1
|
Mashura G, Maburutse B, Chidoti V, Zinyakasa TR, Porovha E, Nhara RB, Mwandiringana E, Gori E. Bat Rhabdoviruses: occurrence, detection and challenges in Africa. Trop Anim Health Prod 2025; 57:108. [PMID: 40059248 DOI: 10.1007/s11250-025-04327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/06/2025] [Indexed: 04/12/2025]
Abstract
Bats carry zoonotic viruses which can be harmful to humans. Zoonotic diseases have caused huge economic losses in the production and trade of animal products and recurring diseases outbreaks and global pandemics. Studies have shown that Rabies and rabies related viruses (Lyssavirus genera, family Rhabdoviridae) are spread to humans by bats. The aim of this article is to assess the global distribution of bat Rhabdoviruses, detection and challenges in Africa. Studies have shown that the prevalence of Rhabdoviruses is high in Africa and Asia. In addition to Rabies virus, other bat Rhabdoviruses which were detected in Africa are Mokola, Lagos bat virus, Duvenhage, and Ledantevirus. In Asia Vesiculovirus and Ledantevirus were found. Australian bat lyssavirus was detected in Australia, Rabies virus was detected in American bats and European bat lyssaviruses were detected in Europe. Surveillance in Africa is inadequate due to lack of diagnostic capabilities meaning that infections maybe under reported.
Collapse
Affiliation(s)
- Getrude Mashura
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Brighton Maburutse
- Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology (MUAST), Marondera, CSC Campus, Plot 15, Longlands Road, P.O. Box 35, Marondera, Zimbabwe
| | - Vimbiso Chidoti
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Taona R Zinyakasa
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Emildah Porovha
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Rumbidzai Blessing Nhara
- Faculty of Agriculture Environment and Food Systems, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Ellen Mwandiringana
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Elizabeth Gori
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe.
- Colleges of Medicine and Health Sciences- School of Medicine and Pharmacy, University of Rwanda, P.O. Box 117, Butare, Rwanda.
| |
Collapse
|
2
|
Bratuleanu BE, Chretien D, Bigot T, Regnault B, Pérot P, Savuta G, Eloit M, Temmam S. Insights into the virome of Hyalomma marginatum in the Danube Delta: a major vector of Crimean-Congo hemorrhagic fever virus in Eastern Europe. Parasit Vectors 2024; 17:482. [PMID: 39578881 PMCID: PMC11585161 DOI: 10.1186/s13071-024-06557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Ticks are significant vectors of pathogens, including viruses, bacteria, and protozoa. With approximately 900 tick species worldwide, many are expanding their geographical range due to changing socioeconomic and climate factors. The Danube Delta, one of Europe's largest wetlands, is an ecosystem that, despite its ecological importance, remains understudied concerning the risk of introducing new tick-borne viruses. This region serves as a critical habitat for migratory birds, which can carry ticks over long distances, potentially introducing exotic tick species and their pathogens into the local ecosystem. Hyalomma marginatum ticks, the primary vector of Crimean-Congo hemorrhagic fever virus (CCHFV), are of particular concern due to their expanding presence in Europe and potential to spread other arboviruses. In addition to being the primary vector for CCHFV, Hyalomma sp. ticks are capable of transmitting other pathogens of medical and veterinary importance, including Dugbe virus, West Nile virus, African horse sickness virus, and Kyasanur forest disease virus. Therefore, it is essential to monitor the presence of Hyalomma sp. ticks while simultaneously surveilling arbovirus circulation in tick populations to mitigate the risk of arboviral outbreaks. METHODS In this work, we used an RNA sequencing technique to analyze the virome of H. marginatum ticks collected from the Danube Delta Biosphere Reserve, Romania, one of the major bird migration hubs from Africa to Europe. RESULTS Among the viral taxa detected in H. marginatum ticks, sequences belonging to Volzhskoe tick virus (VTV), Balambala tick virus (BMTV) and Bole tick virus 4 (BTV4) were identified. In addition, we report the first identification of a novel Rhabdoviridae-related virus, Hyalomma marginatum rhabdovirus (HMRV). No CCHFV or any CCHFV-related nairovirus were detected in this study. CONCLUSIONS To summarize, detecting new viruses is essential for monitoring potential viral outbreaks. Our research expands the understanding of virus diversity in Eastern Europe, including the identification of novel viruses. This insight is crucial for monitoring viruses that may pose risks to both animal and human health, such as CCHFV.
