1
|
Zhang X, Zhang Y, Wei F. Research progress on the nonstructural protein 1 (NS1) of influenza a virus. Virulence 2024; 15:2359470. [PMID: 38918890 PMCID: PMC11210920 DOI: 10.1080/21505594.2024.2359470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Influenza A virus (IAV) is the leading cause of highly contagious respiratory infections, which poses a serious threat to public health. The non-structural protein 1 (NS1) is encoded by segment 8 of IAV genome and is expressed in high levels in host cells upon IAV infection. It is the determinant of virulence and has multiple functions by targeting type Ι interferon (IFN-I) and type III interferon (IFN-III) production, disrupting cell apoptosis and autophagy in IAV-infected cells, and regulating the host fitness of influenza viruses. This review will summarize the current research on the NS1 including the structure and related biological functions of the NS1 as well as the interaction between the NS1 and host cells. It is hoped that this will provide some scientific basis for the prevention and control of the influenza virus.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Saint-Martin V, Guillory V, Chollot M, Fleurot I, Kut E, Roesch F, Caballero I, Helloin E, Chambellon E, Ferguson B, Velge P, Kempf F, Trapp S, Guabiraba R. The gut microbiota and its metabolite butyrate shape metabolism and antiviral immunity along the gut-lung axis in the chicken. Commun Biol 2024; 7:1185. [PMID: 39300162 DOI: 10.1038/s42003-024-06815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota exerts profound influence on poultry immunity and metabolism through mechanisms that yet need to be elucidated. Here we used conventional and germ-free chickens to explore the influence of the gut microbiota on transcriptomic and metabolic signatures along the gut-lung axis in poultry. Our results demonstrated a differential regulation of certain metabolites and genes associated with innate immunity and metabolism in peripheral tissues of germ-free birds. Furthermore, we evidenced the gut microbiota's capacity to regulate mucosal immunity in the chicken lung during avian influenza virus infection. Finally, by fine-analysing the antiviral pathways triggered by the short-chain fatty acid (SCFA) butyrate in chicken respiratory epithelial cells, we found that it regulates interferon-stimulated genes (ISGs), notably OASL, via the transcription factor Sp1. These findings emphasize the pivotal role of the gut microbiota and its metabolites in shaping homeostasis and immunity in poultry, offering crucial insights into the mechanisms governing the communication between the gut and lungs in birds.
Collapse
Affiliation(s)
| | | | | | | | - Emmanuel Kut
- INRAE, ISP, Université de Tours, 37380, Nouzilly, France
| | | | | | | | | | - Brian Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philippe Velge
- INRAE, ISP, Université de Tours, 37380, Nouzilly, France
| | - Florent Kempf
- INRAE, ISP, Université de Tours, 37380, Nouzilly, France
| | - Sascha Trapp
- INRAE, ISP, Université de Tours, 37380, Nouzilly, France
| | | |
Collapse
|
3
|
Blake ME, Kleinpeter AB, Jureka AS, Petit CM. Structural Investigations of Interactions between the Influenza a Virus NS1 and Host Cellular Proteins. Viruses 2023; 15:2063. [PMID: 37896840 PMCID: PMC10612106 DOI: 10.3390/v15102063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The Influenza A virus is a continuous threat to public health that causes yearly epidemics with the ever-present threat of the virus becoming the next pandemic. Due to increasing levels of resistance, several of our previously used antivirals have been rendered useless. There is a strong need for new antivirals that are less likely to be susceptible to mutations. One strategy to achieve this goal is structure-based drug development. By understanding the minute details of protein structure, we can develop antivirals that target the most conserved, crucial regions to yield the highest chances of long-lasting success. One promising IAV target is the virulence protein non-structural protein 1 (NS1). NS1 contributes to pathogenicity through interactions with numerous host proteins, and many of the resulting complexes have been shown to be crucial for virulence. In this review, we cover the NS1-host protein complexes that have been structurally characterized to date. By bringing these structures together in one place, we aim to highlight the strength of this field for drug discovery along with the gaps that remain to be filled.
