1
|
Sato J, Motai Y, Yamagami S, Win SY, Horio F, Saeki H, Maekawa N, Okagawa T, Konnai S, Ohashi K, Murata S. Programmed Cell Death-1 Expression in T-Cell Subsets in Chickens Infected with Marek's Disease Virus. Pathogens 2025; 14:431. [PMID: 40430752 PMCID: PMC12114408 DOI: 10.3390/pathogens14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Marek's disease virus (MDV) causes Marek's disease (MD) in chickens, characterized by malignant lymphomas and immunosuppression. Sporadic MD outbreaks continue to occur even among vaccinated flocks in certain regions due to the increased virulence of the field strains. However, the mechanisms of tumorigenesis and immunosuppression caused by MDV remain to be fully elucidated. We previously reported that the mRNA expression of programmed cell death 1 (PD-1), an immune checkpoint molecule, was increased in tumor lesions caused by MDV, and its expression was positively correlated with the mRNA expression of Meq, an MDV-specific oncogene. In this study, we characterized PD-1-expressing T-cell subsets in the spleen and tissues of chickens that developed tumors to investigate the association between PD-1 expression and immunosuppression. Flow cytometric analysis revealed that the proportion of PD-1-expressing CD4+ T-cells, which are targets of MDV tumorigenesis, increased in the spleen and tumor tissues of chickens with MD. The proportion of PD-1+ CD4+ T-cells was higher in Meq-expressing cells than in those that were not. In the spleens of chickens with MD, the proportions of PD-1-expressing cells were increased in CD8+ and γδ T-cells, which play pivotal roles in defense against MD pathogenesis, relative to those of spleens from uninfected chickens. Moreover, the proportion of PD-1+ CD8+ T-cells expressing interferon (IFN)-γ did not increase in the spleen of chickens with MD. Additionally, no difference in the proportion of IFN-γ+ γδ T-cells expressing and not expressing PD-1 was observed in the spleens of chickens with MD, although the proportion of IFN-γ+ γδ T-cells expressing PD-1 in the spleens of uninfected chickens was higher. The function of PD-1-expressing CD8+ and γδ T-cells in chickens may be impaired after developing MD, which may cause MDV-induced immunosuppression.
Collapse
Affiliation(s)
- Jumpei Sato
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinosuke Motai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shunsuke Yamagami
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Fumiya Horio
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hikaru Saeki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoya Maekawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0021, Japan
- Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
2
|
Bonorino FC, Garcia Marin JF, Fares A, Khaled N, Emmanuel D, Kulkarni RR, Gimeno I. Characterization of immunopathological changes in the feather pulp of CVI988-vaccinated pullets challenged with a very virulent plus Marek's disease virus strain. Avian Pathol 2025:1-9. [PMID: 40017374 DOI: 10.1080/03079457.2025.2472838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
High load of oncogenic Marek's disease virus (MDV) DNA in the feather pulp (FP) as early as 21 days of age is a powerful criterion to predict the outcome of Marek's disease (MD) in apparently healthy chickens. The objective of this study was to elucidate the immunopathological changes in the FP of 21-day-old chickens that had been vaccinated with CVI988 vaccine (healthy), vaccinated and challenged with a very virulent plus (vv+) MDV strain 648A (well protected), or were unvaccinated and challenged with 648A strain (not protected) when compared to uninfected naïve chickens. Oncogenic MDV DNA load, histopathological and immunohistochemical evaluation of the lesions, and immunophenotypic characterization of the infiltrates by flow cytometry were examined. Our results demonstrate that 648A-infected unvaccinated chickens had a significant increase in the percentage of CD3+ T cells, mainly CD4+MHC-II+ cells and CD8+MHC-II+ cells, when compared to all other groups. They also had a significantly decreased number of CD8β+ T cells compared to all other groups. Infection with 648A reduced the percentage of macrophages, not only in the unvaccinated group but also in the CVI988/648A group. In addition, groups that were vaccinated with CVI988, regardless of the challenge status, had higher levels of CD8β+ T cells, suggesting that the vaccine has an enhancing effect on the CTL cells. Our results showed that the load of oncogenic MDV is highly correlated with the infiltration of CD4+MHC-II+ cells and provide further confirmation that FP is indeed an appropriate sample for the early diagnosis of MD.
