1
|
Melo AM, Quadros AFF, da Silva JPH, Ramos-Sobrinho R, Ferro MMDM, da Silva SJC, Assunção IP, Lima GSDA, Zerbini FM. Macroptilium yellow vein virus (Begomovirus macroptilivenae) associated with Macroptilium plants is geographically structured into divergent subpopulations. Arch Virol 2025; 170:109. [PMID: 40261504 DOI: 10.1007/s00705-025-06295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
The genus Begomovirus (family Geminiviridae) includes plant viruses that have a negative impact on the production of several economically important crops worldwide. Begomoviruses infect a wide range of non-cultivated plants, which may serve as alternative hosts or inoculum sources for epidemics in crops. In this study, we evaluated the genetic variability and population structure of Macroptilium yellow vein virus (MacYVV; Begomovirus macroptilivenae), associated with non-cultivated Macroptilium spp. in the state of Alagoas (AL), northeastern Brazil. Complete DNA-A sequences (n = 29) were obtained from symptomatic plants collected in different municipalities of AL during 2019 and 2020. Pairwise sequence comparisons indicated a low degree of genetic variability, with 93.9-100% identity to 18 previously characterized sequences. To better understand the population structuring of MacYVV in AL, the complete DNA-A data set (n = 47) was analyzed. Although the DAPC and STRUCTURE approaches yielded slightly divergent numbers of putative MacYVV subpopulations, the results are consistent with the phylogenetic relationships among MacYVV isolates, where five well-supported subgroups correlated with geographic location were observed. The low variability of the MacYVV population could be related to the small number of recombination events detected and be reflective of a long-term virus-host relationship in which the virus is very well adapted to the host.
Collapse
Affiliation(s)
- Aline Marques Melo
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Roberto Ramos-Sobrinho
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | | | | | | | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
2
|
Naveen M, Shanmugam PS, Srinivasan R, Shanthi M, Murugan M, Sivagnanapazham K, Angappan K, Oliva R, Karthikeyan G, Boopathi NM. Recombination, phylogenetic insights and co-existence dynamics of begomoviruses and satellite DNAs: implications for tomato viral disease management. Mol Biol Rep 2025; 52:390. [PMID: 40232328 DOI: 10.1007/s11033-025-10499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Tomato leaf curl viral disease (ToLCV) is a major biotic stress, threatening tomato cultivation. However, limited information exists on the prevalence and diversity of ToLCV in Tamil Nadu, India and hence this study focused on identifying and characterizing such begomoviruses. METHODS AND RESULTS Tomato samples with infected symptoms were collected from major tomato-growing tracts of Tamil Nadu during 2023 to 2024 and subjected to polymerase chain reaction (PCR) using degenerate primers specific to ToLCV. Further, by employing rolling circle amplification (RCA), full-length sequences of viral genomes (∼2.7 kb), alphasatellites and betasatellites (∼1.35 kb each) were also obtained for three samples collected from different locations of Tamil Nadu (Dharmapuri (DPI-03), Krishnagiri (KGI-01) and Salem (SLM-01)). Diverse begomoviruses, including tomato leaf curl New Delhi virus (ToLCNDV), tomato leaf curl Palampur virus (ToLCPalV), tomato leaf curl Bangalore virus (ToLCBaV), and tomato leaf curl Gujarat virus (ToLCGUV) were identified in these three samples. Additionally, an alphasatellite (cotton leaf curl Multan alphasatellite, CLCuMuA), and two betasatellites (tomato leaf curl Bangalore betasatellite, ToLCBaB and tomato leaf curl Gujarat betasatellite, ToLCGUB) were also identified in KGI-01 and SLM-01. Evaluation of phylogenetic relationship and genetic variability revealed distinct clustering of begomoviruses and satellite sequences with high nucleotide diversity. In addition, recombinant analysis predicted inter- and intra- species recombination events. CONCLUSION This study identified the co-occurrence of ToLCNDV with ToLCPalV, ToLCBaV with CLCuMuA and ToLCBaB, and ToLCGUV with ToLCGUB within the same plants. These findings underscore the diverse nature of the begomovirus-satellite complex infecting tomatoes in Tamil Nadu and emphasize the urgent need to develop effective plant protection strategies.
Collapse
Affiliation(s)
- Murugesan Naveen
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Pagalahalli Sankaran Shanmugam
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Ramasamy Srinivasan
- Safe and Sustainable Value Chains Flagship Program, World Vegetable Center, 60 Yi Ming Liao, Shanhua, Tainan, 74151, Taiwan
| | - Mookiah Shanthi
- Directorate of Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Kathiresan Sivagnanapazham
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Kathithachalam Angappan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Ricardo Oliva
- Safe and Sustainable Value Chains Flagship Program, World Vegetable Center, 60 Yi Ming Liao, Shanhua, Tainan, 74151, Taiwan
| | - Gandhi Karthikeyan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| |
Collapse
|
3
|
Venkataravanappa V, Madhu GS, Muralidhara BM, Hiremath S, Reddy MK. Molecular characterization of recombinant citrus yellow mosaic badnavirus infecting Coorg mandarin exhibiting yellow mosaic disease symptoms in high humid tropic region of Western Ghats. Virusdisease 2024; 35:310-320. [PMID: 39071877 PMCID: PMC11269539 DOI: 10.1007/s13337-024-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/30/2024] Open
Abstract
The citrus yellow mosaic badnavirus (CMBV) is one of the most important viruses causing yellowing and declining in different Citrus species. The Coorg mandarin, pomelo and grapefruit showing the yellow mosaic disease symptoms were collected from different famers field during the survey. Further viral pathogenicity was confirmed through grafting on Rangpur lime as root stock. To confirm the identity of the pathogen, total genomic DNA was extracted from Coorg mandarin, Pomelo and grapefruit were subjected to PCR amplification using ORF III specific primers. Further the complete genome of CMBV amplified using different sets of specific primers were cloned and sequenced. The sequence analysis showed that CMBV from the Coorg mandarin showed maximum nt identity of 94.5% with CMBV-AL infecting acid lime. Recombination and GC plot analysis showed that the recombination occurred at in low GC content regions of genome of the CMBV and are derived from the previously reported Badnaviruses infecting different Citrus species. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00864-z.
Collapse
Affiliation(s)
- V. Venkataravanappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
- CHES, ICAR-Indian Institute of Horticultural Research Chettalli, Madikeri District, Karnataka India
| | - G. S. Madhu
- CHES, ICAR-Indian Institute of Horticultural Research Chettalli, Madikeri District, Karnataka India
| | - B. M. Muralidhara
- CHES, ICAR-Indian Institute of Horticultural Research Chettalli, Madikeri District, Karnataka India
| | - Shridhar Hiremath
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - M. Krishna Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| |
Collapse
|
4
|
Venkataravanappa V, Ashwathappa KV, Hiremath S, Manjunatha L, Shankarappa KS, Krishna Reddy M, Lakshminarayana Reddy CN. Begomovirus and DNA-satellites association with mosaic and leaf curl disease of Solanum nigrum and Physalis minima: the new hosts for chilli leaf curl virus. Virusdisease 2023; 34:504-513. [PMID: 38046062 PMCID: PMC10686937 DOI: 10.1007/s13337-023-00850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The numerous plants of Solanum nigrum L, and Physalis minima L, well-known weeds with medicinal properties in agriculture and horticulture crops exhibiting severe mosaic, enation and leaf curl symptoms, were collected from the Varanasi and Mirzapur districts of Uttar Pradesh, India. The begomovirus infection in S. nigrum and P. minima was validated by PCR using virus-specific primers. The whole genome of the represented isolate of S. nigrum (SN1), P. minima (PM1), and beta satellite was amplified, cloned and sequenced. The SDT analysis showed that the DNA-A of PM1 and SN1 isolate showed the highest nt identity of 87.4 to 99.1%, with several chilli leaf curl virus (ChiLCuV) isolates from India and Oman, respectively. The betasatellite sequence (PM1β) obtained from the PM1 isolate showed a very low identity of 83.1-84.5%. A demarcation threshold of 91% for betasatellite species delineation has led to identifying a new betasatellite in the PM1 sample. This unique betasatellite has been named "physalis minima leaf curl betasatellite," indicating its novelty with the plant. Whereas, betasatellite sequence (SN1β) obtained from the SN1 sample showed 86.8-91.2% nucleotide identity with ChiLCB isolates infecting several crops in Indian subcontinents. The RDP analysis of the viral genome and betasatellite of SN1 and PM1 isolates revealed recombination in substantial portions of their genetic makeup, which appeared to have originated from pre-existing begomoviruses known to infect diverse host species. The present research also highlights the potential role of these plants as significant reservoir hosts for ChiLCuV in chili plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00850-x.