Collapse
Affiliation(s)
- Bianca Elena Bratuleanu
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, "Ion Ionescu de La Brad" Iasi University of Life Sciences, Iași, Romania
| | - Delphine Chretien
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- WOAH Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Beatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- WOAH Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- WOAH Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Gheorghe Savuta
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, "Ion Ionescu de La Brad" Iasi University of Life Sciences, Iași, Romania
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
- WOAH Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France.
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
- Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, Maisons-Alfort, France.
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- WOAH Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Shepherd JG, Ashraf S, Salazar-Gonzalez JF, Salazar MG, Downing RG, Bukenya H, Jerome H, Mpanga JT, Davis C, Tong L, Sreenu VB, Atiku LA, Logan N, Kajik E, Mukobi Y, Mungujakisa C, Olowo MV, Tibo E, Wunna F, Jackson Ireland H, Blunsum AE, Owolabi I, da Silva Filipe A, Bwogi J, Willett BJ, Lutwama JJ, Streicker DG, Kaleebu P, Thomson EC. Widespread human exposure to ledanteviruses in Uganda: A population study. PLoS Negl Trop Dis 2024; 18:e0012297. [PMID: 38976760 PMCID: PMC11257405 DOI: 10.1371/journal.pntd.0012297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Le Dantec virus (LDV), assigned to the species Ledantevirus ledantec, genus Ledantevirus, family Rhabdoviridae has been associated with human disease but has gone undetected since the 1970s. We describe the detection of LDV in a human case of undifferentiated fever in Uganda by metagenomic sequencing and demonstrate a serological response using ELISA and pseudotype neutralisation. By screening 997 individuals sampled in 2016, we show frequent exposure to ledanteviruses with 76% of individuals seropositive in Western Uganda, but lower seroprevalence in other areas. Serological cross-reactivity as measured by pseudotype-based neutralisation was confined to ledanteviruses, indicating population seropositivity may represent either exposure to LDV or related ledanteviruses. We also describe the discovery of a closely related ledantevirus in blood from the synanthropic rodent Mastomys erythroleucus. Ledantevirus infection is common in Uganda but is geographically heterogenous. Further surveys of patients presenting with acute fever are required to determine the contribution of these emerging viruses to febrile illness in Uganda.
Collapse
Affiliation(s)
- James G. Shepherd
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Shirin Ashraf
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jesus F. Salazar-Gonzalez
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria G. Salazar
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | | | - Hanna Jerome
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Chris Davis
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lily Tong
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vattipally B. Sreenu
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Nicola Logan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | | | | | | | - Fred Wunna
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Hollie Jackson Ireland
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew E. Blunsum
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Iyanuoluwani Owolabi
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Brian J. Willett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Daniel G. Streicker
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Emma C. Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Waller SJ, Tortosa P, Thurley T, O’Donnell CFJ, Jackson R, Dennis G, Grimwood RM, Holmes EC, McInnes K, Geoghegan JL. Virome analysis of New Zealand's bats reveals cross-species viral transmission among the Coronaviridae. Virus Evol 2024; 10:veae008. [PMID: 38379777 PMCID: PMC10878368 DOI: 10.1093/ve/veae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/02/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The lesser short-tailed bat (Mystacina tuberculata) and the long-tailed bat (Chalinolobus tuberculatus) are Aotearoa New Zealand's only native extant terrestrial mammals and are believed to have migrated from Australia. Long-tailed bats arrived in New Zealand an estimated two million years ago and are closely related to other Australian bat species. Lesser short-tailed bats, in contrast, are the only extant species within the Mystacinidae and are estimated to have been living in isolation in New Zealand for the past 16-18 million years. Throughout this period of isolation, lesser short-tailed bats have become one of the most terrestrial bats in the world. Through a metatranscriptomic analysis of guano samples from eight locations across New Zealand, we aimed to characterise the viromes of New Zealand's bats and determine whether viruses have jumped between these species over the past two million years. High viral richness was observed among long-tailed bats with viruses spanning seven different viral families. In contrast, no bat-specific viruses were identified in lesser short-tailed bats. Both bat species harboured an abundance of likely dietary- and environment-associated viruses. We also identified alphacoronaviruses in long-tailed bat guano that had previously been identified in lesser short-tailed bats, suggesting that these viruses had jumped the species barrier after long-tailed bats migrated to New Zealand. Of note, an alphacoronavirus species discovered here possessed a complete genome of only 22,416 nucleotides with entire deletions or truncations of several non-structural proteins, thereby representing what may be the shortest genome within the Coronaviridae identified to date. Overall, this study has revealed a diverse range of novel viruses harboured by New Zealand's only native terrestrial mammals, in turn expanding our understanding of bat viral dynamics and evolution globally.