Collapse
Affiliation(s)
| | | | | | - Chad M. Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.B.)
| |
Collapse
|
4
|
Briand FX, Schmitz A, Scoizec A, Allée C, Busson R, Guillemoto C, Quenault H, Lucas P, Pierre I, Louboutin K, Guillou-Cloarec C, Martenot C, Cherbonnel-Pansart M, Thomas R, Massin P, Souchaud F, Blanchard Y, Steensels M, Lambrecht B, Eterradossi N, Le Bouquin S, Niqueux E, Grasland B. Concomitant NA and NS deletion on avian Influenza H3N1 virus associated with hen mortality in France in 2019. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105356. [PMID: 36038008 DOI: 10.1016/j.meegid.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
An H3N1 avian influenza virus was detected in a laying hens farm in May 2019 which had experienced 25% mortality in Northern France. The complete sequencing of this virus showed that all segment sequences belonged to the Eurasian lineage and were phylogenetically very close to many of the Belgian H3N1 viruses detected in 2019. The French virus presented two genetic particularities with NA and NS deletions that could be related to virus adaptation from wild to domestic birds and could increase virulence, respectively. Molecular data of H3N1 viruses suggest that these two deletions occurred at two different times.
Collapse
|
5
|
Evseev D, Magor KE. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Front Microbiol 2021; 12:693204. [PMID: 34671321 PMCID: PMC8521145 DOI: 10.3389/fmicb.2021.693204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species. First, we consider the ability of NS1 proteins to broadly suppress host protein expression through interaction with CPSF4. This NS1 function can be spontaneously lost and regained through mutation and must be balanced against the need for host co-factors to aid efficient viral replication. Evidence suggests that this function of NS1 may be selectively lost in the initial stages of viral adaptation to some new host species. Second, we explore the ability of NS1 proteins to inhibit antiviral interferon signaling, an essential function for viral replication without which the virus is severely attenuated in any host. Innate immune suppression by NS1 not only enables viral replication in tissues, but also dampens the adaptive immune response and immunological memory. NS1 proteins suppress interferon signaling and effector functions through a variety of protein-protein interactions that may differ from host to host but must achieve similar goals. The multifunctional influenza A virus NS1 protein is highly plastic, highly versatile, and demonstrates a diversity of context-dependent solutions to the problem of interspecies adaptation.
Collapse
Affiliation(s)
| | - Katharine E. Magor
- Department of Biological Sciences, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Chen S, Miao X, Huangfu D, Zhao X, Zhang M, Qin T, Peng D, Liu X. H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity. Transbound Emerg Dis 2020; 68:2401-2413. [PMID: 33124785 DOI: 10.1111/tbed.13904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
NS gene is generally considered to be related to the virulence of highly pathogenic avian influenza virus (AIV). In recent years, the strains with five amino acids added to the 80-84 positions of the NS1 protein have become prevalent in H5N1 subtype AIVs isolated from mammals. However, the pathogenicity and mechanism of this pattern in mammals remain unclear. In this study, H5N1 subtype AIVs without 80-84 amino acids of the NS1 protein (rNSΔ5aa ) and a mutant virus (rNS5aa-R ) with no deletion of 80-84 amino acids of the NS1 protein were used to determine the pathogenicity in mice. Our results showed that rNS5aa-R possessed an enhanced pathogenicity compared with rNSΔ5aa in vivo and in vitro, which was accompanied by high expression of IL-6, MX1 and CXCL10 in murine lungs. Furthermore, we found that rNS5aa-R increased the infection ability to dendritic cells (DCs). Besides, rNS5aa-R enhanced the expression of phenotypic markers (CD80, CD86, CD40 and MHCII), activation marker CD69, inflammatory cytokines (IL-6, TNF-α and IL-10) and antagonized interferon (IFN-α) of DCs, in comparison to rNSΔ5aa . Moreover, rNS5aa-R induced DCs to quickly migrate into nearby cervical lymph nodes by highly upregulating CCR7, and CD86 showed a high expression on the migrated DCs. We also found that rNS5aa-R -infected DCs significantly promoted the allogeneic CD4+ T-cell proliferation. These findings suggested that rNS5aa-R strongly induced the innate immune response compared with the rNSΔ5aa , which is conducive to activate a wide immune response, resulting in a strong cytokine storm and causing an enhanced pathogenicity of H5N1 subtype AIVs in mammals.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xinyu Miao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Huangfu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyi Zhao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minxia Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Bryson KJ, Garrido D, Esposito M, McLachlan G, Digard P, Schouler C, Guabiraba R, Trapp S, Vervelde L. Precision cut lung slices: a novel versatile tool to examine host-pathogen interaction in the chicken lung. Vet Res 2020; 51:2. [PMID: 31924278 PMCID: PMC6954617 DOI: 10.1186/s13567-019-0733-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Abstract