Collapse
Affiliation(s)
- V. Venkataravanappa
- Division of Crop Protection, Central Horticultural Experimental Station (CHES), ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Chettalli, Madikeri District, Bengaluru, Karnataka 560089 India
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065 India
| | - K. V. Ashwathappa
- Division of Crop Protection, Central Horticultural Experimental Station (CHES), ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Chettalli, Madikeri District, Bengaluru, Karnataka 560089 India
| | - Shridhar Hiremath
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065 India
- Centre for Infectious Diseases, CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - L. Manjunatha
- Crop Protection, Indian Institute of Horticultural Research, Bangalore, India
| | - K. S. Shankarappa
- Department of Plant Pathology, College of Horticulture, Bengaluru, 560 065 India
- University of Horticultural Sciences, Bagalkot, Karnataka India
| | - M. Krishna Reddy
- Division of Crop Protection, Central Horticultural Experimental Station (CHES), ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Chettalli, Madikeri District, Bengaluru, Karnataka 560089 India
| | - C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065 India
| |
Collapse
|
5
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
6
|
Fan Y, Zhong Y, Pan L, Wang X, Ding M, Liu S. A shift of vector specificity acquired by a begomovirus through natural homologous recombination. MOLECULAR PLANT PATHOLOGY 2023; 24:882-895. [PMID: 37191666 PMCID: PMC10346445 DOI: 10.1111/mpp.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.
Collapse
Affiliation(s)
- Yun‐Yun Fan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yu‐Wei Zhong
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Li‐Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Xiao‐Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ming Ding
- Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
| | - Shu‐Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Wang Y, Mei Y, Su C, Wang Z, Li F, Hu T, Wang Z, Liu S, Li F, Zhou X. GPIBase: A comprehensive resource for geminivirus-plant-insect research. MOLECULAR PLANT 2023; 16:647-649. [PMID: 36809879 DOI: 10.1016/j.molp.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Mei
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenlu Su
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zuoqi Wang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shusheng Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Quadros AFF, Ferro CG, de Rezende RR, Godinho MT, Xavier CAD, Nogueira AM, Alfenas-Zerbini P, Zerbini FM. Begomovirus populations in single plants are complex and may include both well-adapted and poorly-adapted viruses. Virus Res 2023; 323:198969. [PMID: 36257487 PMCID: PMC10194161 DOI: 10.1016/j.virusres.2022.198969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Begomoviruses (single-stranded DNA plant viruses transmitted by whiteflies) are economically important pathogens causing epidemics worldwide. Tomato-infecting begomoviruses emerged in Brazil in the 1990's following the introduction of Bemisia tabaci Middle East-Asia Minor 1. It is believed that these viruses evolved from indigenous viruses infecting non-cultivated hosts. However, tomato-infecting viruses are rarely found in non-cultivated hosts, and vice-versa. It is possible that viral populations in a given host are composed primarily of viruses which are well adapted to this host, but also include a small proportion of poorly adapted viruses. Following transfer to a new host, the composition of the viral population would shift rapidly, with the viruses which are better adapted to the new host becoming predominant. To test this hypothesis, we collected tomato and Sida plants growing next to each other at two locations in 2014 and 2018. Total DNA was extracted from tomato and Sida samples from each location and year and used as a template for high-throughput sequencing. Reads were mapped following a highly stringent set of criteria. For the 2014 samples, >98% of the Sida reads mapped to Sida micrantha mosaic virus (SiMMV), but 0.1% of the reads mapped to tomato severe rugose virus (ToSRV). Conversely, >99% of the tomato reads mapped to ToSRV, with 0.18% mapping to SiMMV. For the 2018 samples, 41% of the Sida reads mapped to three Sida-adapted viruses and 0.1% of the reads mapped to ToSRV, while 99.9% of the tomato reads mapped to ToSRV. These results are consistent with the hypothesis that viral populations in a single plant are composed primarily of the virus that is better adapted to the host but also include a small proportion of viruses that are poorly adapted.
Collapse
Affiliation(s)
- Ayane F F Quadros
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Rafael R de Rezende
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - César A D Xavier
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Angélica M Nogueira
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P Alfenas-Zerbini
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
9
|
Lopez-Lopez K, Corredor-Rodríguez A, Correa-Forero AM, Álvarez-Rubiano LP, Suarez- Rodríguez A, Vaca-Vaca JC. DETECCIÓN MOLECULAR DE BEGOMOVIRUS AISLADOS DE ARVENSES ASOCIADAS AL CULTIVO DE AJÍ (Capsicum spp.) EN EL VALLE DEL CAUCA, COLOMBIA. ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n3.89802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los virus Potato yellow mosaic virus (PYMV/Co), Passionfruit leaf distortion virus (PLDV), Pepper rugose mosaic virus (PRMV) y Rhynchosia golden mosaic Colombia virus (RhGMCV) son begomovirus de interés agrícola, aislados y caracterizados molecularmente en el Valle del Cauca. Sin embargo, en la actualidad no hay suficiente información sobre sus hospederos alternos. Dado que las arvenses cumplen un papel importante en la ecología y epidemiología viral, este estudio tuvo como objetivo detectar la presencia de estos begomovirus en arvenses asociadas al cultivo de ají en el Valle del Cauca, Colombia. Se recolectaron 121 plantas arvenses en zonas productoras de ají, localizadas en 7 municipios del Valle del Cauca, las cuales fueron identificadas a nivel taxonómico. A partir del ADN genómico purificado de estas plantas se evaluó la presencia de virus por PCR, usando cebadores universales para el género Begomovirus y específicos para PYMV/Co, PLDV, PRMV y RhGMCV. Se detectaron begomovirus en 15 de las especies de arvenses evaluadas. Esta es la primera vez que las especies Ipomoea tiliacea, Melothria pendula, Caperonia palustris, Desmodium tortuosum, Desmodium intortum, Ammannia coccinea, Panicum polygonatum, Capsicum rhomboideum, Eclipta prostrata y Synedrella nodiflora se reportan como hospederas de begomovirus en Colombia. Se detectaron los begomovirus RhGMCV, PYMV/Co, PRMV y PLDV en infecciones simples y mixtas. Estos resultados aportan nuevos datos sobre los hospederos alternos de begomovirus. Esta información servirá para implementar un plan de manejo integrado de enfermedades virales con el potencial para afectar negativamente el rendimiento del cultivo de ají, y otros cultivos en Colombia.
Collapse
|
10
|
Bono LM, Mao S, Done RE, Okamoto KW, Chan BK, Turner PE. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv Virus Res 2021; 111:63-110. [PMID: 34663499 DOI: 10.1016/bs.aivir.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phages are viruses that specifically infect bacteria, and their biodiversity contributes to historical and current development of phage therapy to treat myriad bacterial infections. Phage therapy holds promise as an alternative to failing chemical antibiotics, but there are benefits and costs of this technology. Here, we review the rich history of phage therapy, highlighting reasons (often political) why it was widely rejected by Western medicine until recently. One longstanding idea involves mixing different phages together in cocktails, to increase the probability of killing target pathogenic bacteria without pre-screening for phage susceptibility. By challenging 30 lytic phages to infect 14 strains of the bacteria Pseudomonas aeruginosa, we showed that some phages were "generalists" with broad host-ranges, emphasizing that extreme host-specificity of phages was not necessarily a liability. Using a "greedy algorithm" analysis, we identified the best cocktail mixture of phages to achieve broad bacteria killing. Additionally, we review how virus host-range can evolve and connect lessons learned from virus emergence-including contributions of elevated virus mutation rates in promoting emergence and virus evolutionary transitions from specialized to generalized host-use-as cautionary tales for avoiding risk of "off-target" phage emergence on commensal bacteria in microbiomes. Throughout, we highlight how fundamental understanding of virus ecology and evolution is vital for developing phage therapy; heeding these principles should help in designing therapeutic strategies that do not recapitulate consequences of virus selection to emerge on novel hosts.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Biology, Emory University, Atlanta, GA, United States.
| | - Stephanie Mao
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel E Done
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Kenichi W Okamoto
- Department of Biology, University of St. Thomas, St. Paul, MN, United States
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Microbiology Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Abstract
The fast-paced evolution of viruses enables them to quickly adapt to the organisms they infect by constantly exploring the potential functional landscape of the proteins encoded in their genomes. Geminiviruses, DNA viruses infecting plants and causing devastating crop diseases worldwide, produce a limited number of multifunctional proteins that mediate the manipulation of the cellular environment to the virus’ advantage. Among the proteins produced by the members of this family, C4, the smallest one described to date, is emerging as a powerful viral effector with unexpected versatility. C4 is the only geminiviral protein consistently subjected to positive selection and displays a number of dynamic subcellular localizations, interacting partners, and functions, which can vary between viral species. In this review, we aim to summarize our current knowledge on this remarkable viral protein, encompassing the different aspects of its multilayered diversity, and discuss what it can teach us about geminivirus evolution, invasion requirements, and virulence strategies.
