1
|
Amr RM, Bishr AS, Saad BT, Alshahrani MY, Aboshanab KM, Hassouna NA. A novel thermostable lytic phage vB_EF_Enf3_CCASU-2024-3 against clinical Enterococcus faecium and Enterococcus faecalis. AMB Express 2025; 15:65. [PMID: 40285822 PMCID: PMC12033158 DOI: 10.1186/s13568-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Enterococci, Gram-positive bacteria, have become a major concern in healthcare settings due to their significant virulence and antibiotic resistance. This research focuses on isolating, phenotypic, and genotypic analysis of enterococci-specific lytic phages to be used as potential candidates in combating multidrug-resistant (MDR) Enterococcus clinical isolates. The virulence of Enterococcus isolates was analyzed by testing for gelatinase and biofilm formation. The phage(s) was isolated from a sewage sample, then purified, propagated, and physiochemically analyzed. The phage was examined using transmission electron microscopy, and the whole genome sequence (WGS) was performed. Sixety-five clinical enterococci including, 27 (41.5%), 33 (50.7%) 3 (4.6%), and 2 (3%) E. faecalis, E. faecium, E. avium, and E. durans, respectively were isolated. Linezolid, teicoplanin, chloramphenicol, and vancomycin exhibited the lowest resistance. Twenty-five (38.5%) isolates were both gelatinase- and biofilm-producers. A novel lytic vB_EF_Enf3 phage belonging to Caudoviricetes class, characterized by an icosahedral head with a diameter of 100 ± 5 nm and a tail measuring 70 ± 5 nm in length was isolated. The phage demonstrated good thermal stability, and viability across various pH levels and exhibited a broad- spectrum of activity against E. faecium and E. faecalis. The vB_EF_Enf3 phage (36,202 bp length) harbored 36 open reading frames (ORFs) with a GC content of 34.4% (GenBank accession, PP747318). In conclusion, a novel thermostable lytic bacteriophage vB_EF_Enf3, belonging to class Caudoviricetes, was isolated from sewage showing broad-spectrum potent lytic activity against E. faecium and E. faecalis and maintained stability under various extreme conditions, including temperature, and pH fluctuations.
Collapse
Affiliation(s)
- Rana M Amr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Amr S Bishr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co, Cairo, 11765, Egypt
| | - Mohammad Y Alshahrani
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Wang C, Guan Y, Wang W, Zhang B, Li P, Han R, Wu W, Zhou S, Wang R. Characterization of a Putative Lysin from Enterococcus faecalis Phage IME-EFm1 and Determination of its Protective Efficacy in Mice. Curr Microbiol 2024; 82:27. [PMID: 39623033 DOI: 10.1007/s00284-024-03973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025]
Abstract
The rising tide of bacterial drug resistance has sparked renewed interest in bacteriophages, the natural predators of bacteria. Our study highlights IME-EFm1, a Caudoviricetes bacteriophage specifically targeting Enterococcus faecium. Through our investigations, we identified that the gene IME-EFm1-ORF24 encodes an amidase, referred to as gp24, with promising lytic capabilities. Remarkably, gp24 exhibited a wider lytic spectrum than its parent phage, successfully lysing 26 out of 32 E. faecium strains, compared to the phage's ability to lyse only 21. This protein demonstrated robust antibacterial activity, remaining effective at temperatures between 25 °C and 60 °C and across a pH range of 6 to 12. Additionally, gp24 displayed significant anti-biofilm properties, effectively dismantling established biofilms in vitro. In a mouse model of abdominal infection, gp24 achieved a 75% protection rate against a dose of 2 × 109 colony-forming units of E. faecium En383, significantly outperforming the control group (p < 0.05). These compelling results suggest that gp24 holds great potential as a novel antimicrobial agent for treating E. faecium infections.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
- Department of Respiratory and Critical Care Medicine, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Youhong Guan
- Department of Infectious Diseases, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Wanrong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Wenlong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Sijing Zhou
- Department of Occupational Diseases, Hefei Third People's Hospital, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| |
Collapse
|
3
|
Ribes-Martínez L, Muñoz-Egea MC, Yuste J, Esteban J, García-Quintanilla M. Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges. Antibiotics (Basel) 2024; 13:1120. [PMID: 39766510 PMCID: PMC11672805 DOI: 10.3390/antibiotics13121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Enterococcus faecium is a Gram-positive bacterium increasingly identified as a critical nosocomial pathogen that poses significant treatment challenges due to its resistance to multiple antibiotics, particularly vancomycin-resistant E. faecium (VRE) strains. The urgent need for alternative therapeutic strategies has renewed interest in bacteriophage (phage) therapy, given phages specificity and bactericidal potential. This review explores the advancements in phage therapy against antibiotic-resistant E. faecium, including phage morphological diversity, genomic characteristics, and infection mechanisms. The efficacy of phage therapy in in vitro, ex vivo, and in vivo models and the compassionate use in clinical settings are evaluated, highlighting the promising outcomes of phage-antibiotic synergies and biofilm disruption. Key challenges and future research directions are discussed, with a focus on improving therapeutic efficacy and overcoming bacterial resistance. This review emphasizes the potential of phage therapy as a viable solution for managing multidrug-resistant E. faecium infections and underscores the importance of future investigations to enhance clinical applications.
Collapse
Affiliation(s)
- Laura Ribes-Martínez
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria-Carmen Muñoz-Egea
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jose Yuste
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Spanish Pneumococcal Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBERES-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
4
|
Buzikov RM, Kulyabin VA, Koposova ON, Arlyapov VA, Shadrin AM. Characteristics of the Enterococcus Phage vB_EfS_SE, and the Properties of Its Chimeric Endolysins Harboring a PlySE-Carbohydrate-Binding Domain and a Synthetic Enzymatic Domain. Pharmaceutics 2024; 16:1312. [PMID: 39458641 PMCID: PMC11510935 DOI: 10.3390/pharmaceutics16101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The World Health Organization has selected enterococci as one of the priority multidrug-resistant microorganisms for the development of new antibacterial drugs. Bacteriophages are promising antibacterial agents, but the biology of bacteriophages requires deeper understanding. Methods: The vB_EfS_SE phage which is capable of infecting four species of the genus Enterococci was isolated from sewage plant. The complete genome of the vB_EfS_SE phage was sequenced using illumina technology. The endolysin gene was cloned into pBAD18 expression vector. Two chimeric endolysins were engineered using the vB_EfS_SE carbohydrate-binding domain (CBD) and replacing its enzymatically active domain (EAD). Results: The bacteriophage exhibits promising lytic properties and persists at temperatures of 40 °C and below, and under pH conditions ranging from 5 to 11. The genome sequence is 57,904 bp in length. The vB_EfS_SE endolysin PlySE and chimeric endolysins PlyIME-SE and PlySheep-SE were found to have the same range of specificity, but different thermostability properties and a different pH range for enzyme activity. Conclusions: Taking together the results obtained in this work and other published studies, we can highly appreciate the potential of Saphexavirus phages and their endolysins as novel antibacterial compounds.