The avian respiratory tract is a common entry route for many pathogens and an important delivery route for vaccination in the poultry industry. Immune responses in the avian lung have mostly been studied in vivo due to the lack of robust, relevant in vitro and ex vivo models mimicking the microenvironment. Precision-cut lung slices (PCLS) have the major advantages of maintaining the 3-dimensional architecture of the lung and includes heterogeneous cell populations. PCLS have been obtained from a number of mammalian species and from chicken embryos. However, as the embryonic lung is physiologically undifferentiated and immunologically immature, it is less suitable to examine complex host-pathogen interactions including antimicrobial responses. Here we prepared PCLS from immunologically mature chicken lungs, tested different culture conditions, and found that serum supplementation has a detrimental effect on the quality of PCLS. Viable cells in PCLS remained present for ≥ 40 days, as determined by viability assays and sustained motility of fluorescent mononuclear phagocytic cells. The PCLS were responsive to lipopolysaccharide stimulation, which induced the release of nitric oxide, IL-1β, type I interferons and IL-10. Mononuclear phagocytes within the tissue maintained phagocytic activity, with live cell imaging capturing interactions with latex beads and an avian pathogenic Escherichia coli strain. Finally, the PCLS were also shown to be permissive to infection with low pathogenic avian influenza viruses. Taken together, immunologically mature chicken PCLS provide a suitable model to simulate live organ responsiveness and cell dynamics, which can be readily exploited to examine host-pathogen interactions and inflammatory responses.
Collapse
Affiliation(s)
- Karen Jane Bryson
- Division of Infection and Immunity, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Damien Garrido
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Marco Esposito
- Division of Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Gerry McLachlan
- Division of Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Paul Digard
- Division of Infection and Immunity, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Catherine Schouler
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Rodrigo Guabiraba
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Sascha Trapp
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| |
Collapse
|
8
|
Structure, function, and evolution of Gga-AvBD11, the archetype of the structural avian-double-β-defensin family. Proc Natl Acad Sci U S A 2019; 117:337-345. [PMID: 31871151 DOI: 10.1073/pnas.1912941117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Out of the 14 avian β-defensins identified in the Gallus gallus genome, only 3 are present in the chicken egg, including the egg-specific avian β-defensin 11 (Gga-AvBD11). Given its specific localization and its established antibacterial activity, Gga-AvBD11 appears to play a protective role in embryonic development. Gga-AvBD11 is an atypical double-sized defensin, predicted to possess 2 motifs related to β-defensins and 6 disulfide bridges. The 3-dimensional NMR structure of the purified Gga-AvBD11 is a compact fold composed of 2 packed β-defensin domains. This fold is the archetype of a structural family, dubbed herein as avian-double-β-defensins (Av-DBD). We speculate that AvBD11 emanated from a monodomain gene ancestor and that similar events might have occurred in arthropods, leading to another structural family of less compact DBDs. We show that Gga-AvBD11 displays antimicrobial activities against gram-positive and gram-negative bacterial pathogens, the avian protozoan Eimeria tenella, and avian influenza virus. Gga-AvBD11 also shows cytotoxic and antiinvasive activities, suggesting that it may not only be involved in innate protection of the chicken embryo, but also in the (re)modeling of embryonic tissues. Finally, the contribution of either of the 2 Gga-AvBD11 domains to these biological activities was assessed, using chemically synthesized peptides. Our results point to a critical importance of the cationic N-terminal domain in mediating antibacterial, antiparasitic, and antiinvasive activities, with the C-terminal domain potentiating the 2 latter activities. Strikingly, antiviral activity in infected chicken cells, accompanied by marked cytotoxicity, requires the full-length protein.
Collapse
|
9
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
10
|
Lion A, Richard M, Esnault E, Kut E, Soubieux D, Guillory V, Germond M, Blondeau C, Guabiraba R, Short KR, Marc D, Quéré P, Trapp S. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape. Virology 2017; 513:29-42. [PMID: 29031164 DOI: 10.1016/j.virol.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC.