Collapse
|
12
|
Mendes ALSF, Melo AM, Ramos-Sobrinho R, Silva SJC, Ferro CG, Ferro MMM, Murilo Zerbini F, Lima GSA, Assunção IP. High molecular diversity and divergent subpopulations of the begomovirus cnidoscolus mosaic leaf deformation virus associated with Cnidoscolus urens. Arch Virol 2021; 166:3289-3299. [PMID: 34554304 DOI: 10.1007/s00705-021-05245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022]
Abstract
Begomoviruses have circular, single-stranded DNA genomes encapsidated into twinned quasi-icosahedral particles and are transmitted by whiteflies of the Bemisia tabaci sibling group. Begomoviruses infect cultivated and non-cultivated plants, causing great losses in economically important crops worldwide. To better understand the genetic diversity of begomoviruses infecting the non-cultivated host Cnidoscolus urens, leaf samples exhibiting virus-like symptoms were collected in different localities in the state of Alagoas, Brazil, during 2015 and 2016. Forty-two complete DNA-A sequences were cloned and sequenced by the Sanger method. Based on nucleotide sequence comparisons, the 42 new isolates were identified as the bipartite begomovirus cnidoscolus mosaic leaf deformation virus (CnMLDV). The CnMLDV isolates were clustered in two phylogenetic groups (clusters I and II) corresponding to their sampling areas, and the high value of Wright's F fixation index observed for the DNA-A sequences suggests population structuring. At least seven independent intraspecies recombination events were predicted among CnMLDV isolates, with recombination breakpoints located in the common region (CR) and in the CP and Rep genes. Also, a high per site nucleotide diversity (π) was observed for CnMLDV isolates, with CP being significantly more variable than Rep. Despite the high genetic variability, strong negative or purifying selection was identified as the main selective force acting upon CP and Rep.
Collapse
Affiliation(s)
- Adso L S F Mendes
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil
| | - Aline M Melo
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil
| | | | - Sarah J C Silva
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil
| | - Camila G Ferro
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Departamento de Fitopatologia e Nematologia, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Mayra M M Ferro
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Gaus S A Lima
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil
| | - Iraildes P Assunção
- Setor de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL, 57100-000, Brazil.
| |
Collapse
|
13
|
Nigam D. Genomic Variation and Diversification in Begomovirus Genome in Implication to Host and Vector Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1706. [PMID: 34451752 PMCID: PMC8398267 DOI: 10.3390/plants10081706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) are DNA viruses transmitted in a circulative, persistent manner by the whitefly Bemisia tabaci (Gennadius). As revealed by their wide host range (more than 420 plant species), worldwide distribution, and effective vector transmission, begomoviruses are highly adaptive. Still, the genetic factors that facilitate their adaptation to a diverse array of hosts and vectors remain poorly understood. Mutations in the virus genome may confer a selective advantage for essential functions, such as transmission, replication, evading host responses, and movement within the host. Therefore, genetic variation is vital to virus evolution and, in response to selection pressure, is demonstrated as the emergence of new strains and species adapted to diverse hosts or with unique pathogenicity. The combination of variation and selection forms a genetic imprint on the genome. This review focuses on factors that contribute to the evolution of Begomovirus and their global spread, for which an unforeseen diversity and dispersal has been recognized and continues to expand.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Crespo-Bellido A, Hoyer JS, Dubey D, Jeannot RB, Duffy S. Interspecies Recombination Has Driven the Macroevolution of Cassava Mosaic Begomoviruses. J Virol 2021; 95:e0054121. [PMID: 34106000 PMCID: PMC8354330 DOI: 10.1128/jvi.00541-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper crop production and threaten food security around the world. The frequent emergence of new begomovirus genotypes is facilitated by high mutation frequencies and the propensity to recombine and reassort. Homologous recombination has been especially implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple food crop throughout Africa and an important industrial crop in Asia, two continents where production is severely constrained by CMD. The CMD species complex is comprised of 11 bipartite begomovirus species with ample distribution throughout Africa and the Indian subcontinent. While recombination is regarded as a frequent occurrence for CMBs, a revised, systematic assessment of recombination and its impact on CMB phylogeny is currently lacking. We assembled data sets of all publicly available, full-length DNA-A (n = 880) and DNA-B (n = 369) nucleotide sequences from the 11 recognized CMB species. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the CMB sequences. Six out of the 11 species descended from unique interspecies recombination events. Estimates of recombination and mutation rates revealed that all species experience mutation more frequently than recombination, but measures of population divergence indicate that recombination is largely responsible for the genetic differences between species. Our results support that recombination has significantly impacted the CMB phylogeny and has driven speciation in the CMD species complex. IMPORTANCE Cassava mosaic disease (CMD) is a significant threat to cassava production throughout Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species exhibiting accelerated rates of evolution, driven by high frequencies of mutation and genetic exchange. Here, we present a systematic analysis of the contribution of genetic exchange to cassava mosaic virus species-level diversity. Most of these species emerged as a result of genetic exchange. This is the first study to report the significant impact of genetic exchange on speciation in a group of viruses.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ronica B. Jeannot
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, Lima ATM, Murilo Zerbini F. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 2021; 30:3747-3767. [PMID: 34021651 DOI: 10.1111/mec.15997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.
Collapse
Affiliation(s)
- César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Talita B Mar
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Osvaldo F L Sande
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José C Silva
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Ramos-Sobrinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renato N Nascimento
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Iraildes Assunção
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Gaus S A Lima
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Alison T M Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
16
|
Venkataravanappa V, Reddy CNL, Nandan M, Hiremath S, Ashwathappa KV, Shankarappa KS, Vinay Kumar HD, Reddy MK. Transmission, characterization and occurrence of recombination in Indian strain of squash leaf curl China virus associated with yellow mosaic and leaf curl disease of Summer squash. 3 Biotech 2021; 11:265. [PMID: 33996377 DOI: 10.1007/s13205-021-02821-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Summer squash is one of the important vegetable crops and its production is hampered by various abiotic and biotic stresses. Of the different biotic stresses, viral infections are responsible for causing great losses to this crop. Diseases caused by begomoviruses are becoming a major constraint in the cultivation of summer squash. Samples from summer squash plants exhibiting severe yellow mosaic and leaf curl symptoms were collected from the Varanasi district of Uttar Pradesh (India) and begomovirus associated with these plants was transmitted through whiteflies (Bemisia tabaci) to healthy squash plants. The relationship between causal virus and whitefly vector was determined. The minimum acquisition access period (AAP) and inoculation feeding period (IFP) required by B. tabaci to transmit the virus was determined to be 10 min and female insects have greater efficiency in transmitting virus than male insects. The partial genome of the virus was amplified by PCR (1.2 kb), cloned and sequenced from the ten infected plant samples collected from field. Partial genome sequence analysis (1.2 kb) obtained from the ten samples revealed that they are associated with begomovirus species closely related to the Indian strain of Squash leaf curl China virus (SLCCNV). Therefore, one representative sample (Sq-1) was selected and complete genome of the virus was amplified by rolling circle amplification (RCA) method. Sequence analysis by Sequence Demarcation Tool (SDT) showed that the current isolate has maximum nucleotide (nt) identity of 93.7-98.4% and 89-98.1% with respect to DNA A DNA B, respectively with Indian strains of SLCCNV infecting cucurbits in India. Recombination analysis of genomes (DNA A and DNA B components) showed that a major part of genomes likely to be originated from already known begomoviruses (ToLCNDV, SLCCNV-CN and SLCCNV-IN) are infecting cucurbitaceous crops. Serological assays such as triple antibody sandwich-enzyme-linked immune-sorbent (TAS-ELISA) assay, dot blot immunobinding assay (DIBA), immuno-capture polymerase chain reaction (IC-PCR) were developed for the detection of SLCCNV. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02821-9.