Collapse
Affiliation(s)
- Rustam M. Buzikov
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (R.M.B.); (V.A.K.); (O.N.K.)
| | - Vladislav A. Kulyabin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (R.M.B.); (V.A.K.); (O.N.K.)
| | - Olga N. Koposova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (R.M.B.); (V.A.K.); (O.N.K.)
| | | | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (R.M.B.); (V.A.K.); (O.N.K.)
| |
Collapse
|
5
|
Wang WX, Wu JZ, Zhang BL, Yu JY, Han LM, Lu XL, Li H, Fu SY, Ren YY, Dong H, Xu Y, Wang GT, Gao JH, Wang C, Chen XZ, Liu DX, Huang Y, Yu JH, Wang SW, Yang YF, Chen W. Phage therapy combats pan drug-resistant Acinetobacter baumannii infection safely and efficiently. Int J Antimicrob Agents 2024; 64:107220. [PMID: 38810939 DOI: 10.1016/j.ijantimicag.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Phage therapy offers a promising approach to combat the growing threat of antimicrobial resistance. Yet, key questions remain regarding dosage, administration routes, combination therapy, and the causes of therapeutic failure. In this study, we focused on a novel lytic phage, ФAb4B, which specifically targeted the Acinetobacter baumannii strains with KL160 capsular polysaccharide, including the pan-drug resistant A. baumannii YQ4. ФAb4B exhibited the ability to effectively inhibit biofilm formation and eradicate mature biofilms independently of dosage. Additionally, it demonstrated a wide spectrum of antibiotic-phage synergy and did not show any cytotoxic or haemolytic effects. Continuous phage injections, both intraperitoneally and intravenously over 7 d, showed no acute toxicity in vivo. Importantly, phage therapy significantly improved neutrophil counts, outperforming ciprofloxacin. However, excessive phage injections suppressed neutrophil levels. The combinatorial treatment of phage-ciprofloxacin rescued 91% of the mice, a superior outcome compared to phage alone (67%). The efficacy of the combinatorial treatment was independent of phage dosage. Notably, prophylactic administration of the combinatorial regimen provided no protection, but even when combined with a delayed therapeutic regimen, it saved all the mice. Bacterial resistance to the phage was not a contributing factor to treatment failure. Our preclinical study systematically describes the lytic phage's effectiveness in both in vitro and in vivo settings, filling in crucial details about phage treatment against bacteriemia caused by A. baumannii, which will provide a robust foundation for the future of phage therapy.
Collapse
Affiliation(s)
- Wei-Xiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Zhen Wu
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Ling Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiao-Yang Yu
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Li-Mei Han
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Liang Lu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hui Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shi-Yong Fu
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun-Yao Ren
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Dong
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Xu
- Department of Geriatric Medicine, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Gong-Ting Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing-Han Gao
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Wang
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiu-Zhen Chen
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Du-Xian Liu
- Department of pathology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Huang
- Department of Infection Control and Management, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Hong Yu
- Department of Clinical Laboratory, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi-Wei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yong-Feng Yang
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China.
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
7
|
Viglasky J, Piknova M, Pristas P. Gene and domain shuffling in lytic cassettes of Enterococcus spp. bacteriophages. 3 Biotech 2023; 13:388. [PMID: 38023582 PMCID: PMC10630273 DOI: 10.1007/s13205-023-03775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
The genomes of Enterococcus faecalis and Enterococcus faecium bacteriophages were analysed for gene shuffling in the lytic cassettes of bacteriophages infecting. It was found that enterococcal bacteriophages could be classified into well-defined groups based on the size of their genomes and each size group had its own conserved gene composition of lytic cassettes. Enterococcal bacteriophages use a relatively broad spectrum of holins and endolysins with variable cell-wall binding (CWB) and catalytic domains, and most of them utilise a lytic cassette with more than two genes. Enterococcal bacteriophages most commonly use endolysins with amidase catalytic domains and the CWB domain SH3_5. Some bacteriophages possess in their lytic cassette a holin-like gene with the XhlA domain protein, characteristic of hemolysin. Regardless of the shuffling of genes encoding holins and endolysins in lytic modules, a novel example of CWB domain shuffling within enterococcal endolysins was identified. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03775-w.
Collapse
Affiliation(s)
- Jakub Viglasky
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Srobarova 2, 041 54 Košice, Slovakia
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Maria Piknova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Srobarova 2, 041 54 Košice, Slovakia
| | - Peter Pristas
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Srobarova 2, 041 54 Košice, Slovakia
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| |
Collapse
|
8
|
Qu Q, Chen T, He P, Geng H, Zeng P, Luan G. Isolation and characterization of a novel lytic bacteriophage vB_Efm_LG62 infecting Enterococcus faecium. Virus Genes 2023; 59:763-774. [PMID: 37422898 DOI: 10.1007/s11262-023-02016-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Enterococcus faecium has been classified as a "high priority" pathogen by the World Health Organization. Enterococcus faecium has rapidly evolved as a global nosocomial pathogen with adaptation to the nosocomial environment and the accumulation of resistance to multiple antibiotics. Phage therapy is considered a promising strategy against difficult-to-treat infections and antimicrobial resistance. In this study, we isolated and characterized a novel virulent bacteriophage, vB_Efm_LG62, that specifically infects multidrug-resistant E. faecium. Morphological observations suggested that the phage has siphovirus morphology, with an optimal multiplicity of infection of 0.001. One-step growth tests revealed that its latent growth was at 20 min, with a burst size of 101 PFU/cell. Phage vB_Efm_LG62 was verified to have a double-stranded genome of 42,236 bp (35.21% GC content), containing 66 predicted coding sequences as determined by whole genomic sequencing. No genes were predicted to have functions associated with virulence factors or antibiotic resistance, indicating that the phage vB_Efm_LG62 has good therapeutic potential. Our isolation and characterization of this highly efficient phage aids in expanding our knowledge of E. faecium-targeting phages, and provides additional options for phage cocktail therapy.