Collapse
Affiliation(s)
- Adrien Lion
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mathilde Richard
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Evelyne Esnault
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Emmanuel Kut
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Denis Soubieux
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Vanaïque Guillory
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mélody Germond
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Caroline Blondeau
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Rodrigo Guabiraba
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Kirsty R Short
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands; University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Daniel Marc
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pascale Quéré
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Sascha Trapp
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France.
| |
Collapse
|
11
|
Takemae N, Tsunekuni R, Sharshov K, Tanikawa T, Uchida Y, Ito H, Soda K, Usui T, Sobolev I, Shestopalov A, Yamaguchi T, Mine J, Ito T, Saito T. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016-2017. Virology 2017; 512:8-20. [PMID: 28892736 DOI: 10.1016/j.virol.2017.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
To elucidate the evolutionary pathway, we sequenced the entire genomes of 89 H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during winter 2016-2017 and 117 AIV/HPAIVs isolated in Japan and Russia. Phylogenetic analysis showed that at least 5 distinct genotypes of H5N6 HPAIVs affected poultry and wild birds during that period. Japanese H5N6 isolates shared a common genetic ancestor in 6 of 8 genomic segments, and the PA and NS genes demonstrated 4 and 2 genetic origins, respectively. Six gene segments originated from a putative ancestral clade 2.3.4.4 H5N6 virus that was a possible genetic reassortant among Chinese clade 2.3.4.4 H5N6 HPAIVs. In addition, 2 NS clusters and a PA cluster in Japanese H5N6 HPAIVs originated from Chinese HPAIVs, whereas 3 distinct AIV-derived PA clusters were evident. These results suggest that migratory birds were important in the spread and genetic diversification of clade 2.3.4.4 H5 HPAIVs.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Hiroshi Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Kosuke Soda
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Tatsufumi Usui
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Ivan Sobolev
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Tsuyoshi Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu 501-1112, Japan.
| |
Collapse
|
12
|
Zheng W, Cao S, Chen C, Li J, Zhang S, Jiang J, Niu Y, Fan W, Li Y, Bi Y, Gao GF, Sun L, Liu W. Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I. Cell Microbiol 2017; 19:e12643. [PMID: 27376632 DOI: 10.1111/cmi.12643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Influenza A virus evades host antiviral defense through hijacking innate immunity by its non-structural protein 1 (NS1). By using mass spectrometry, threonine 80 (T80) was identified as a novel phosphorylated residue in the NS1 of the influenza virus A/WSN/1933(H1N1). By generating recombinant influenza viruses encoding NS1 T80 mutants, the roles of this phosphorylation site were characterized during viral replication. The T80E (phosphomimetic) mutant attenuated virus replication, whereas the T80A (non-phosphorylatable) mutant did not. Similar phenotypes were observed for these mutants in a mouse model experiment. In further study, the T80E mutant decreased the binding capacity between NS1 and viral nucleoprotein (NP), leading to impaired viral ribonucleoprotein (vRNP)-mediated viral transcription. The T80E mutant was also unable to inhibit interferon (IFN) production by reducing the binding affinity between NS1 and retinoic acid-induced gene 1 protein (RIG-I), causing attenuation of virus replication. Taken together, the present study reveals that T80 phosphorylation of NS1 reduced influenza virus replication through controlling RIG-I-mediated IFN production and vRNP activity.
Collapse
Affiliation(s)
- Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaishuai Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Can Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yange Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Affiliation(s)
- Daniel Marc
- a ISP, INRA, Université Tours , Nouzilly , France
| |
Collapse
|
14
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|
15
|
Abstract
During infection, the influenza A virus non-structural protein 1 (NS1) interacts with a diverse range of viral and cellular factors to antagonize host antiviral defences and promote viral replication. Here, I review the structural basis for some of these functions and discuss the emerging view that NS1 cannot simply be regarded as a 'static' protein with a single structure. Rather, the dynamic property of NS1 to adopt various quaternary conformations is critical for its multiple activities. Understanding NS1 plasticity, and the mechanisms governing this plasticity, will be essential for assessing both fundamental protein function and the consequences of strain-dependent polymorphisms in this important virulence factor.
Collapse
Affiliation(s)
- Benjamin G Hale
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, UK
| |
Collapse
|