Collapse
Affiliation(s)
- V Venkataravanappa
- Division of Plant Pathology, CHES, ICAR-Indian Institute of Horticultural Research, Chettalli, Madikeri District, Bangalore, Karnataka, 571248 India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 563125 India
| | - M Nandan
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 563125 India
| | - Shridhar Hiremath
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 563125 India
| | - K V Ashwathappa
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - K S Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot, Bengaluru, Karnataka 560065 India
| | - H D Vinay Kumar
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 563125 India
| | - M Krishna Reddy
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| |
Collapse
|
17
|
Pinto VB, Quadros AFF, Godinho MT, Silva JC, Alfenas-Zerbini P, Zerbini FM. Intra-host evolution of the ssDNA virus tomato severe rugose virus (ToSRV). Virus Res 2020; 292:198234. [PMID: 33232784 DOI: 10.1016/j.virusres.2020.198234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 01/17/2023]
Abstract
To evaluate and quantify the evolutionary dynamics of the bipartite begomovirus tomato severe rugose virus (ToSRV) in a cultivated and a non-cultivated host, plants of tomato and Nicandra physaloides were biolistically inoculated with an infectious clone and systemically infected leaves were sampled at 30, 75 and 120 days after inoculation. Total DNA was extracted and sequenced in the Illumina HiSeq 2000 platform. The datasets were trimmed with the quality score limit set to 0.01, and the assembly was performed using the infectious clone sequence as reference. SNPs were filtered using a minimum p-value of 0.001 and the sum frequencies were used to calculate the deviation from the original clone sequence. Nucleotide substitution rates were calculated for the two DNA components in both hosts: 1.73 × 10-3 and 3.07 × 10-4 sub/site/year for the DNA-A and DNA-B, respectively, in N. physaloides, and 8.05 × 10-4 and 7.02 × 10-5 sub/site/year the for DNA-A and DNA-B, respectively, in tomato. These values are in the same range of those estimated for viruses with single-stranded RNA genomes and for other begomoviruses. Strikingly, the number of substitutions decreased over time, suggesting the presence of bottlenecks during systemic infection. Determination of Shannon's entropy indicated different patterns of variation in the DNA-A and the DNA-B, suggesting distinct evolutionary forces acting upon each component.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Ayane Fernanda Ferreira Quadros
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Márcio Tadeu Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - José Cleydson Silva
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Poliane Alfenas-Zerbini
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Dep. de Microbiologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
18
|
Mishra M, Verma RK, Marwal A, Sharma P, Gaur RK. Biology and Interaction of the Natural Occurrence of Distinct Monopartite Begomoviruses Associated With Satellites in Capsicum annum From India. Front Microbiol 2020; 11:512957. [PMID: 33117300 PMCID: PMC7575687 DOI: 10.3389/fmicb.2020.512957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/03/2020] [Indexed: 01/29/2023] Open
Abstract
Chili (Capsicum annuum L.) is an important vegetable and spice crop of tropical and sub-tropical regions. Chili plants showing upward leaf curling, leaf crinkling, and leaf yellowing symptoms, collected from Sikar district of Rajasthan, India, were found to be associated with begomovirus and satellite molecules. The presence of virus was confirmed by PCR using virus-specific primer. The full-length genomic DNA-A of three begomovirus (MM-1, CS-1 and RV-1) and two satellites (MM-2 and MM-3) were cloned which was identified from single symptomatic chili plant. The genome organization of isolated three viruses is similar to those of other Old World monopartite begomoviruses. The comparison of the sequences and closest phylogenetic relationships for the begomoviruses, betasatellite and alphasatellite DNAs revealed that MM-1 was designated as DNA-A of Chili leaf curl virus (ChiLCV), CS-1 is considered to be a new distinct species of Tomato leaf curl Gujrat virus (ToLCGV) whereas RV-1 as a new strain of Cotton leaf curl Multan virus (CLCuMuV). The DNA-A component of ChiLCV showed 8.6%, ToLCGV of 16.6% and CLCuMuV of 7.7% average evolutionary divergence, concomitantly, the betasatellite and alphasatellite molecule had 9.9% and 5.9% overall sequence divergence, respectively. Interestingly, most of the begomoviruses were found to be intra-species recombinants. The dN/dS ratio and Tajima D value of all viral DNA-A component and their associated betasatellite showed their selective control on evolutionary relationships. The nucleotide substitution rates were determined for the DNA-A genomes of ChiLCV (7.22 × 10–4 substitutions site–1 year–1), CLCuMuV (1.49 × 10–4 substitutions site–1 year–1), ToLCGV (7.47 × 10–4 substitutions site–1 year–1), the genome of associated ChiLCB (4.20 × 10–4 substitutions site–1 year–1) and CLCuMuA (1.49 × 10–4 substitutions site–1 year–1). Agro-inoculation studies indicate that the presence of DNA betasatellite induce severe symptoms in N. benthamiana and chili, suggesting prerequisite association for typical disease development.
Collapse
Affiliation(s)
- Megha Mishra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Avinash Marwal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Pradeep Sharma
- Biotechnology Unit, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - R K Gaur
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, India
| |
Collapse
|
19
|
Sun S, Hu Y, Jiang G, Tian Y, Ding M, Yu C, Zhou X, Qian Y. Molecular Characterization and Genomic Function of Grapevine Geminivirus A. Front Microbiol 2020; 11:555194. [PMID: 32983075 PMCID: PMC7493466 DOI: 10.3389/fmicb.2020.555194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
A new grapevine geminivirus A (GGVA) isolate (named as GGVA-17YM1) and its associated defective genome (GGVA-D) were identified from a grapevine sample collected in Yuanmou, Yunnan Province, using sRNA high throughput sequencing and traditional Sanger sequencing. To explore the pathogenicity of GGVA and GGVA-D, infectious clones of GGVA-17YM1 and GGVA-D-17YM1 were constructed. Infection assays indicated that Nicotiana benthamiana plants inoculated with GGVA alone or a combination of GGVA and GGVA-D exhibited upward curled apical leaves and dwarfism. Southern blotting and quantitative real-time polymerase chain reaction analysis revealed that GGVA-D increased the accumulation level of GGVA DNA. Transient expression using a PVX-derived recombinant vector indicated that C2 and C4 encoded by GGVA are involved in symptom induction in N. benthamiana. Furthermore, the V2 protein inhibited local RNA silencing in co-infiltration assays in GFP transgenic N. benthamiana plants. Subsequently, full-length genome sequencing resulted in the identification of 11 different isolates of GGVA and 9 associated defective DNA molecules. Phylogenetic analysis based on whole genome sequences showed that all GGVA isolates, including our sequences, clustered into two distinct branches with no geographical grouping. Analyses of molecular variation indicated single nucleotide polymorphisms (SNPs) with more transitions (55.97%) than transversions (44.03%). Furthermore, the main variants for ORF C1, C3, or V1 were synonymous mutations, and non-synonymous mutations for ORF C2, C4, and V2. Genetic selection analysis indicated that negative selection acted on four ORFs (V1, C1, C2, and C3), while V2 and C4 were under positive selection. Our results contribute to the characterization of the genetic diversity of GGVA and provide insights into its pathogenicity.
Collapse
Affiliation(s)
- Suwei Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ya Hu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Yimin Tian
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs District, Shanghai, China
| | - Ming Ding
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Science, Kunming, China
| | - Cui Yu
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs District, Shanghai, China
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Li Z, Du Z, Tang Y, She X, Wang X, Zhu Y, Yu L, Lan G, He Z. C4, the Pathogenic Determinant of Tomato Leaf Curl Guangdong Virus, May Suppress Post-transcriptional Gene Silencing by Interacting With BAM1 Protein. Front Microbiol 2020; 11:851. [PMID: 32431688 PMCID: PMC7215500 DOI: 10.3389/fmicb.2020.00851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Tomato leaf curl Guangdong virus (ToLCGdV) is a begomovirus associated with a Tomato yellow leaf curl disease (TYLCD) epidemic in Guangdong province, China. Being the least conserved protein among geminivirus proteins, the function of C4 during ToLCGdV infection has not been elucidated. In this study, the infectious clones of ToLCGdV and a ToLCGdV mutant (ToLCGdVmC4) with disrupted C4 ORF were constructed. Although ToLCGdV and ToLCGdVmC4 could infect Nicotiana benthamiana and tomato plants, ToLCGdVmC4 elicited much milder symptoms compared with ToLCGdV. To further verify the role of C4 in viral pathogenesis, C4 was expressed in N. benthamiana from Potato virus X (PVX) vector. The results showed that ToLCGdV C4 enhanced the pathogenicity of PVX and induced more severe developmental abnormalities in plants compared with PVX alone or PVX-mC4. In addition, ToLCGdV C4 suppresses systemic gene silencing in the transgenic N. benthamiana line 16c, but not local gene silencing induced by sense GFP in wild-type N. benthamiana plants. Moreover, C4 suppresses transcriptional gene silencing (TGS) by reducing the DNA methylation level of 35S promoter in 16c-TGS N. benthamiana plants. Furthermore, C4 could also interact with the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1), suggesting that C4 may suppress gene silencing by interfering with the function of BAM1 in the cell-to-cell spread of RNAi. All these results suggest that C4 is a pathogenic determinant of ToLCGdV, and C4 may suppress post-transcriptional gene silencing (PTGS) by interacting with BAM1.
Collapse
Affiliation(s)
- Zhenggang Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenguo Du
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yafei Tang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoman She
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaomei Wang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanhua Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Yu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guobing Lan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
21
|
Melgarejo TA, Rojas MR, Gilbertson RL. A Bipartite Begomovirus Infecting Boerhavia erecta (Family Nyctaginaceae) in the Dominican Republic Represents a Distinct Phylogenetic Lineage and has a High Degree of Host Specificity. PHYTOPATHOLOGY 2019; 109:1464-1474. [PMID: 30995160 DOI: 10.1094/phyto-02-19-0061-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boerhavia erecta plants in and around agricultural fields in the Azua Valley of the southeastern Dominican Republic often show striking golden mosaic symptoms. Leaf samples from B. erecta plants showing these symptoms were collected in 2012 and 2013, and PCR tests with degenerate primers revealed begomovirus DNA-A and DNA-B components. The complete sequences of the DNA-A and DNA-B components of four isolates show a high degree of sequence identity (>96%) and a genome organization typical of New World (NW) bipartite begomoviruses. Sequence comparisons and phylogenetic analyses revealed that these isolates composed a new phylogenetic lineage of NW bipartite begomoviruses. The most closely related begomovirus is Merremia mosaic virus, a weed-infecting species from Puerto Rico. Because DNA-A sequence identities are well below the 91% threshold, these isolates represent a new begomovirus species, for which the name Boerhavia golden mosaic virus (BoGMV) is proposed. Infectious cloned BoGMV DNA-A and DNA-B components induced golden mosaic symptoms in agroinoculated B. erecta plants, thereby fulfilling Koch's postulates for this disease. Agroinoculation and mechanical transmission experiments revealed that BoGMV has an unusually narrow host range, limited to members of the family Nyctaginaceae and not including the permissive host Nicotiana benthamiana. The inability of BoGMV to infect N. benthamiana was due to a deficiency in cell-to-cell movement but not to a unique amino acid residue in the movement protein.