Collapse
Affiliation(s)
- Qianyu Qu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Medical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Penggang He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huaixin Geng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Guangxin Luan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
9
|
Chen Y, Guo R, Liang Y, Luo L, Han Y, Wang H, Zhang H, Liu Y, Zheng K, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and genomic analysis of a novel lytic phage vB_PstM_ZRG1 infecting Stutzerimonas stutzeri, representing a new viral genus, Elithevirus. Virus Res 2023; 334:199183. [PMID: 37499764 PMCID: PMC10404802 DOI: 10.1016/j.virusres.2023.199183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.
Collapse
Affiliation(s)
- Ying Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China.
| | - Lin Luo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
10
|
Tian R, Xu S, Li P, Li M, Liu Y, Wang K, Liu G, Li Y, Dai L, Zhang W. Characterization of G-type Clostridium perfringens bacteriophages and their disinfection effect on chicken meat. Anaerobe 2023; 81:102736. [PMID: 37196842 DOI: 10.1016/j.anaerobe.2023.102736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Clostridium perfringens is one of most important bacterial pathogens in the poultry industry and mainly causes necrotizing enteritis (NE). This pathogen and its toxins can cause foodborne diseases in humans through the food chain. In China, with the rise of antibiotic resistance and the banning of antibiotic growth promoters (AGPs) in poultry farming, food contamination and NE are becoming more prevalent. Bacteriophages are a viable technique to control C. perfringens as an alternative to antibiotics. We isolated Clostridium phage from the environment, providing a new method for the prevention of NE and C. perfringens contamination in meat. METHODS In this study, we selected C. perfringens strains from various regions and animal sources in China for phage isolation. The biological characteristics of Clostridium phage were studied in terms of host range, MOI, one-step curve, temperature and pH stability. We sequenced and annotated the genome of the Clostridium phage and performed phylogenetic and pangenomic analyses. Finally, we studied its antibacterial activity against bacterial culture and its disinfection effect against C. perfringens in meat. RESULTS A Clostridium phage, named ZWPH-P21 (P21), was isolated from chicken farm sewage in Jiangsu, China. P21 has been shown to specifically lyse C. perfringens type G. Further analysis of basic biological characteristics showed that P21 was stable under the conditions of pH 4-11 and temperature 4-60 °C, and the optimal multiple severity of infection (MOI) was 0.1. In addition, P21 could form a "halo" on agar plates, suggesting that the phage may encode depolymerase. Genome sequence analysis showed that P21 was the most closely related to Clostridium phage CPAS-15 belonging to the Myoviridae family, with a recognition rate of 97.24% and a query coverage rate of 98%. No virulence factors or drug resistance genes were found in P21. P21 showed promising antibacterial activity in vitro and in chicken disinfection experiments. In conclusion, P21 has the potential to be used for preventing and controlling C. perfringens in chicken food production.
Collapse
Affiliation(s)
- Rui Tian
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Sixiang Xu
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Pei Li
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Mengxuan Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, Jinan, 250100, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, Jinan, 250100, China
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province, China
| | - Guangjin Liu
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, 16 Xingdan Road, Haikou, China.
| | - Wei Zhang
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China.
| |
Collapse
|
11
|
Pradal I, Casado A, del Rio B, Rodriguez-Lucas C, Fernandez M, Alvarez MA, Ladero V. Enterococcus faecium Bacteriophage vB_EfaH_163, a New Member of the Herelleviridae Family, Reduces the Mortality Associated with an E. faecium vanR Clinical Isolate in a Galleria mellonella Animal Model. Viruses 2023; 15:179. [PMID: 36680219 PMCID: PMC9860891 DOI: 10.3390/v15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The rise of antimicrobial resistant (AMR) bacteria is a major health concern, especially with regard to members of the ESKAPE group, to which vancomycin-resistant (VRE) Enterococcus faecium belongs. Phage therapy has emerged as a novel alternative for the treatment of AMR infections. This, however, relies on the isolation and characterisation of a large collection of phages. This work describes the exploration of human faeces as a source of new E. faecium-infecting phages. Phage vB_EfaH_163 was isolated and characterised at the microbiological, genomic, and functional levels. vB_EfaH_163 phage, a new member of Herelleviridae, subfamily Brockvirinae, has a dsDNA genome of 150,836 bp that does not harbour any virulence factors or antibiotic resistance genes. It infects a wide range of E. faecium strains of different origins, including VRE strains. Interestingly, it can also infect Enterococcus faecalis strains, even some that are linezolid-resistant. Its capacity to control the growth of a clinical VRE isolate was shown in broth culture and in a Galleria mellonella animal model. The discovery and characterisation of vB_EfaH_163 increases the number of phages that might be used therapeutically against AMR bacteria.
