entomobirnaviruses in Chinese mosquitoes in the absence of Dengue virus co-infection. J Gen Virol 2012; 94:663-667. [PMID: 23175239 DOI: 10.1099/vir.0.048231-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Birnaviruses, including the genus Entomobirnavirus, are socio-economically important viruses. Currently, only Drosophila X virus has been formally assigned to the genus Entomobirnavirus, but two more viruses were recently isolated, Espirito Santo virus (ESV) and Culex Y virus. The host mosquito has been reported to carry many viruses, but seldom entomobirnaviruses. To discover potential pathogens in mosquitoes, we exploited small-RNAs high-throughput sequencing of three mosquito species caught in South China. A virus that genetically likes entomobirnavirus, Mosquito X virus (MXV), was identified from Anopheles sinensis and was 97% identical to ESV, which co-infects with Dengue virus (DENV). However, the absence of DENV in the A. sinensis suggested the independence of MXV infection from dengue co-infection. Our discovery complements prior research on entomobirnaviruses and proved that MXV may be widespread in mosquitoes on different continents. This work also highlights the applying of high-throughput sequencing of small RNAs to survey viruses carried by insect vectors.
Collapse
Affiliation(s)
- Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Lu Zhuang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Maijuan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Wuchun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| |
Collapse
|