Collapse
Affiliation(s)
- Tomas A Melgarejo
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
- 2Departamento de Fitopatologia, Universidad Nacional Agraria La Molina, Av. La Molina s/n La Molina, Lima, Peru
| | - Maria R Rojas
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
| | - Robert L Gilbertson
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
| |
Collapse
|
22
|
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol 2019; 17:632-644. [PMID: 31312033 DOI: 10.1038/s41579-019-0232-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.
Collapse
Affiliation(s)
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Paterna, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France.,BGPI, CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
23
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
24
|
Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon L, Rivera Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarnheden A, Wintermantel WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata AK, Gilbertson RL. World Management of Geminiviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:637-677. [PMID: 30149794 DOI: 10.1146/annurev-phyto-080615-100327] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.
Collapse
Affiliation(s)
- Maria R Rojas
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Monica A Macedo
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Minor R Maliano
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Maria Soto-Aguilar
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Juliana O Souza
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Rafael F Rivera Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Irapuato, Irapuato, Guanajuato, Mexico 36821
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Scott Adkins
- US Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida 34945, USA
| | - James P Legg
- International Institute of Tropical Agriculture, Dar-Es-Salaam, Tanzania
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Center for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - William M Wintermantel
- US Department of Agriculture, Agricultural Research Service, Salinas, California 93905, USA
| | - Mysore R Sudarshana
- US Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Michel Peterschmitt
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Moshe Lapidot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Cientficas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," Algarrobo-Costa, Málaga 29750, Spain
| | | | - Robert L Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| |
Collapse
|
25
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
26
|
Kushawaha AK, Rabindran R, Dasgupta I. Rolling circle amplification-based analysis of Sri Lankan cassava mosaic virus isolates from Tamil Nadu, India, suggests a low level of genetic variability. Virusdisease 2018; 29:61-67. [PMID: 29607360 DOI: 10.1007/s13337-018-0432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022] Open
Abstract
Cassava mosaic disease is a widespread disease of cassava in south Asia and the African continent. In India, CMD is known to be caused by two single-stranded DNA viruses (geminiviruses), Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosdaic virus (SLCMV). Previously, the diversity of ICMV and SLCMV in India has been studied using PCR, a sequence-dependent method. To have a more in-depth study of the variability of the above viruses and to detect any novel geminiviruses associated with CMD, sequence-independent amplification using rolling circle amplification (RCA)-based methods were used. CMD affected cassava plants were sampled across eighty locations in nine districts of the southern Indian state of Tamil Nadu. Twelve complete sequence of coat protein genes of the resident geminiviruses, comprising 256 amino acid residues were generated from the above samples, which indicated changes at only six positions. RCA followed by RFLP of the 80 samples indicated that most samples (47) contained only SLCMV, followed by 8, which were infected jointly with ICMV and SLCMV. In 11 samples, the pattern did not match the expected patterns from either of the two viruses and hence, were variants. Sequence analysis of an average of 700 nucleotides from 31 RCA-generated fragments of the variants indicated identities of 97-99% with the sequence of a previously reported infectious clone of SLCMV. The evidence suggests low levels of genetic variability in the begomoviruses infecting cassava, mainly in the form of scattered single nucleotide changes.
Collapse
Affiliation(s)
- Akhilesh Kumar Kushawaha
- 1Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramalingam Rabindran
- 2Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Indranil Dasgupta
- 1Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
27
|
Characterization of tomato leaf curl purple vein virus, a new monopartite New World begomovirus infecting tomato in Northeast Brazil. Arch Virol 2017; 163:737-743. [PMID: 29224131 DOI: 10.1007/s00705-017-3662-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
A new begomovirus species was identified from tomato plants with upward leaf curling and purple vein symptoms, which was first identified in the Piaui state of Northeast (NE) Brazil in 2014. Tomato leaf samples were collected in 2014 and 2016, and PCR with degenerate primers revealed begomovirus infection. Rolling circle amplification and restriction enzyme digestion indicated a single genomic DNA of ~ 2.6 kb. Cloning and sequencing revealed a genome organization similar to DNA-A components of New World (NW) bipartite begomoviruses, with no DNA-B. The complete nucleotide sequence had the highest identity (80%) with the DNA-A of Macroptilium yellow spot virus (MacYSV), and phylogenetic analyses showed it is a NW begomovirus that clusters with MacYSV and Blainvillea yellow spot virus, also from NE Brazil. Tomato plants agroinoculated with a dimeric clone of this genomic DNA developed upward leaf curling and purple vein symptoms, indistinguishable from those observed in the field. Based on agroinoculation, this virus has a narrow host range, mainly within the family Solanaceae. Co-inoculation experiments with tomato severe rugose virus and tomato mottle leaf curl virus, the two predominant begomoviruses infecting tomato in Brazil, revealed a synergistic interaction among these begomoviruses. The name Tomato leaf curl purple vein virus (ToLCPVV) is proposed for this new begomovirus.
Collapse
|
28
|
Rodríguez-Nevado C, Lam TTY, Holmes EC, Pagán I. The impact of host genetic diversity on virus evolution and emergence. Ecol Lett 2017; 21:253-263. [PMID: 29207441 DOI: 10.1111/ele.12890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/23/2017] [Accepted: 11/02/2017] [Indexed: 01/16/2023]
Abstract
Accumulating evidence indicates that biodiversity has an important impact on parasite evolution and emergence. The vast majority of studies in this area have only considered the diversity of species within an environment as an overall measure of biodiversity, overlooking the role of genetic diversity within a particular host species. Although theoretical models propose that host genetic diversity in part shapes that of the infecting parasite population, and hence modulates the risk of parasite emergence, this effect has seldom been tested empirically. Using Rabies virus (RABV) as a model parasite, we provide evidence that greater host genetic diversity increases both parasite genetic diversity and the likelihood of a host being a donor in RABV cross-species transmission events. We conclude that host genetic diversity may be an important determinant of parasite evolution and emergence.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, 28223, Spain
| | - Tommy T-Y Lam
- State Key Laboratory of Emerging Infectious Diseases, Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, 28223, Spain
| |
Collapse
|
29
|
Rodríguez-Nevado C, Montes N, Pagán I. Ecological Factors Affecting Infection Risk and Population Genetic Diversity of a Novel Potyvirus in Its Native Wild Ecosystem. FRONTIERS IN PLANT SCIENCE 2017; 8:1958. [PMID: 29184567 PMCID: PMC5694492 DOI: 10.3389/fpls.2017.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue (Ruta montana), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Nuria Montes
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
- Rheumatology Service, Hospital Universitario La Princesa, IIS-IP, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
30
|
Belabess Z, Urbino C, Granier M, Tahiri A, Blenzar A, Peterschmitt M. The typical RB76 recombination breakpoint of the invasive recombinant tomato yellow leaf curl virus of Morocco can be generated experimentally but is not positively selected in tomato. Virus Res 2017; 243:44-51. [PMID: 28988981 DOI: 10.1016/j.virusres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
TYLCV-IS76 is an unusual recombinant between the highly recombinogenic tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), two Mediterranean begomoviruses (Geminiviridae). In contrast with the previously reported TYLCV/TYLCSV recombinants, it has a TYLCSV derived fragment of only 76 nucleotides, and has replaced its parental viruses in natural conditions (Morocco, Souss region). The viral population shift coincided with the deployment of the popular Ty-1 resistant tomato cultivars, and according to experimental studies, has been driven by a strong positive selection in such resistant plants. However, although Ty-1 cultivars were extensively used in Mediterranean countries, TYLCV-IS76 was not reported outside Morocco. This, in combination with its unusual recombination pattern suggests that it was generated through a rare and possibly multistep process. The potential generation of a recombination breakpoint (RB) at locus 76 (RB76) was investigated over time in 10 Ty-1 resistant and 10 nearly isogenic susceptible tomato plants co-inoculated with TYLCV and TYLCSV clones. RB76 could not be detected in the recombinant progeny using the standard PCR/sequencing approach that was previously designed to monitor the emergence of TYLCV-IS76 in Morocco. Using a more sensitive PCR test, RB76 was detected in one resistant and five susceptible plants. The results are consistent with a very low intra-plant frequency of RB76 bearing recombinants throughout the test and support the hypothesis of a rare emergence of TYLCV-IS76. More generally, RBs were more scattered in resistant than in susceptible plants and an unusual RB at position 141 (RB141) was positively selected in the resistant cultivar; interestingly, RB141 bearing recombinants were detected in resistant tomato plants from the field. Scenarios of TYLCV-IS76 pre-emergence are proposed.