Collapse
Affiliation(s)
- Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
| | - Pablo Tortosa
- UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, Plateforme de recherche CYROI, 2 rue Maxime Rivière, Ste Clotilde 97490, France
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Tertia Thurley
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Colin F J O’Donnell
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Rebecca Jackson
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Gillian Dennis
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
| | | | - Kate McInnes
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, Wellington 5022, New Zealand
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Westmead Hospital, Level 5, Block K, Westmead, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Shepherd JG, Davis C, Streicker DG, Thomson EC. Emerging Rhabdoviruses and Human Infection. BIOLOGY 2023; 12:878. [PMID: 37372162 PMCID: PMC10294888 DOI: 10.3390/biology12060878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Rhabdoviridae is a large viral family, with members infecting a diverse range of hosts including, vertebrate species, arthropods, and plants. The predominant human pathogen within the family is Rabies lyssavirus, the main cause of human rabies. While rabies is itself a neglected disease, there are other, less well studied, rhabdoviruses known to cause human infection. The increasing application of next-generation sequencing technology to clinical samples has led to the detection of several novel or rarely detected rhabdoviruses associated with febrile illness. Many of these viruses have been detected in low- and middle-income countries where the extent of human infection and the burden of disease remain largely unquantified. This review describes the rhabdoviruses other than Rabies lyssavirus that have been associated with human infection. The discovery of the Bas Congo virus and Ekpoma virus is discussed, as is the re-emergence of species such as Le Dantec virus, which has recently been detected in Africa 40 years after its initial isolation. Chandipura virus and the lyssaviruses that are known to cause human rabies are also described. Given their association with human disease, the viruses described in this review should be prioritised for further study.
Collapse
Affiliation(s)
- James G. Shepherd
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Chris Davis
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Daniel G. Streicker
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emma C. Thomson
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| |
Collapse
|
6
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Isolation of a Novel Bat Rhabdovirus with Evidence of Human Exposure in China. mBio 2021; 13:e0287521. [PMID: 35164557 PMCID: PMC8844929 DOI: 10.1128/mbio.02875-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bats are well-recognized reservoirs of zoonotic viruses. Several spillover events from bats to humans have been reported, causing severe epidemic or endemic diseases including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome-CoV (MERS-CoV), henipaviruses, and filoviruses. In this study, a novel rhabdovirus species, provisionally named Rhinolophus rhabdovirus DPuer (DPRV), was identified from the horseshoe bat (Rhinolophus affinis) in Yunnan province, China, using next-generation sequencing. DPRV shedding in the spleen, liver, lung, and intestinal contents of wild bats with high viral loads was detected by real-time quantitative PCR, indicating that DPRV has tropism for multiple host tissues. Furthermore, DPRV can replicate in vitro in multiple mammalian cell lines, including BHK-21, A549, and MA104 cells, with the highest efficiency in hamster kidney cell line BHK-21, suggesting infectivity of DPRV in these cell line-derived hosts. Ultrastructure analysis revealed a characteristic bullet-shaped morphology and tightly clustered distribution of DPRV particles in the intracellular space. DPRV replicated efficiently in suckling mouse brains and caused death of suckling mice; death rates increased with passaging of DPRV in suckling mice. Moreover, 421 serum samples were collected from individuals who lived near the bat collection site and had fever symptoms within 1 year. DPRV-specific antibodies were detected in 20 (4.75%) human serum samples by indirect immunofluorescence assay. Furthermore, 10 (2.38%) serum samples were DPRV positive according to plaque reduction neutralization assay, which revealed potential transmission of DPRV from bats to humans and highlighted the potential public health risk. Potential vector association with DPRV was not found with negative viral RNA in bloodsucking arthropods. IMPORTANCE We identified a novel rhabdovirus from the horseshoe bat (Rhinolophus thomasi) in China with probable infectivity in humans. DPRV was isolated in vitro from several mammalian cell lines, indicating wide host tropism, excluding bats, of DPRV. DPRV replicated in the brains of suckling mice, and the death rate of suckling mice increased with passaging of DPRV in vivo. Serological tests indicated the possible infectivity of DPRV in humans and the potential transmission to humans. The present findings provide preliminary evidence for the potential risk of DPRV to public health. Additional studies with active surveillance are needed to address interspecies transmission and determine the pathogenicity of DPRV in humans.