Collapse
Affiliation(s)
- Inés Pradal
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Angel Casado
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Beatriz del Rio
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Rodriguez-Lucas
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Laboratory, Hospital el Bierzo, 24404 Ponferrada, Spain
- Microbiology Laboratory, Hospital Universitario de Cabueñes, 33394 Gijón, Spain
| | - Maria Fernandez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel A. Alvarez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
12
|
El Haddad L, Angelidakis G, Clark JR, Mendoza JF, Terwilliger AL, Chaftari CP, Duna M, Yusuf ST, Harb CP, Stibich M, Maresso A, Chemaly RF. Genomic and Functional Characterization of Vancomycin-Resistant Enterococci-Specific Bacteriophages in the Galleria mellonella Wax Moth Larvae Model. Pharmaceutics 2022; 14:1591. [PMID: 36015218 PMCID: PMC9414631 DOI: 10.3390/pharmaceutics14081591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are naturally occurring viruses that selectively kill bacterial species without disturbing the individual's normal flora, averting the collateral damage of antimicrobial usage. The safety and the effectiveness of phages have been mainly confirmed in the food industry as well as in animal models. In this study, we report on the successful isolation of phages specific to Vancomycin-resistant Enterococci, including Enterococcus faecium (VREfm) and Enterococcus faecalis from sewage samples, and demonstrate their efficacy and safety for VREfm infection in the greater wax moth Galleria mellonella model. No virulence-associated genes, antibiotic resistance genes or integrases were detected in the phages' genomes, rendering them safe to be used in an in vivo model. Phages may be considered as potential agents for therapy for bacterial infections secondary to multidrug-resistant organisms such as VREfm.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Georgios Angelidakis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Jesus F. Mendoza
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Christopher P. Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Duna
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Serena T. Yusuf
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Cynthia P. Harb
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Stibich
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
- Xenex Disinfection Services, San Antonio, TX 78216, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| |
Collapse
|
13
|
Pan L, Li D, Sun Z, Lin W, Hong B, Qin W, Xu L, Liu W, Zhou Q, Wang F, Cai R, Qian M, Tong Y. First Characterization of a Hafnia Phage Reveals Extraordinarily Large Burst Size and Unusual Plaque Polymorphism. Front Microbiol 2022; 12:754331. [PMID: 35211099 PMCID: PMC8861465 DOI: 10.3389/fmicb.2021.754331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023] Open
Abstract
A unique lytic phage infecting Hafnia paralvei was isolated and identified. Hafnia phage Ca belongs to the family Autographiviridae, possessing an icosahedral head with a diameter of 55 nm and a short non-contractile tail. Unusually, the burst size of Hafnia phage Ca of 10,292 ± 1,097 plaque-forming units (PFUs)/cell is much larger than other dsDNA phages reported before. Compared to the genome of the related phage, Hafnia phage Ca genome contains extra genes including DNA mimic ocr, dGTP triphosphohydrolase inhibitor, endonuclease, endonuclease VII, and HNH homing endonuclease gene. Extraordinarily, the phage developed different sizes of plaques when a single plaque was picked out and inoculated on a double-layer Luria broth agar plate with its host. Furthermore, varied packaging tightness for the tails of Hafnia phage Ca was observed (tail length: 4.35-45.92 nm). Most of the tails appeared to be like a cone with appendages, some were dot-like, bun-like, table tennis racket handle-like, and ponytail-like. Although the complete genome of Hafnia phage Ca is 40,286 bp, an incomplete genome with a deletion of a 397-bp fragment, containing one ORF predicted as HNH homing endonuclease gene (HEG), was also found by high throughput sequencing. Most of the genome of the virus particles in large plaques is complete (>98%), while most of the genome of the virus particles in small plaques is incomplete (>98%), and the abundance of both of them in medium-sized plaques is similar (complete, 40%; incomplete, 60%). In an experiment to see if the phage could be protective to brocade carps intramuscularly injected with H. paralvei LY-23 and phage Ca, the protection rate of Hafnia phage Ca to brocade carp (Cyprinus aka Koi) against H. paralvei was 33.38% (0.01 < p < 0.05). This study highlights some new insights into the peculiar biological and genomic characteristics of phage.
Collapse
Affiliation(s)
- Lingting Pan
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dengfeng Li
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhitong Sun
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wei Lin
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Binxin Hong
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Weinan Qin
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lihua Xu
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wencai Liu
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qin Zhou
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Wang
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ruqian Cai
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Minhua Qian
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
14
|
Rigvava S, Kusradze I, Tchgkonia I, Karumidze N, Dvalidze T, Goderdzishvili M. Novel lytic bacteriophage vB_GEC_EfS_9 against Enterococcus faecium. Virus Res 2022; 307:198599. [PMID: 34648886 DOI: 10.1016/j.virusres.2021.198599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/31/2023]
Abstract
Enterococcus spp. is a common commensal microorganism, however, some strains can cause opportunistic infections in humans. Treatment of Enterococcus faecium-related endocarditis, urinary and genital tract infections, meningitis, septicemia, and even neonatal sepsis is often complicated by antibiotic resistance. The spread of multi-resistant bacterial strains has renewed interest in phage therapy, which has many advantages: Its advantages include a much lower frequency of resistance development compared to antibiotics and strict specificity, which allows affecting of only their target microbes without disturbing necessary microbiome. We isolated and characterized a virulent bacteriophage which is active against Enterococcus faecium clinical strains. The phage, which was designated as vB_GEC_EfS_9 was studied in terms of its growth pattern and adsorption rate, as well as its host range. The whole genome of the phage was sequenced and analyzed. Obtained results indicate that phage vB_GEC_EfS_9 is a virulent phage which has a very good potential for therapeutic use against strains of E. faecium.
Collapse
Affiliation(s)
- S Rigvava
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; Caucasus International University, Tbilisi, Georgia.
| | - I Kusradze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; European University, Tbilisi, Georgia
| | - I Tchgkonia
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - N Karumidze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; European University, Tbilisi, Georgia
| | - T Dvalidze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - M Goderdzishvili
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| |
Collapse
|
15
|
Goodarzi F, Hallajzadeh M, Sholeh M, Talebi M, Mahabadi VP, Amirmozafari N. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:691-702. [PMID: 34900167 PMCID: PMC8629820 DOI: 10.18502/ijm.v13i5.7436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES An important leading cause of the emergence of vancomycin-resistant enterococci, especially Enterococcus faecium, is the inefficiency of antibiotics in the elimination of drug-resistant pathogens. Consequently, the need for alternative treatments is more necessary than ever. MATERIALS AND METHODS A highly effective bacteriophage against vancomycin-resistant E. faecium called vB-EfmS-S2 was isolated from hospital sewage. The biological properties of phage S2 and its effect on biofilm structures were determined. RESULTS Phage S2 was specifically capable of lysing a wide range of clinical E. faecium isolates. According to Electron microscopy observations, the phage S2 belonged to the Siphoviridea family. Suitable pH spectra for phage survival was 5-11, at which the phage showed 100% activity. The optimal temperature for phage growth was 30-45°C, with the highest growth at 37°C. Based on one-step growth curve results, the latent period of phage S2 was 14 min with a burst size of 200 PFU/ml. The phage S2 was also able to tolerate bile at concentrations of 1 and 2% and required Mg2+ for an effective infection cycle. Biofilms were significantly inhibited and disrupted in the presence of the phage. CONCLUSION According to the results, phage S2 could potentially be an alternative for the elimination and control of vancomycin-resistant E. faecium biofilm.