Collapse
Affiliation(s)
- Z Belabess
- CIRAD, UMR BGPI, 34398 Montpellier, France; Ecole Nationale d'Agriculture de Meknès, BPS 40 Meknès, Morocco; Faculté des Sciences de Meknès, BP 11201, Avenue Zitoune, Meknès, Morocco
| | - C Urbino
- CIRAD, UMR BGPI, 34398 Montpellier, France
| | - M Granier
- CIRAD, UMR BGPI, 34398 Montpellier, France
| | - A Tahiri
- Ecole Nationale d'Agriculture de Meknès, BPS 40 Meknès, Morocco
| | - A Blenzar
- Faculté des Sciences de Meknès, BP 11201, Avenue Zitoune, Meknès, Morocco
| | | |
Collapse
|
31
|
Evidence of Association of Begomovirus with the Yellow vein Disease of an Ornamental Plant Pot Marigold (Calendula officinalis) from Western Uttar Pradesh. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.3.48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus. J Gen Virol 2017; 98:1537-1551. [DOI: 10.1099/jgv.0.000784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Vinoth Kumar R, Singh D, Singh AK, Chakraborty S. Molecular diversity, recombination and population structure of alphasatellites associated with begomovirus disease complexes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:39-47. [PMID: 28062387 DOI: 10.1016/j.meegid.2017.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/21/2022]
Abstract
The genus, begomovirus (family Geminiviridae) includes a large number of viruses infecting a wide range of plant species worldwide. The majority of monopartite begomoviruses are associated with satellites (betasatellites) and/or satellite-like molecules (alphasatellites). In spite of the Indo-China region being regarded as the centre of origin of begomoviruses and satellites, a detailed study on the emergence and evolution of alphasatellites in India has not yet conducted. Our present analysis indicated the association of 22 alphasatellites with monopartite and bipartite begomovirus-betasatellite complexes in India. Based on sequence pairwise identity, these alphasatellites were categorized into five distinct groups: Cotton leaf curl alphasatellite, Gossypium darwinii symptomless alphasatellite, Gossypium mustelinum symptomless alphasatellite, Okra leaf curl alphasatellite and an unreported Chilli leaf curl alphasatellite (ChiLCA). Furthermore, infectivity analysis of the cloned ChiLCA along with the viral components of either cognate or non-cognate chilli-infecting begomoviruses on Nicotiana benthamiana suggested that ChiLCA is dispensable for leaf curl disease development. It is noteworthy that in the presence of ChiLCA, a marginal decrease in betasatellite DNA level was noticed. Additionally, high genetic variability and diverse recombination patterns were detected among these alphasatellites, and the nucleotide substitution rate for the Rep gene of ChiLCA was determined to be 2.25×10-3nucleotides/site/year. This study highlights the genetic distribution, and likely contribution of recombination and nucleotide diversity in facilitating the emergence of alphasatellites.
Collapse
Affiliation(s)
- R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - Divya Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - Achuit K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India.
| |
Collapse
|
34
|
Kulshreshtha A, Roshan P, Sharma D, Hallan V. Molecular characterization of a new begomovirus infecting Mirabilis jalapa in northern India. Arch Virol 2017; 162:2163-2167. [PMID: 28342034 DOI: 10.1007/s00705-017-3330-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
Abstract
Begomoviruses are whitefly-transmitted single-stranded DNA viruses that are responsible for considerable economic losses. A begomovirus, alphasatellite and betasatellite were characterized in a Mirabilis jalapa plant exhibiting severe leaf curling and mottling symptoms. The complete viral genome shared highest sequence identity of 87% with pedilanthus leaf curl virus (AM712436), reported from Pakistan. Additionally, the viral genome was 84% identical to that of chilli leaf curl India virus (KX951415) and 83% identical to that of tobacco curly shoot virus (GU1999584), which were previously reported to infect M. jalapa in India and China, respectively. Based on the ICTV criterion for begomovirus species demarcation (≥91% sequence identity for the complete genome), the virus represents a new species, for which we propose the name Mirabilis leaf curl virus. The alphasatellite and betasatellite sequences were similar to the corresponding sequences of ageratum yellow vein India alphasatellite (KU852743; 99% identity) and tomato leaf curl Patna betasatellite (HQ180394; 86% identity) sequences, respectively. This report describes a new begomovirus-satellite disease complex in M. jalapa.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Poonam Roshan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Dolly Sharma
- CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India. .,CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
35
|
Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG, Duffy S, Zerbini FM. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol 2017; 3:vex005. [PMID: 28458915 PMCID: PMC5399926 DOI: 10.1093/ve/vex005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics.
Collapse
Affiliation(s)
- Alison T M Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - José C F Silva
- National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Fábio N Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Gloria P Castillo-Urquiza
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Fabyano F Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Yee M Seah
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
36
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
37
|
Plant Virus Diversity and Evolution. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123681 DOI: 10.1007/978-3-319-32919-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, the majority of plant virology focused on agricultural systems. Recent efforts have expanded our knowledge of the true diversity of plant viruses by studying those viruses that infect wild, undomesticated plants. Those efforts have provided answers to basic ecological questions regarding viruses in the wild, and insights into evolutionary questions, regarding the origins of viruses. While much work has been done, we have merely scratched the surface of the diversity that is estimated to exist. In this chapter we discuss the state of our knowledge of virus diversity, both in agricultural systems as well as in native wild systems, the border between these two systems and how viruses adapt and move across this border into an artificial, domesticated environment. We look at how this diversity has affected our outlook on viruses as a whole, shifting our past view of viruses as purely antagonistic entities of destruction to one where viruses are in a mutually beneficial relationship with their hosts. Additionally, we discuss the current work that plant virology has put forth regarding the evolutionary mechanisms, the life histories, and the deep evolution of viruses.
Collapse
|
38
|
Rosario K, Seah YM, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Duffy S, Breitbart M. Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and Old Worlds. Viruses 2015; 7:5553-70. [PMID: 26516898 PMCID: PMC4632403 DOI: 10.3390/v7102895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023] Open
Abstract
Whitefly-transmitted viruses belonging to the genus Begomovirus (family Geminiviridae) represent a substantial threat to agricultural food production. The rapid evolutionary potential of these single-stranded DNA viruses combined with the polyphagous feeding behavior of their whitefly vector (Bemisia tabaci) can lead to the emergence of damaging viral strains. Therefore, it is crucial to characterize begomoviruses circulating in different regions and crops globally. This study utilized vector-enabled metagenomics (VEM) coupled with high-throughput sequencing to survey begomoviruses directly from whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Begomoviruses were detected in all locations, with the highest diversity identified in Guatemala where up to seven different species were identified in a single field. Both bipartite and monopartite viruses were detected, including seven new begomovirus species from Guatemala, Puerto Rico, and Spain. This begomovirus survey extends the known diversity of these highly damaging plant viruses. However, the new genomes described here and in the recent literature appear to reflect the outcome of interactions between closely-related species, often resulting from recombination, instead of unique, highly divergent species.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Yee Mey Seah
- Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Christian Marr
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", Algarrobo-Costa, Málaga 29750, Spain.
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
39
|
Kumar RV, Singh AK, Singh AK, Yadav T, Basu S, Kushwaha N, Chattopadhyay B, Chakraborty S. Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J Gen Virol 2015; 96:3143-3158. [PMID: 26251220 DOI: 10.1099/jgv.0.000254] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chilli, which encompasses several species in the genus Capsicum, is widely consumed throughout the world. In the Indian subcontinent, production of chilli is constrained due to chilli leaf curl disease (ChiLCD) caused by begomoviruses. Despite the considerable economic consequences of ChiLCD on chilli cultivation in India, there have been scant studies of the genetic diversity and structure of the begomoviruses that cause this disease. Here we report on a comprehensive survey across major chilli-growing regions in India. Analysis of samples collected in the survey indicates that ChiLCD-infected plants are associated with a complex of begomoviruses (including one previously unreported species) with a diverse group of betasatellites found in crops and weeds. The associated betasatellites neither enhanced the accumulation of the begomovirus components nor reduced the incubation period in Nicotiana benthamiana. The ChiLCD-associated begomoviruses induced mild symptoms on Capsicum spp., but both the level of helper virus that accumulated and the severity of symptoms were increased in the presence of cognate betasatellites. Interestingly, most of the begomoviruses were found to be intra-species recombinants. The betasatellites possess high nucleotide variability, and recombination among them was also evident. The nucleotide substitution rates were determined for the AV1 gene of begomoviruses (2.60 × 10- 3 substitutions site- 1 year- 1) and the βC1 gene of betasatellites [chilli leaf curl betasatellite (ChiLCB), 2.57 × 10- 4 substitution site- 1 year- 1; tomato leaf curl Bangladesh betasatellite (ToLCBDB), 5.22 × 10- 4 substitution site- 1 year- 1]. This study underscores the current understanding of Indian ChiLCD-associated begomoviruses and also demonstrates the crucial role of betasatellites in severe disease development in Capsicum spp.
Collapse
Affiliation(s)
- R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Achuit Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Tribhuwan Yadav
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, USA
| | - Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
- Department of Entomology, University of Nebraska, Lincoln, USA
| | - Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Brotati Chattopadhyay
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| |
Collapse
|
40
|
Fiallo-Olivé E, Zerbini FM, Navas-Castillo J. Complete nucleotide sequences of two new begomoviruses infecting the wild malvaceous plant Melochia sp. in Brazil. Arch Virol 2015; 160:3161-4. [DOI: 10.1007/s00705-015-2619-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
|
41
|
Rodelo-Urrego M, García-Arenal F, Pagán I. The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico. Virus Evol 2015; 1:vev004. [PMID: 27774278 PMCID: PMC5014474 DOI: 10.1093/ve/vev004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Current declines in biodiversity put at risk ecosystem services that are fundamental for human welfare. Increasing evidence indicates that one such service is the ability to reduce virus emergence. It has been proposed that the reduction of virus emergence occurs at two levels: through a reduction of virus prevalence/transmission and, as a result of these epidemiological changes, through a limitation of virus genetic diversity. Although the former mechanism has been studied in a few host-virus interactions, very little is known about the association between ecosystem biodiversity and virus genetic diversity. To address this subject, we estimated genetic diversity, synonymous and non-synonymous nucleotide substitution rates, selection pressures, and frequency of recombinants and re-assortants in populations of Pepper golden mosaic virus (PepGMV) and Pepper huasteco yellow vein virus (PHYVV) that infect chiltepin plants in Mexico. We then analyzed how these parameters varied according to the level of habitat anthropization, which is the major cause of biodiversity loss. Our results indicated that genetic diversity of PepGMV (but not of PHYVV) populations increased with the loss of biodiversity at higher levels of habitat anthropization. This was mostly the consequence of higher rates of synonymous nucleotide substitutions, rather than of adaptive selection. The frequency of recombinants and re-assortants was higher in PepGMV populations infecting wild chiltepin than in those infecting cultivated ones, suggesting that genetic exchange is not the main mechanism for generating genetic diversity in PepGMV populations. These findings provide evidence that biodiversity may modulate the genetic diversity of plant viruses, but it may differentially affect even two closely related viruses. Our analyses may contribute to understanding the factors involved in virus emergence.