Collapse
|
8
|
Wei X, Li X, Cui J. Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China. Natl Sci Rev 2020; 7:239-242. [PMID: 32288962 PMCID: PMC7107983 DOI: 10.1093/nsr/nwaa009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Xiaoman Wei
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Xiang Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, China
| |
Collapse
|
9
|
Fagre AC, Lee JS, Kityo RM, Bergren NA, Mossel EC, Nakayiki T, Nalikka B, Nyakarahuka L, Gilbert AT, Peterhans JK, Crabtree MB, Towner JS, Amman BR, Sealy TK, Schuh AJ, Nichol ST, Lutwama JJ, Miller BR, Kading RC. Discovery and Characterization of Bukakata orbivirus ( Reoviridae:Orbivirus), a Novel Virus from a Ugandan Bat. Viruses 2019; 11:E209. [PMID: 30832334 PMCID: PMC6466370 DOI: 10.3390/v11030209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
While serological and virological evidence documents the exposure of bats to medically-important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (10⁶⁻10⁷ PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Justin S Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robert M Kityo
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda.
| | - Nicholas A Bergren
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Eric C Mossel
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Teddy Nakayiki
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda.
| | - Luke Nyakarahuka
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda.
| | - Amy T Gilbert
- National Wildlife Research Center, US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80521, USA.
| | - Julian Kerbis Peterhans
- College of Arts and Sciences, Roosevelt University, Collections & Research, The Field Museum of Natural History, Chicago, IL 60605, USA.
| | - Mary B Crabtree
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Tara K Sealy
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Amy J Schuh
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- United States Public Health Service, Commissioned Corps, Rockville, MD 20852, USA.
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Julius J Lutwama
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Barry R Miller
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Lelli D, Prosperi A, Moreno A, Chiapponi C, Gibellini AM, De Benedictis P, Leopardi S, Sozzi E, Lavazza A. Isolation of a novel Rhabdovirus from an insectivorous bat (Pipistrellus kuhlii) in Italy. Virol J 2018; 15:37. [PMID: 29454370 PMCID: PMC5816388 DOI: 10.1186/s12985-018-0949-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
Background Rhabdoviridae is one of the most ecologically diverse families of RNA viruses which can infect a wide range of vertebrates and invertebrates. Bats, among mammals, are pointed to harbor a significantly higher proportion of unknown or emerging viruses with zoonotic potential. Herein, we report the isolation of a novel rhabdovirus, detected in the framework of a virological survey on bats implemented in North Italy. Methods Virus isolation and identification were performed on samples of 635 bats by using cell cultures, negative staining electron microscopy and PCRs for different viruses. NGS was commonly performed on cell culture supernatants showing cytopathic effect or in case of samples resulted positive by at least one of the PCRs included in the diagnostic protocol. Results A rhabdovirus was isolated from different organs of a Pipistrellus kuhlii. Virus identification was obtained by electron microscopy and NGS sequencing. The complete genome size was 11,774 nt comprised 5 genes, encoding the canonical rhabdovirus structural proteins, and an additional transcriptional unit (U1) encoding a hypothetical small protein (157aa) (3’-N-P-M-G-U1-L-5′). The genome organization and phylogenetic analysis suggest that the new virus, named Vaprio virus (VAPV), belongs to the recently established genus Ledantevirus (subgroup B) and it is highly divergent to its closest known relative, Le Dantec virus (LDV) (human, 1965 Senegal). A specific RT-PCR amplifying a 350 bp fragment of the ORF 6 gene, encoding for L protein, was developed and used to test retrospectively a subset of 76 bats coming from the same area and period, revealing two more VAPV positive bats. Conclusions VAPV is a novel isolate of chiropteran rhabdovirus. Genome organization and phylogenetic analyses demonstrated that VAPV should be considered a novel species within the genus Ledantevirus for which viral ecology and disease associations should be investigated.