Collapse
Affiliation(s)
- Forough Goodarzi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hallajzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kabwe M, Meehan-Andrews T, Ku H, Petrovski S, Batinovic S, Chan HT, Tucci J. Lytic Bacteriophage EFA1 Modulates HCT116 Colon Cancer Cell Growth and Upregulates ROS Production in an Enterococcus faecalis Co-culture System. Front Microbiol 2021; 12:650849. [PMID: 33868210 PMCID: PMC8044584 DOI: 10.3389/fmicb.2021.650849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen in the gut microbiota that’s associated with a range of difficult to treat nosocomial infections. It is also known to be associated with some colorectal cancers. Its resistance to a range of antibiotics and capacity to form biofilms increase its virulence. Unlike antibiotics, bacteriophages are capable of disrupting biofilms which are key in the pathogenesis of diseases such as UTIs and some cancers. In this study, bacteriophage EFA1, lytic against E. faecalis, was isolated and its genome fully sequenced and analyzed in silico. Electron microscopy images revealed EFA1 to be a Siphovirus. The bacteriophage was functionally assessed and shown to disrupt E. faecalis biofilms as well as modulate the growth stimulatory effects of E. faecalis in a HCT116 colon cancer cell co-culture system, possibly via the effects of ROS. The potential exists for further testing of bacteriophage EFA1 in these systems as well as in vivo models.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Heng Ku
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
17
|
Sofy AR, El-Dougdoug NK, Refaey EE, Dawoud RA, Hmed AA. Characterization and Full Genome Sequence of Novel KPP-5 Lytic Phage against Klebsiella pneumoniae Responsible for Recalcitrant Infection. Biomedicines 2021; 9:342. [PMID: 33800632 PMCID: PMC8066614 DOI: 10.3390/biomedicines9040342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Klebsiella pneumoniae is a hazardous opportunistic pathogen that is involved in many serious human diseases and is considered to be an important foodborne pathogen found in many food types. Multidrug resistance (MDR) K. pneumoniae strains have recently spread and increased, making bacteriophage therapy an effective alternative to multiple drug-resistant pathogens. As a consequence, this research was conducted to describe the genome and basic biological characteristics of a novel phage capable of lysing MDR K. pneumoniae isolated from food samples in Egypt. The host range revealed that KPP-5 phage had potent lytic activity and was able to infect all selected MDR K. pneumoniae strains from different sources. Electron microscopy images showed that KPP-5 lytic phage was a podovirus morphology. The one-step growth curve exhibited that KPP-5 phage had a relatively short latent period of 25 min, and the burst size was about 236 PFU/infected cells. In addition, KPP-5 phage showed high stability at different temperatures and pH levels. KPP-5 phage has a linear dsDNA genome with a length of 38,245 bp with a GC content of 50.8% and 40 predicted open reading frames (ORFs). Comparative genomics and phylogenetic analyses showed that KPP-5 is most closely associated with the Teetrevirus genus in the Autographviridae family. No tRNA genes have been identified in the KPP-5 phage genome. In addition, phage-borne virulence genes or drug resistance genes were not present, suggesting that KPP-5 could be used safely as a phage biocontrol agent.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
- Department of Biology, Faculty of Science, Jazan University, Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| |
Collapse
|
18
|
vB_EfaS-DELF1, a novel Siphoviridae bacteriophage with highly effective lytic activity against vancomycin-resistant Enterococcus faecalis. Virus Res 2021; 298:198391. [PMID: 33737153 DOI: 10.1016/j.virusres.2021.198391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023]
Abstract
Enterococcus faecalis is an environmental agent of bovine mastitis in cows and has many cytopathic effects on the urinary tract in both humans and animals. In this study, a novel lytic bacteriophage, vB_EfaS-DELF1, was isolated against 21 E. faecalis isolated from bovine mastitis, including vancomycin-resistant E. faecalis (VRE). vB_EfaS-DELF1 bacteriophage was specific for E. faecalis and showed no lytic effects against other tested Enterococcus spp., Gram-negative, or Gram-positive bacteria. Moreover, no activity was observed against yogurt starters. The phage suspension was stable in a wide range of pH, salinity, and temperature. It retained its activity in 3.5 % fat milk. vB_EfaS-DELF1 has the common phenotypic features of Siphoviridae with a double-strand DNA of 40,248 bp in length and a G + C content of 34.9 %. The genome encodes 62 putative ORFs and no tRNA. No undesirable genes such as lysogenic mediators, antibiotic resistance, or virulence factor genes were detected in the genome. The comparative genomic analysis demonstrated similarity to the other available phage genomes. The highest similarity was observed with two other phages (50 % coverage and 82.38 % identities with IME-EFm1; 35 % coverage and 86.22 % identities with IME-EFm5) that were placed in the same clade. The differences with the other aligned phages were high and were placed in distant clusters. Regarding the specificity of this new bacteriophage against all of the tested E. faecalis isolates and, in particular, against the vancomycin-resistant ones, and also the absence of antibiotic resistance or virulence genes in its genome, vB_EfaS-DELF1 is suggested as a potential candidate for biocontrol of E. faecalis infections.
Collapse
|
19
|
Enterococcus phage Nonaheksakonda infecting clinical isolates of Enterococcus faecalis represents a new lineage in the family Siphoviridae. Arch Virol 2021; 166:593-599. [PMID: 33392817 DOI: 10.1007/s00705-020-04905-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023]
Abstract
Enterococcus phage Nonaheksakonda was isolated from wastewater, using a vancomycin-resistant strain of the opportunistic pathogen Enterococcus faecalis (VRE) as a host. Nonaheksakonda is a lytic phage infecting E. faecalis V583 and clinical isolates with at least four different multi-locus sequence types (MLSTs). The genome is a 41.9-kb double-stranded DNA molecule (34.6% GC) with 74 coding sequences. Comparative analysis revealed only one close relative, Enterococcus phage heks. All other phages had low protein similarity and shared less than 54% nucleotide sequence identity with phage Nonaheksakonda. The most similar phages were all classified and unclassified efquatroviruses. We propose that the phages Nonaheksakonda and heks represent a novel genus within the family Siphoviridae, order Caudovirales, for which we propose the name "Nonaheksakondavirus".
Collapse
|
20
|
Fan C, Tie D, Sun Y, Jiang J, Huang H, Gong Y, Zhao C. Characterization and Genomic Analysis of Escherichia coli O157:H7 Bacteriophage FEC14, a New Member of Genus Kuttervirus. Curr Microbiol 2020; 78:159-166. [PMID: 33185717 DOI: 10.1007/s00284-020-02283-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Escherichia coli O157:H7 is an important foodborne pathogen that has become a major worldwide factor affecting the public safety of food. Bacteriophage has gradually attracted attention because of its ability to kill specific pathogens. In this study, a lytic phage of E. coli O157:H7, named FEC14, was isolated from hospital sewage. Transmission electron microscopy analysis showed that phage FEC14 had an isometric head 80 ± 5 nm in diameter and a contractile tail whose terminal spikes present an umbrella-like structure. Phage FEC14 revealed 158,639 bp double-stranded DNA, with the G+C content of 44.6%, 209 ORFs and four tRNAs. Genome DNA of FEC14 could not be digested by some endonucleases. Many of the features of phage FEC14 are very similar to those of the newly classified genus "Kuttervirus", including morphology, genome size and organization, etc. Phage FEC14 is proposed to be a new isolate of genus "Kuttervirus" within the family Ackermannviridae, moreover, the endonuclease resistance of phage FEC14, has priority over other genera of bacteriophages for its use in biocontrol of foodborne pathogens.