Collapse
Affiliation(s)
- Manuel Rodelo-Urrego
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and Dpto. de Biotecnología, Campus Montegancedo, Universidad Politécnica de Madrid, Autopista M40 (Km. 38), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and Dpto. de Biotecnología, Campus Montegancedo, Universidad Politécnica de Madrid, Autopista M40 (Km. 38), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and Dpto. de Biotecnología, Campus Montegancedo, Universidad Politécnica de Madrid, Autopista M40 (Km. 38), 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
42
|
Filloux D, Murrell S, Koohapitagtam M, Golden M, Julian C, Galzi S, Uzest M, Rodier-Goud M, D’Hont A, Vernerey MS, Wilkin P, Peterschmitt M, Winter S, Murrell B, Martin DP, Roumagnac P. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol 2015; 1:vev002. [PMID: 27774276 PMCID: PMC5014472 DOI: 10.1093/ve/vev002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Endogenous viral sequences are essentially 'fossil records' that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements found within the nuclear genomes of various Nicotiana species. Although other ssDNA virus-like sequences are included within the draft genomes of various plant species, it is not entirely certain that these are not contaminants. The Nicotiana geminivirus-related DNA elements therefore remain the only definitively proven instances of endogenous plant ssDNA virus sequences. Here, we characterize two new classes of endogenous plant virus sequence that are also apparently derived from ancient geminiviruses in the genus Begomovirus. These two endogenous geminivirus-like elements (EGV1 and EGV2) are present in the Dioscorea spp. of the Enantiophyllum clade. We used fluorescence in situ hybridization to confirm that the EGV1 sequences are integrated in the D. alata genome and showed that one or two ancestral EGV sequences likely became integrated more than 1.4 million years ago during or before the diversification of the Asian and African Enantiophyllum Dioscorea spp. Unexpectedly, we found evidence of natural selection actively favouring the maintenance of EGV-expressed replication-associated protein (Rep) amino acid sequences, which clearly indicates that functional EGV Rep proteins were probably expressed for prolonged periods following endogenization. Further, the detection in D. alata of EGV gene transcripts, small 21-24 nt RNAs that are apparently derived from these transcripts, and expressed Rep proteins, provides evidence that some EGV genes are possibly still functionally expressed in at least some of the Enantiophyllum clade species.
Collapse
Affiliation(s)
- Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Sasha Murrell
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maneerat Koohapitagtam
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
- Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Hat Yai campus, Thailand 90120
| | - Michael Golden
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa
| | - Charlotte Julian
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Serge Galzi
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Marilyne Uzest
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | | | - Angélique D’Hont
- CIRAD, UMR AGAP, TA A-108/03, Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Marie Stephanie Vernerey
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Michel Peterschmitt
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Stephan Winter
- DSMZ Plant Virus Department, Messeweg 11/12, 38102, Braunschweig, Germany
| | - Ben Murrell
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa
| | - Philippe Roumagnac
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| |
Collapse
|
43
|
Lefeuvre P, Moriones E. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr Opin Virol 2015; 10:14-9. [DOI: 10.1016/j.coviro.2014.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
44
|
Melgarejo TA, Kon T, Gilbertson RL. Molecular and Biological Characterization of Distinct Strains of Jatropha mosaic virus from the Dominican Republic Reveal a Potential to Infect Crop Plants. PHYTOPATHOLOGY 2015; 105:141-53. [PMID: 25163012 DOI: 10.1094/phyto-05-14-0135-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the Dominican Republic (DO), jatropha plants with yellow mosaic symptoms are commonly observed in and around fields of various crop plants. Complete nucleotide sequences of DNA-A and DNA-B components of four bipartite begomovirus isolates associated with symptomatic jatropha plants collected from three geographical locations in the DO were determined. Sequence comparisons revealed highest identities (91 to 92%) with the DNA-A component of an isolate of Jatropha mosaic virus (JMV) from Jamaica, indicating that the bipartite begomovirus isolates from the DO are strains of JMV. When introduced into jatropha seedlings by particle bombardment, the cloned components of the JMV strains from the DO induced stunting and yellow mosaic, indistinguishable from symptoms observed in the field, thereby fulfilling Koch's postulates for the disease. The JMV strains also induced disease symptoms in Nicotiana benthamiana, tobacco, and several cultivars of common bean from the Andean gene pool, including one locally grown in the DO. Asymmetry in the infectivity and symptomatology of pseudorecombinants provided further support for the strain designation of the JMV isolates from the DO. Thus, JMV in the DO is a complex of genetically distinct strains that have undergone local evolution and have the potential to cause disease in crop plants.
Collapse
|
45
|
Polston JE, Londoño MA, Capobianco H. The complete genome sequence of New World jatropha mosaic virus. Arch Virol 2014; 159:3131-6. [PMID: 25091738 DOI: 10.1007/s00705-014-2132-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/25/2014] [Indexed: 10/24/2022]
Abstract
Full-length sequences of a bipartite begomovirus were obtained from a plant of Jatropha multifida in Florida showing symptoms of foliar mosaic, distortion and necrosis. Sequences of four clones each of a DNA-A and DNA-B were obtained, which showed very low sequence diversity among themselves. The clones were infectious when biolistically inoculated to J. multifida, Phaseolus vulgaris and Nicotiana tabacum, but not to J. curcas. The DNA-A sequences had less than 89 % pairwise identity scores with the DNA-A of other begomoviruses. The DNA-A appeared to be a recombinant in that 18 % of the DNA-A (470 nt) had a pairwise identity score of 91.98 % with RhRGMV, indicating that this portion most likely originated from a virus closely related to RhRGMV. The remaining 82 % of the DNA-A had lower identity scores with TbMoLCV (87.84 %) and RhRGMV (87.46 %), which suggests that this part of the component originated from an undescribed virus. There was no evidence for recombination in the DNA-B. Equivalent sequences of the DNA-A had the highest identity score (94.18 %) with a 533-nt sequence obtained from J. multifida from Puerto Rico in 2001 (GenBank accession no. AF058025). Pairwise comparison, recombination and phylogenetic analysis, and biology suggest that these clones are those of jatropha mosaic virus first reported from Puerto Rico. This is the first report of the complete genome sequence of jatropha mosaic virus.
Collapse
Affiliation(s)
- J E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32601, USA,
| | | | | |
Collapse
|
46
|
Sobrinho RR, Xavier CAD, Pereira HMDB, Lima GSDA, Assunção IP, Mizubuti ESG, Duffy S, Zerbini FM. Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J Gen Virol 2014; 95:2540-2552. [DOI: 10.1099/vir.0.067009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Begomoviruses are whitefly-transmitted, ssDNA plant viruses and are among the most damaging pathogens causing epidemics in economically important crops worldwide. Wild/non-cultivated plants play a crucial epidemiological role, acting as begomovirus reservoirs and as ‘mixing vessels' where recombination can occur. Previous work suggests a higher degree of genetic variability in begomovirus populations from non-cultivated hosts compared with cultivated hosts. To assess this supposed host effect on the genetic variability of begomovirus populations, cultivated (common bean, Phaseolus vulgaris, and lima bean, Phaseolus lunatus) and non-cultivated (Macroptilium lathyroides) legume hosts were sampled from two regions of Brazil. A total of 212 full-length DNA-A genome segments were sequenced from samples collected between 2005 and 2012, and populations of the begomoviruses Bean golden mosaic virus (BGMV) and Macroptilium yellow spot virus (MaYSV) were obtained. We found, for each begomovirus species, similar genetic variation between populations infecting cultivated and non-cultivated hosts, indicating that the presumed genetic variability of the host did not a priori affect viral variability. We observed a higher degree of genetic variation in isolates from MaYSV populations than BGMV populations, which was explained by numerous recombination events in MaYSV. MaYSV and BGMV showed distinct distributions of genetic variation, with the BGMV population (but not MaYSV) being structured by both host and geography.