Collapse
Affiliation(s)
- Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9 -, 25124, Brescia, Italy.
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9 -, 25124, Brescia, Italy
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9 -, 25124, Brescia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9 -, 25124, Brescia, Italy
| | - Anna Maria Gibellini
- Wildlife Rehabilitation Center WWF of Valpredina via Pioda n.1, 24060 Cenate Sopra (BG), Bergamo, Italy
| | - Paola De Benedictis
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVE), Viale dell'Università, 10 - 35020 Legnaro (PD), Padova, Italy
| | - Stefania Leopardi
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVE), Viale dell'Università, 10 - 35020 Legnaro (PD), Padova, Italy
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9 -, 25124, Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9 -, 25124, Brescia, Italy
| |
Collapse
|
11
|
Mossel EC, Crabtree MB, Mutebi JP, Lutwama JJ, Borland EM, Powers AM, Miller BR. Arboviruses Isolated From Mosquitoes Collected in Uganda, 2008-2012. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1403-1409. [PMID: 28874015 PMCID: PMC5968633 DOI: 10.1093/jme/tjx120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 06/07/2023]
Abstract
A large number of arthropod-borne viruses are endemic to East Africa. As a part of the process of undertaking a systematic characterization of the mosquito fauna of Uganda, we examined mosquitoes collected from 2008 through early 2012 for known and novel viruses. In all, 8,288 mosquito pools containing 157,554 mosquitoes were tested. Twenty-nine isolations of 11 different viruses were made from mosquitoes of nine distinct species and from pools identified only to genus Culex. Identified viruses were from family Togaviridae, alphaviruses Sindbis and Babanki viruses; family Rhabdoviridae, hapaviruses Mossuril and Kamese viruses; family Flaviviridae, flaviviruses West Nile and Usutu viruses; family Phenuiviridae, phlebovirus Arumowot virus; and family Peribunyaviridae, orthobunyaviruses Witwatersrand, Pongola, and Germiston viruses. In addition, a novel orthobunyavirus, provisionally named Mburo virus, was isolated from Coquillettidia metallica (Theobald). This is the first report of Babanki, Arumowot, and Mossuril virus isolation from Uganda.
Collapse
Affiliation(s)
- Eric C. Mossel
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521 (; ; ; ; ; )
- Corresponding author, e-mail:
| | - Mary B. Crabtree
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521 (; ; ; ; ; )
| | - John-Paul Mutebi
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521 (; ; ; ; ; )
| | - Julius J. Lutwama
- Department of Arbovirology, Uganda Virus Research Institute (UVRI), PO Box 49, Entebbe, Uganda ()
| | - Erin M. Borland
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521 (; ; ; ; ; )
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521 (; ; ; ; ; )
| | - Barry R. Miller
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521 (; ; ; ; ; )
| |
Collapse
|
12
|
McKee CD, Kosoy MY, Bai Y, Osikowicz LM, Franka R, Gilbert AT, Boonmar S, Rupprecht CE, Peruski LF. Diversity and phylogenetic relationships among Bartonella strains from Thai bats. PLoS One 2017; 12:e0181696. [PMID: 28727827 PMCID: PMC5519213 DOI: 10.1371/journal.pone.0181696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
Bartonellae are phylogenetically diverse, intracellular bacteria commonly found in mammals. Previous studies have demonstrated that bats have a high prevalence and diversity of Bartonella infections globally. Isolates (n = 42) were obtained from five bat species in four provinces of Thailand and analyzed using sequences of the citrate synthase gene (gltA). Sequences clustered into seven distinct genogroups; four of these genogroups displayed similarity with Bartonella spp. sequences from other bats in Southeast Asia, Africa, and Eastern Europe. Thirty of the isolates representing these seven genogroups were further characterized by sequencing four additional loci (ftsZ, nuoG, rpoB, and ITS) to clarify their evolutionary relationships with other Bartonella species and to assess patterns of diversity among strains. Among the seven genogroups, there were differences in the number of sequence variants, ranging from 1-5, and the amount of nucleotide divergence, ranging from 0.035-3.9%. Overall, these seven genogroups meet the criteria for distinction as novel Bartonella species, with sequence divergence among genogroups ranging from 6.4-15.8%. Evidence of intra- and intercontinental phylogenetic relationships and instances of homologous recombination among Bartonella genogroups in related bat species were found in Thai bats.