Collapse
Affiliation(s)
- Congcong Fan
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Dandan Tie
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yanbo Sun
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jie Jiang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Honglan Huang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yunwei Gong
- Changchun Center for Disease Control and Prevention Department of Microbiology, Changchun, Jilin, People's Republic of China
| | - Chunyan Zhao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
21
|
Biological characteristics and genome analysis of a novel phage vB_KpnP_IME279 infecting Klebsiella pneumoniae. Folia Microbiol (Praha) 2020; 65:925-936. [PMID: 33064268 DOI: 10.1007/s12223-020-00775-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/19/2020] [Indexed: 10/23/2022]
Abstract
Klebsiella pneumoniae (family Enterobacteriaceae) is a gram-negative bacterium that has strong pathogenicity to humans and can cause sepsis, pneumonia, and urinary tract infection. In recent years, the unreasonable use of antibacterial drugs has led to an increase in drug-resistant strains of K. pneumoniae, a serious threat to public health. Bacteriophages, viruses that infect bacteria, are ubiquitous in the natural environment. They are considered to be the most promising substitute for antibiotics because of their high specificity, high efficiency, high safety, low cost, and short development cycle. In this study, a novel phage designated vB_KpnP_IME279 was successfully isolated from hospital sewage using a multidrug-resistant strain of K. pneumoniae as an indicator. A one-step growth curve showed that vB_KpnP_IME279 has a burst size of 140 plaque-forming units/cell and a latent period of 20 min at its optimal multiplicity of infection (MOI = 0.1). Phage vB_KpnP_IME279 survives in a wide pH range between 3 and 11 and is stable at temperatures ranging from 40 to 60 °C. Ten of the 20 strains of K. pneumoniae including the host bacteria were lysed by the phage vB_KpnP_IME279, and the multilocus sequence typing and wzi typing of the 10 strains were ST11, ST37, ST375, wzi209, wzi52, and wzi72, respectively. The genome of vB_KpnP_IME279 is 42,518 bp long with a G + C content of 59.3%. Electron microscopic observation showed that the phage belongs to the family Podoviridae. BLASTN alignment showed that the genome of the phage has low similarity with currently known phages. The evolutionary relationship between phage vB_KpnP_IME279 and other Podoviridae was analyzed using a phylogenetic tree based on sequences of phage major capsid protein and indicates that the phage vB_KpnP_IME279 belongs to the Podoviridae subfamily. These data enhance understanding of K. pneumoniae phages and will help in development of treatments for multidrug-resistant bacteria using phages.
Collapse
|
22
|
Wang C, Li P, Zhu Y, Huang Y, Gao M, Yuan X, Niu W, Liu H, Fan H, Qin Y, Tong Y, Mi Z, Bai C. Identification of a Novel Acinetobacter baumannii Phage-Derived Depolymerase and Its Therapeutic Application in Mice. Front Microbiol 2020; 11:1407. [PMID: 32903329 PMCID: PMC7396526 DOI: 10.3389/fmicb.2020.01407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to most or all available antibiotics is a global concern. Current treatments for infections caused by this bacterium have become less effective, and the need to explore new alternative therapies is urgent. Depolymerases derived from phages are emerging as attractive anti-virulence agents. In this study, a previously isolated A. baumannii phage (designated as vB_AbaM_IME285) was characterized, and genomic study was carried out using various bioinformatics tools. A gene predicted as encoding for the depolymerase was cloned and expressed, and the depolymerase activity of the recombinant enzyme (Dp49) was identified both in vitro and in experimental mice. The results showed that phage IME285 formed translucent halos around the plaques when inoculated onto a lawn of the host bacteria, exibiting depolymerase activity against this strain. On the basis of complete genome sequencing and bioinformatics analysis, ORF49 was speculated to be a gene encoding for the putative capsule depolymerase. The expressed recombinant Dp49 displayed an effective depolymerase activity and had a spectrum of activity similar to its parental phage IME285, which was active against 25 out of 49 A. baumannii strains. It was found that Dp49 greatly improved the inhibitory effect of serum on bacterial growth in vitro, and the administration of this enzyme significantly increased the survival rates of A. baumannii-infected mice in the animal experiment. In conclusion, the phage-encoded depolymerase Dp49 might be a promising alternative means of controlling infections mediated by multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, Anhui, China
| | - Puyuan Li
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhu
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, Anhui, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingming Gao
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Yuan
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenkai Niu
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiying Liu
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanhong Qin
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Respiratory and Critical Care Diseases, General Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Sofy AR, Abd El Haliem NF, Refaey EE, Hmed AA. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods 2020; 9:E673. [PMID: 32456227 PMCID: PMC7278617 DOI: 10.3390/foods9050673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Naglaa F. Abd El Haliem
- Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| |
Collapse
|
24
|
Nasr Azadani D, Zhang D, Hatherill JR, Silva D, Turner JW. Isolation, characterization, and comparative genomic analysis of a phage infecting high-level aminoglycoside-resistant (HLAR) Enterococcus faecalis. PeerJ 2020; 8:e9171. [PMID: 32509458 PMCID: PMC7246028 DOI: 10.7717/peerj.9171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Enterococcus is a genus of Gram-positive bacteria that are commensal to the gastrointestinal tracts of humans but some species have been increasingly implicated as agents of nosocomial infections. The increase in infections and the spread of antibiotic-resistant strains have contributed to renewed interest in the discovery of Enterococcus phages. The aims of this study were (1) the isolation, characterization, and genome sequencing of a phage capable of infecting an antibiotic-resistant E. faecalis strain, and (2) the comparative genomic analysis of publicly-available Enterococcus phages. For this purpose, multiple phages were isolated from wastewater treatment plant (WWTP) influent using a high-level aminoglycoside-resistant (HLAR) E. faecalis strain as the host. One phage, phiNASRA1, demonstrated a high lytic efficiency (∼97.52%). Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) showed that phiNASRA1 belongs to the Siphoviridae family of double-stranded DNA viruses. The phage was approximately 250 nm in length and its complete genome (40,139 bp, 34.7% GC) contained 62 open reading frames (ORFs). Phylogenetic comparisons of phiNASRA1 and 31 publicly-available Enterococcus phages, based on the large subunit terminase and portal proteins, grouped phage by provenance, size, and GC content. In particular, both phylogenies grouped phages larger than 100 kbp into distinct clades. A phylogeny based on a pangenome analysis of the same 32 phages also grouped phages by provenance, size, and GC content although agreement between the two single-locus phylogenies was higher. Per the pangenome phylogeny, phiNASRA1 was most closely related to phage LY0322 that was similar in size, GC content, and number of ORFs (40,139 and 40,934 bp, 34.77 and 34.80%, and 60 and 64 ORFs, respectively). The pangenome analysis did illustrate the high degree of sequence diversity and genome plasticity as no coding sequence was homologous across all 32 phages, and even 'conserved' structural proteins (e.g., the large subunit terminase and portal proteins) were homologous in no more than half of the 32 phage genomes. These findings contribute to a growing body of literature devoted to understanding phage biology and diversity. We propose that this high degree of diversity limited the value of the single-locus and pangenome phylogenies. By contrast, the high degree of homology between phages larger than 100 kbp suggests that pangenome analyses of more similar phages is a viable method for assessing subclade diversity. Future work is focused on validating phiNASRA1 as a potential therapeutic agent to eradicate antibiotic-resistant E. faecalis infections in an animal model.