Collapse
Affiliation(s)
- Roberto Ramos Sobrinho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | | | | | | - Iraíldes Pereira Assunção
- Departamento de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil
| | | | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University Of New Jersey, New Brunswick, NJ 08901, USA
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
47
|
Lapidot M, Gelbart D, Gal-On A, Sela N, Anfoka G, Haj Ahmed F, Abou-Jawada Y, Sobh H, Mazyad H, Aboul-Ata AAE, Kamal El-Attar A, Ali-Shtayeh MS, Jamous RM, Polston JE, Duffy S. Frequent migration of introduced cucurbit-infecting begomoviruses among Middle Eastern countries. Virol J 2014; 11:181. [PMID: 25300752 PMCID: PMC4201715 DOI: 10.1186/1743-422x-11-181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the early 2000s, two cucurbit-infecting begomoviruses were introduced into the eastern Mediterranean basin: the Old World Squash leaf curl virus (SLCV) and the New World Watermelon chlorotic stunt virus (WmCSV). These viruses have been emerging in parallel over the last decade in Egypt, Israel, Jordan, Lebanon and Palestine. METHODS We explored this unique situation by assessing the diversity and biogeography of the DNA-A component of SLCV and WmCSV in these five countries. RESULTS There was fairly low sequence variation in both begomovirus species (SLCV π = 0.0077; WmCSV π = 0.0066). Both viruses may have been introduced only once into the eastern Mediterranean basin, but once established, these viruses readily moved across country boundaries. SLCV has been introduced at least twice into each of all five countries based on the absence of monophyletic clades. Similarly, WmCSV has been introduced multiple times into Jordan, Israel and Palestine. CONCLUSIONS We predict that uncontrolled movement of whiteflies among countries in this region will continue to cause SLCV and WmCSV migration, preventing strong genetic differentiation of these viruses among these countries.
Collapse
Affiliation(s)
- Moshe Lapidot
- />Institute of Plant Sciences, Volcani Center, P.O. Box 6, Bet Dagan, 50250 Israel
| | - Dana Gelbart
- />Institute of Plant Sciences, Volcani Center, P.O. Box 6, Bet Dagan, 50250 Israel
| | - Amit Gal-On
- />Institute of Plant Protection, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250 Israel
| | - Noa Sela
- />Institute of Plant Protection, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250 Israel
| | - Ghandi Anfoka
- />Department of Biotechnology, Al-Balqa’ Applied University, Al-Salt, 19117 Jordan
| | - Fatima Haj Ahmed
- />Department of Biotechnology, Al-Balqa’ Applied University, Al-Salt, 19117 Jordan
| | - Yusuf Abou-Jawada
- />Department of Biotechnology, Al-Balqa’ Applied University, Al-Salt, 19117 Jordan
| | - Hana Sobh
- />Department of Biotechnology, Al-Balqa’ Applied University, Al-Salt, 19117 Jordan
| | - Hamed Mazyad
- />Plant Pathology Research Institute, ARC, P.O. Box 12619, Giza, Egypt
| | | | | | - Mohammed S Ali-Shtayeh
- />Biodiversity and Biotechnology Research Unit, Biodiversity & Environmental Research Center (BERC), P.O.B. 696, Til-Nablus, Palestine
| | - Rana M Jamous
- />Biodiversity and Biotechnology Research Unit, Biodiversity & Environmental Research Center (BERC), P.O.B. 696, Til-Nablus, Palestine
| | - Jane E Polston
- />Department of Plant Pathology, University of Florida, Gainesville, FL 32611 USA
| | - Siobain Duffy
- />Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
48
|
Silva FN, Lima ATM, Rocha CS, Castillo-Urquiza GP, Alves-Júnior M, Zerbini FM. Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B. Virol J 2014; 11:66. [PMID: 24708727 PMCID: PMC4113279 DOI: 10.1186/1743-422x-11-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/27/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Begomoviruses are dicot-infecting, whitefly-transmitted viruses with a genome comprised of one or two molecules of circular, single-stranded DNA. In Brazil, tomato-infecting begomoviruses have emerged as serious pathogens since the introduction of a new biotype of the insect vector in the mid-1990's. Tomato rugose mosaic virus (ToRMV) and Tomato severe rugose virus (ToSRV) are often found in tomato fields. The complete sequence of the DNA-B components of ToSRV and ToRMV show an identity of 98.2%. Additionally, the high nucleotide identity (96.2%) between their common regions indicates that these two viruses may share the same DNA-B. METHODS Tomato seedlings were biolistically inoculated with ToSRV (DNA-A and DNA-B) and ToRMV (DNA-A and DNA-B) infectious clones in every possible combination of single or mixed infection. Symptom expression was evaluated for up to 35 days post-inoculation (dpi). DNA was extracted at 28 dpi and the presence of each viral genomic component was examined by rolling circle amplification (RCA) followed by digestion, as well as by quantitative, real-time PCR. Sequence comparisons, recombination and phylogenetic analyzes were performed using EMBOSS needle, RDP program and maximum likelihood inference, respectively. RESULTS Symptoms in tomato plants inoculated with the different combinations of ToRMV and ToSRV DNA-A and DNA-B components consisted of a typical mosaic in all combinations. Pseudorecombinants were formed in all possible combinations. When two DNA-A or two DNA-B components were inoculated simultaneously, the ToRMV components were detected preferentially in relation to the ToSRV components. The combination of minor changes in both the Rep protein and the CR may be involved in the preferential replication of ToRMV components. Recombination and phylogenetic analyzes support the exchange of genetic material between ToRMV and ToSRV. CONCLUSIONS ToRMV and ToSRV form viable pseudorecombinants in their natural host (Solanum lycopersicum) and share the same DNA-B. ToRMV DNA components are preferentially replicated over ToSRV components. These results indicate that the emergence of ToRMV involved both recombination and pseudorecombination, further highlighting the importance of these mechanisms in the emergence and adaptation of begomoviruses.
Collapse
Affiliation(s)
- Fábio N Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Alison TM Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Carolina S Rocha
- Current address: FuturaGene Brasil, Avenida José Lembo 1010, Itapeteninga, SP 18210-780, Brazil
| | | | - Miguel Alves-Júnior
- Current address: Faculdade de Ciências Agrárias, Universidade Federal do Pará, Altamira, PA 68372-040, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
49
|
Zanardo LG, Silva FN, Lima ATM, Milanesi DF, Castilho-Urquiza GP, Almeida AMR, Zerbini FM, Carvalho CM. Molecular variability of cowpea mild mottle virus infecting soybean in Brazil. Arch Virol 2014; 159:727-37. [PMID: 24142270 DOI: 10.1007/s00705-013-1879-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022]
Abstract
Molecular variability was assessed for 18 isolates of cowpea mild mottle virus (CPMMV, genus Carlavirus, family Betaflexiviridae) found infecting soybean in various Brazilian states (Bahia, Goiás, Maranhão, Mato Grosso, Minas Gerais, Pará) in 2001 and 2010. A variety of symptoms was expressed in soybean cv. CD206, ranging from mild (crinkle/blistering leaves, mosaic and vein clearing) to severe (bud blight, dwarfing, leaf and stem necrosis). Recombination analysis revealed only one CPMMV isolate to be recombinant. Pairwise comparisons and phylogenetic analysis were performed for partial genomes (ORF 2 to the 3' terminus) and for each ORF individually (ORFs 2 to 6), showing the isolates to be distinct. The topology of the phylogenetic tree could be related to symptoms, but not to the year of collection or geographical origin. Additionally, the phylogenetic analysis supported the existence of two distinct strains of the virus, designated CPMMV-BR1 and CPMMV-BR2, with molecular variations between them.
Collapse
Affiliation(s)
- L G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Paz-Carrasco LC, Castillo-Urquiza GP, Lima ATM, Xavier CAD, Vivas-Vivas LM, Mizubuti ESG, Zerbini FM. Begomovirus diversity in tomato crops and weeds in Ecuador and the detection of a recombinant isolate of rhynchosia golden mosaic Yucatan virus infecting tomato. Arch Virol 2014; 159:2127-32. [PMID: 24623091 DOI: 10.1007/s00705-014-2046-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/28/2014] [Indexed: 12/01/2022]
Abstract
Viral diseases caused by begomoviruses are of economic importance due to their adverse effects on the production of tropical and subtropical crops. In Ecuador, despite reports of significant infestations of Bemisia tabaci in the late 1990s, only very recently has a begomovirus, tomato leaf deformation virus (ToLDeV, also present in Peru), been reported in tomato. ToLDeV is the first monopartite begomovirus discovered that originated in the Americas, and its presence in Ecuador highlights the need for a wider survey of tomato-infecting begomoviruses in this country. Tomato and weed samples were collected in 2010 and 2011 in six provinces of Ecuador, and begomovirus genomes were cloned and sequenced using a rolling-circle-amplification-based approach. Most tomato samples from the provinces of Guayas, Loja, Manabi and Santa Elena were infected with tomato leaf deformation virus (ToLDeV). One sample from Manabi had a triple infection with ToLDeV, rhynchosia golden mosaic Yucatan virus (RhGMYuV) and an isolate that was a recombinant between the two. A new begomovirus was detected in another tomato sample from Manabi. Samples of Rhynchosia sp. from the provinces of Guayas and Manabi were infected by RhGMYuV. These results indicate not only the prevalence of ToLDeV in tomato in Ecuador but also the presence of other viruses, albeit at a much lower frequency.
Collapse
Affiliation(s)
- Lenin C Paz-Carrasco
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | | | | | | | | |
Collapse
|