Collapse
Affiliation(s)
- Clifton D. McKee
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Michael Y. Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Ying Bai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Lynn M. Osikowicz
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Richard Franka
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Amy T. Gilbert
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- National Wildlife Research Center, USDA/APHIS/Wildlife Services, Fort Collins, CO, United States of America
| | - Sumalee Boonmar
- Faculty Sciences and Public Health, Rajapruk University, Nonthaburi, Thailand
| | | | - Leonard F. Peruski
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
13
|
Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virol Sin 2017; 32:101-114. [PMID: 28393313 PMCID: PMC6702250 DOI: 10.1007/s12250-016-3930-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
This is the first country-wide surveillance of bat-borne viruses in Kenya spanning
from 2012–2015 covering sites perceived to have medium to high level bat-human
interaction. The objective of this surveillance study was to apply a non-invasive
approach using fresh feces to detect viruses circulating within the diverse species
of Kenyan bats. We screened for both DNA and RNA viruses; specifically, astroviruses
(AstVs), adenoviruses (ADVs), caliciviruses (CalVs), coronaviruses (CoVs),
flaviviruses, filoviruses, paramyxoviruses (PMVs), polyomaviruses (PYVs) and
rotaviruses. We used family-specific primers, amplicon sequencing and further
characterization by phylogenetic analysis. Except for filoviruses, eight virus
families were detected with varying distributions and positive rates across the five
regions (former provinces) studied. AstVs (12.83%), CoVs (3.97%), PMV (2.4%), ADV
(2.26%), PYV (1.65%), CalVs (0.29%), rotavirus (0.19%) and flavivirus (0.19%). Novel
CalVs were detected in Rousettus aegyptiacus and
Mops condylurus while novel
Rotavirus-A-related viruses were detected in Taphozous bats and R.
aegyptiacus. The two Rotavirus A (RVA)
strains detected were highly related to human strains with VP6 genotypes I2 and I16.
Genotype I16 has previously been assigned to human RVA-strain B10 from Kenya only,
which raises public health concern, particularly considering increased human-bat
interaction. Additionally, 229E-like bat CoVs were detected in samples originating
from Hipposideros bats roosting in sites with
high human activity. Our findings confirm the presence of diverse viruses in Kenyan
bats while providing extended knowledge on bat virus distribution. The detection of
viruses highly related to human strains and hence of public health concern,
underscores the importance of continuous surveillance.
Collapse
|
14
|
Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa. Viruses 2016; 8:65. [PMID: 27011199 PMCID: PMC4810255 DOI: 10.3390/v8030065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 12/29/2022] Open
Abstract
We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA) that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus.
Collapse
|
15
|
Charles J, Firth AE, Loroño-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Lipkin WI, Blitvich BJ, Briese T. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. J Gen Virol 2016; 97:977-987. [PMID: 26868915 DOI: 10.1099/jgv.0.000424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.