Collapse
Affiliation(s)
- Danial Nasr Azadani
- Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX, United States of America
| | - Daiyuan Zhang
- Natural Sciences, Del Mar College, Corpus Christi, TX, United States of America
| | - J. Robert Hatherill
- Natural Sciences, Del Mar College, Corpus Christi, TX, United States of America
| | - David Silva
- Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX, United States of America
| | - Jeffrey W. Turner
- Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX, United States of America
| |
Collapse
|
25
|
Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep 2019; 9:6643. [PMID: 31040333 PMCID: PMC6491613 DOI: 10.1038/s41598-019-43115-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic wounds affect thousands of people worldwide, causing pain and discomfort to patients and represent significant economical burdens to health care systems. The treatment of chronic wounds is very difficult and complex, particularly when wounds are colonized by bacterial biofilms which are highly tolerant to antibiotics. Enterococcus faecium and Enterococcus faecalis are within the most frequent bacteria present in chronic wounds. Bacteriophages (phages) have been proposed as an efficient and alternative against antibiotic-resistant infections, as those found in chronic wounds. We have isolated and characterized two novel enterococci phages, the siphovirus vB_EfaS-Zip (Zip) and the podovirus vB_EfaP-Max (Max) to be applied during wound treatment. Both phages demonstrated lytic behavior against E. faecalis and E. faecium. Genome analysis of both phages suggests the absence of genes associated with lysogeny. A phage cocktail containing both phages was tested against biofilms formed in wound simulated conditions at a multiplicity of infection of 1.0 and a 2.5 log CFU.mL−1 reduction in the bacterial load after at 3 h of treatment was observed. Phages were also tested in epithelial cells colonized by these bacterial species and a 3 log CFU.mL−1 reduction was observed using both phages. The high efficacy of these new isolated phages against multi-species biofilms, their stability at different temperatures and pH ranges, short latent periods and non-cytotoxicity to epithelial cells suggest their therapeutic use to control infectious biofilms present in chronic wounds.
Collapse
|
26
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
27
|
Li P, Lin H, Mi Z, Xing S, Tong Y, Wang J. Screening of Polyvalent Phage-Resistant Escherichia coli Strains Based on Phage Receptor Analysis. Front Microbiol 2019; 10:850. [PMID: 31105661 PMCID: PMC6499177 DOI: 10.3389/fmicb.2019.00850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
Bacteria-based biotechnology processes are constantly under threat from bacteriophage infection, with phage contamination being a non-neglectable problem for microbial fermentation. The essence of this problem is the complex co-evolutionary relationship between phages and bacteria. The development of phage control strategies requires further knowledge about phage-host interactions, while the widespread use of Escherichia coli strain BL21 (DE3) in biotechnological processes makes the study of phage receptors in this strain particularly important. Here, eight phages infecting E. coli BL21 (DE3) via different receptors were isolated and subsequently identified as members of the genera T4virus, Js98virus, Felix01virus, T1virus, and Rtpvirus. Phage receptors were identified by whole-genome sequencing of phage-resistant E. coli strains and sequence comparison with wild-type BL21 (DE3). Results showed that the receptors for the isolated phages, designated vB_EcoS_IME18, vB_EcoS_IME253, vB_EcoM_IME281, vB_EcoM_IME338, vB_EcoM_IME339, vB_EcoM_IME340, vB_EcoM_IME341, and vB_EcoS_IME347 were FhuA, FepA, OmpF, lipopolysaccharide, Tsx, OmpA, FadL, and YncD, respectively. A polyvalent phage-resistant BL21 (DE3)-derived strain, designated PR8, was then identified by screening with a phage cocktail consisting of the eight phages. Strain PR8 is resistant to 23 of 32 tested phages including Myoviridae and Siphoviridae phages. Strains BL21 (DE3) and PR8 showed similar expression levels of enhanced green fluorescent protein. Thus, PR8 may be used as a phage resistant strain for fermentation processes. The findings of this study contribute significantly to our knowledge of phage-host interactions and may help prevent phage contamination in fermentation.
Collapse
Affiliation(s)
- Ping Li
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, China.,State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shaozhen Xing
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Department of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jingxue Wang
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
28
|
Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 2019; 55:394-405. [PMID: 30937696 DOI: 10.1007/s11262-019-01660-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.
Collapse
|
29
|
Wang C, Li P, Niu W, Yuan X, Liu H, Huang Y, An X, Fan H, Zhangxiang L, Mi L, Zheng J, Liu Y, Tong Y, Mi Z, Bai C. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol 2019; 170:156-164. [PMID: 30716390 DOI: 10.1016/j.resmic.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Klebsiella pneumoniae is one of the major Gram-negative bacterial pathogens causing hospital-acquired multidrug-resistant infections, and the antimicrobial treatment options are scarce. The lack of available antimicrobials has prompted the development of alternative strategies for the treatment of these infections. In this study, a K. pneumoniae bacteriophage (vB_KpnP_IME321) targeting a KN1 capsular type strain, Kp409, was isolated, characterized and sequenced. This bacteriophage has a latent period of 20 min and a burst size of approximately 410 pfu/cell. It contained 49 predicted open reading frames, of which ORF42 was identified as encoding the putative capsule depolymerase. The enzyme expressed and purified in the Escherichia coli BL21 system, namely Dp42, could depolymerize the capsular polysaccharide of Kp409 and form translucent halos on the plates. The phage-encoded depolymerase could increase the inhibitory effect of serum on the growth of bacteria in vitro. Pre-treated with Dp42 rescued 100% of mice following lethal Kp409 challenge, and administration of this enzyme after infection significantly increased survival rates of infected mice in the animal experiment. In conclusion, the phage-encoded depolymerase Dp42 represents a potential alternative strategy for controlling infections mediated by K. pneumoniae expressing the KN1 capsular polysaccharide.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory and Critical Care Medicine, 307 Hospital of PLA, 307 Clinical College, Anhui Medical University, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Puyuan Li
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Wenkai Niu
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xin Yuan
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Huiying Liu
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Lilan Zhangxiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Liyuan Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Jing Zheng
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Yannan Liu
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, 307th Hospital of PLA, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
30
|
Yazdi M, Bouzari M, Ghaemi EA. Genomic analyses of a novel bacteriophage (VB_PmiS-Isfahan) within Siphoviridae family infecting Proteus mirabilis. Genomics 2018; 111:1283-1291. [PMID: 30149052 DOI: 10.1016/j.ygeno.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis is one of the most common causes of complicated urinary tract infections (UTI), especially in catheter-associated UTIs. The increased resistance to antibiotics, among P. mirabilis isolates has led us to search for alternative antibacterial agents. In this study, genome of a lytic Proteus phage VB_PmiS-Isfahan, isolated from wastewater, and active against planktonic and biofilms of P. mirabilis, isolated from UTI, was analyzed. Accordingly, the genome was sequenced and its similarity to other phages was assessed by the Mauve and EasyFig softwares. "One Click" was used for phylogenetic tree construction. The complete genome of VB_PmiS-Isfahan was 54,836 bp, dsDNA with a G+C content of 36.09%. Nighty-one open reading frames (ORFs) was deduced, among them, 23 were considered as functional genes, based on the homology to the previously characterized proteins. The BLASTn of VB_PmiS-Isfahan showed low similarity to complete genome of Salmonella phages VB_SenS_Sasha, 9NA, and VB_SenS-Sergei. A comparison of Nucleic acid and amino acid sequence, and phylogenetic analyses indicated that the phage is novel, significantly differs, and is distant from other genera, within Siphoviridae family. No virulence-associated and antibiotic resistance genes were detected. Thus, VB_PmiS-Isfahan phage is suggested as a potential novel candidate for the treatment of diseases, caused by P. mirabilis.
Collapse
Affiliation(s)
- Mahsa Yazdi
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Majid Bouzari
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran.
| | - Ezzat Allah Ghaemi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, 4934174515 Gorgan, Iran.
| |
Collapse
|
31
|
Genomics of Salmonella phage ΦStp1: candidate bacteriophage for biocontrol. Virus Genes 2018; 54:311-318. [DOI: 10.1007/s11262-018-1538-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/01/2018] [Indexed: 01/21/2023]
|
32
|
Abstract
High-throughput sequencing (HTS) is an effective tool for bacteriophage genome and its termini analysis. HTS technology parallelizes the sequencing process, producing thousands to millions of reads concurrently. Terminal information of a bacteriophage genome is important and basic knowledge for understanding the biology of the bacteriophage. We have created a high-occurrence reads as termini theory and developed practical methods to determine the bacteriophage genome termini, which is based on the large data of HTS. With this method, the termini of the bacteriophage genome can be efficiently and reliably identified as a by-product of bacteriophage genome sequencing, by solely analyzing the sequence statistics of the raw sequencing data (reads), without any further lab experiments.
Collapse
|
33
|
Lewis BB, Pamer EG. Microbiota-Based Therapies for Clostridium difficile and Antibiotic-Resistant Enteric Infections. Annu Rev Microbiol 2017; 71:157-178. [PMID: 28617651 DOI: 10.1146/annurev-micro-090816-093549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens are increasingly antibiotic resistant, and development of clinically effective antibiotics is lagging. Curing infections increasingly requires antimicrobials that are broader spectrum, more toxic, and more expensive, and mortality attributable to antibiotic-resistant pathogens is rising. The commensal microbiota, comprising microbes that colonize the mammalian gastrointestinal tract, can provide high levels of resistance to infection, and the contributions of specific bacterial species to resistance are being discovered and characterized. Microbiota-mediated mechanisms of colonization resistance and pathogen clearance include bactericidal activity, nutrient depletion, immune activation, and manipulation of the gut's chemical environment. Current research is focusing on development of microbiota-based therapies to reduce intestinal colonization with antibiotic-resistant pathogens, with the goal of reducing pathogen transmission and systemic dissemination.
Collapse
Affiliation(s)
- Brittany B Lewis
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| | - Eric G Pamer
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| |
Collapse
|
34
|
Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China. Virus Genes 2017; 53:464-476. [DOI: 10.1007/s11262-017-1445-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023]
|
35
|
Complete Genome Sequence of the Siphoviral Bacteriophage Ec-ZZ2, Which Is Capable of Lysing Enterococcus faecium. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01167-16. [PMID: 27856575 PMCID: PMC5114367 DOI: 10.1128/genomea.01167-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A virulent bacteriophage (Ec-ZZ2) that infects Enterococcus faecium was isolated from sewage. The bacteriophage belongs to the family Siphoviridae and has a linear double-stranded DNA genome, with a length of 41,170 bp and a 34.59% G+C content, which is highly similar to Enterococcus phage IME-EF4.
Collapse
|
36
|
Gong P, Cheng M, Li X, Jiang H, Yu C, Kahaer N, Li J, Zhang L, Xia F, Hu L, Sun C, Feng X, Lei L, Han W, Gu J. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology 2016; 492:11-20. [PMID: 26896930 DOI: 10.1016/j.virol.2016.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/21/2023]
Abstract
Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Pengjuan Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mengjun Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Haiyan Jiang
- The first affiliated hospital to Changchun University of Chinese Medicine, Changchun 130021, PR China
| | - Chuang Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Nadire Kahaer
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Juecheng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feifei Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liyuan Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|