Collapse
Affiliation(s)
- Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria A Loroño-Pino
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julian E Garcia-Rejon
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jose A Farfan-Ale
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Dilcher M, Faye O, Faye O, Weber F, Koch A, Sadegh C, Weidmann M, Sall AA. Zahedan rhabdovirus, a novel virus detected in ticks from Iran. Virol J 2015; 12:183. [PMID: 26542354 PMCID: PMC4635997 DOI: 10.1186/s12985-015-0410-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Background Rhabdoviridae infect a wide range of vertebrates, invertebrates and plants. Their transmission can occur via various arthropod vectors. In recent years, a number of novel rhabdoviruses have been identified from various animal species, but so far only few tick-transmitted rhabdoviruses have been described. Methods We isolated a novel rhabdovirus, provisionally named Zahedan rhabdovirus (ZARV), from Hyalomma anatolicum anatolicum ticks collected in Iran. The full-length genome was determined using 454 next-generation sequencing and the phylogenetic relationship to other rhabdoviruses was analyzed. Inoculation experiments in mammalian Vero cells and mice were conducted and a specific PCR assay was developed. Results The complete genome of ZARV has a size of 11,230 nucleotides (nt) with the typical genomic organization of Rhabdoviridae. Phylogenetic analysis confirms that ZARV is closely related to Moussa virus (MOUV) from West Africa and Long Island tick rhabdovirus (LITRV) from the U.S., all forming a new monophyletic clade, provisionally designated Zamolirhabdovirus, within the Dimarhabdovirus supergroup. The glycoprotein (G) contains 12 conserved cysteins which are specific for animal rhabdoviruses infecting fish and mammals. In addition, ZARV is able to infect mammalian Vero cells and is lethal for mice when inoculated intracerebrally or subcutaneously. The developed PCR assay can be used to specifically detect ZARV. Conclusion The novel tick-transmitted rhabdovirus ZARV is closely related to MOUV and LITRV. All three viruses seem to form a new monophyletic clade. ZARV might be pathogenic for mammals, since it can infect Vero cells, is lethal for mice and its glycoprotein contains 12 conserved cysteins only found in animal rhabdoviruses. The mammalian host of ZARV remains to be identified.
Collapse
Affiliation(s)
- Meik Dilcher
- Department of Virology, Univerity Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| | - Oumar Faye
- Institute Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Ousmane Faye
- Institute Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Franziska Weber
- Department of Virology, Univerity Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| | - Andrea Koch
- Department of Virology, Univerity Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| | | | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | - Amadou Alpha Sall
- Institute Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
17
|
Kading RC, Kityo R, Nakayiki T, Ledermann J, Crabtree MB, Lutwama J, Miller BR. Detection of Entebbe Bat Virus After 54 Years. Am J Trop Med Hyg 2015; 93:475-7. [PMID: 26101270 PMCID: PMC4559682 DOI: 10.4269/ajtmh.15-0065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/08/2015] [Indexed: 11/07/2022] Open
Abstract
Entebbe bat virus (ENTV; Flaviviridae: Flavivirus), closely related to yellow fever virus, was first isolated from a little free-tailed bat (Chaerephon pumilus) in Uganda in 1957, but was not detected after that initial isolation. In 2011, we isolated ENTV from a little free-tailed bat captured from the attic of a house near where it had originally been found. Infectious virus was recovered from the spleen and lung, and the viral RNA was sequenced and compared with that of the original isolate. Across the polypeptide sequence, there were 76 amino acid substitutions, resulting in 97.8% identity at the amino acid level between the 1957 and 2011 isolates. Further study of this virus would provide valuable insights into the ecological and genetic factors governing the evolution and transmission of bat- and mosquito-borne flaviviruses.
Collapse
Affiliation(s)
- Rebekah C Kading
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Robert Kityo
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Teddie Nakayiki
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jeremy Ledermann
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Mary B Crabtree
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julius Lutwama
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Barry R Miller
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado; Department of Biological Sciences, Makerere University, Kampala, Uganda; Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
18
|
Blasdell KR, Guzman H, Widen SG, Firth C, Wood TG, Holmes EC, Tesh RB, Vasilakis N, Walker PJ. Ledantevirus: a proposed new genus in the Rhabdoviridae has a strong ecological association with bats. Am J Trop Med Hyg 2014; 92:405-10. [PMID: 25487727 DOI: 10.4269/ajtmh.14-0606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus.
Collapse
Affiliation(s)
- Kim R Blasdell
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Hilda Guzman
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Steven G Widen
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Cadhla Firth
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas G Wood
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C Holmes
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert B Tesh
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nikos Vasilakis
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter J Walker
- CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
A nairovirus isolated from African bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice. Nat Commun 2014; 5:5651. [PMID: 25451856 PMCID: PMC4268697 DOI: 10.1038/ncomms6651] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
Bats can carry important zoonotic pathogens. Here we use a combination of next-generation sequencing and classical virus isolation methods to identify novel nairoviruses from bats captured from a cave in Zambia. This nairovirus infection is highly prevalent among giant leaf-nosed bats, Hipposideros gigas (detected in samples from 16 individuals out of 38). Whole-genome analysis of three viral isolates (11SB17, 11SB19 and 11SB23) reveals a typical bunyavirus tri-segmented genome. The strains form a single phylogenetic clade that is divergent from other known nairoviruses, and are hereafter designated as Leopards Hill virus (LPHV). When i.p. injected into mice, the 11SB17 strain causes only slight body weight loss, whereas 11SB23 produces acute and lethal disease closely resembling that observed with Crimean–Congo Haemorrhagic Fever virus in humans. We believe that our LPHV mouse model will be useful for research on the pathogenesis of nairoviral haemorrhagic disease. Bats carry viruses that can cause disease in other animals and in humans. Here, Ishii et al. identify new nairoviruses from African bats and show that some of them can produce a severe haemorrhagic disease in laboratory mice that is similar to Crimean–Congo haemorrhagic fever in humans.
Collapse
|
20
|
Fischer M, Freuling CM, Müller T, Schatz J, Rasmussen TB, Chriel M, Balkema-Buschmann A, Beer M, Hoffmann B. Identification of rhabdoviral sequences in oropharyngeal swabs from German and Danish bats. Virol J 2014; 11:196. [PMID: 25420461 PMCID: PMC4247638 DOI: 10.1186/s12985-014-0196-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background In the frame of active lyssavirus surveillance in bats, oropharyngeal swabs from German (N = 2297) and Danish (N = 134) insectivorous bats were investigated using a newly developed generic pan-lyssavirus real-time reverse transcriptase PCR (RT-qPCR). Findings In total, 15 RT-qPCR positive swabs were detected. Remarkably, sequencing of positive samples did not confirm the presence of bat associated lyssaviruses but revealed nine distinct novel rhabdovirus-related sequences. Conclusions Several novel rhabdovirus-related sequences were detected both in German and Danish insectivorous bats. The results also prove that the novel generic pan-lyssavirus RT-qPCR offers a very broad detection range that allows the collection of further valuable data concerning the broad and complex diversity within the family Rhabdoviridae.
Collapse
Affiliation(s)
- Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | - Juliane Schatz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | | | - Mariann Chriel
- DTU Vet, Technical University of Denmark, DK-1870, Frederiksberg C, Denmark.
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
21
|
Chen L, Liu B, Yang J, Jin Q. DBatVir: the database of bat-associated viruses. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau021. [PMID: 24647629 PMCID: PMC3958617 DOI: 10.1093/database/bau021] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emerging infectious diseases remain a significant threat to public health. Most emerging infectious disease agents in humans are of zoonotic origin. Bats are important reservoir hosts of many highly lethal zoonotic viruses and have been implicated in numerous emerging infectious disease events in recent years. It is essential to enhance our knowledge and understanding of the genetic diversity of the bat-associated viruses to prevent future outbreaks. To facilitate further research, we constructed the database of bat-associated viruses (DBatVir). Known viral sequences detected in bat samples were manually collected and curated, along with the related metadata, such as the sampling time, location, bat species and specimen type. Additional information concerning the bats, including common names, diet type, geographic distribution and phylogeny were integrated into the database to bridge the gap between virologists and zoologists. The database currently covers >4100 bat-associated animal viruses of 23 viral families detected from 196 bat species in 69 countries worldwide. It provides an overview and snapshot of the current research regarding bat-associated viruses, which is essential now that the field is rapidly expanding. With a user-friendly interface and integrated online bioinformatics tools, DBatVir provides a convenient and powerful platform for virologists and zoologists to analyze the virome diversity of bats, as well as for epidemiologists and public health researchers to monitor and track current and future bat-related infectious diseases. Database URL:http://www.mgc.ac.cn/DBatVir/
Collapse
Affiliation(s)
- Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
22
|
Tokarz R, Sameroff S, Leon MS, Jain K, Lipkin WI. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks. Virol J 2014; 11:26. [PMID: 24517260 PMCID: PMC3928085 DOI: 10.1186/1743-422x-11-26] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. Methods As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. Results We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. Conclusions The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1701, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|