Collapse
Affiliation(s)
- Federico C Bonorino
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
- Facultad de Veterinaria, Universidad de Leon, Leon, Spain
| | | | - Abdelhamid Fares
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Nagwa Khaled
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Deanna Emmanuel
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Isabel Gimeno
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
3
|
Bao C, Chu J, Gao Q, Yang S, Gao X, Chen W, Yang F, Jiang F, Tong C, Lei M, Jiao L, Li J, Wei K, Lian X, Li K, Tikoo SK, Osterrieder N, Babiuk LA, Li Y, Jung YS, Qian Y. Marek's disease virus-1 unique gene LORF1 is involved in viral replication and MDV-1/Md5-induced atrophy of the bursa of Fabricius. PLoS Pathog 2025; 21:e1012891. [PMID: 39899476 PMCID: PMC11790089 DOI: 10.1371/journal.ppat.1012891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Marek's disease virus (MDV), an alphaherpesvirus, causes severe immunosuppression and T cell lymphomas in chickens, known as Marek's disease (MD), an economically important poultry disease primarily controlled by vaccination. Importantly, it also serves as a comparative model for studying herpesvirus-induced tumor formation in humans. MDV encodes more than 100 genes, most of which have unknown functions. MDV LORF1 is unique to serotype I MDV (MDV-1), lacking homologs in other herpesviruses, and has not been explored yet. To this end, an infectious bacterial artificial chromosome (BAC) harboring the complete genome of the MDV-1 very virulent strain Md5 was generated, and the rescued rMd5 maintained biological properties similar to the parental virus both in vitro and in vivo. Subsequently, rMd5ΔLORF1, a recombinant Md5 virus deficient in pLORF1 expression, was generated by a frameshift mutation in the LORF1 gene. Chickens infected with rMd5ΔLORF1 exhibited a lower mortality rate and delayed bursal atrophy than those infected with the parental rMd5 and the revertant virus (rMd5-reLORF1). Consistently, viral loads of rMd5ΔLORF1 were obviously lower than those of rMd5 or rMd5-reLORF1 in the bursa, but not in the spleen. Importantly, we found that pLORF1 deficiency impairs viral replication in bursal B cells. Furthermore, we showed that pLORF1 associated with the cellular membrane, interacted with MDV structural proteins, and exhibited punctate colocalization with tegument or capsid proteins in the cytoplasm. Taken together, this study demonstrates for the first time that the MDV-1 unique gene LORF1 is involved in MDV-induced bursal atrophy but not in tumor formation.
Collapse
Affiliation(s)
- Chenyi Bao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jun Chu
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Gao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shasha Yang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Gao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenwen Chen
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fuchun Yang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fei Jiang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Tong
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Lei
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| | - Linlin Jiao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| | - Jitong Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Kexin Wei
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Xue Lian
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Kai Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Suresh Kumar Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Nikolaus Osterrieder
- Tierärztliche Hochschule Hannover, Hannover, Germany
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Lorne A. Babiuk
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, Canada
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Yong-Sam Jung
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| |
Collapse
|
4
|
Khaled N, Gaghan C, Fares AM, Goodell C, Stanley W, Kulkarni RR, Gimeno IM. Protection Conferred by Gallid Alphaherpesvirus 2 Vaccines Against Immunosuppression Induced by Very Virulent Plus (vv+) Marek's Disease Virus Strains in Commercial Meat Type Chickens. Pathogens 2025; 14:54. [PMID: 39861015 PMCID: PMC11769226 DOI: 10.3390/pathogens14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Very virulent plus Marek's disease virus (vv+MDV) induces severe immunosuppression in commercial chickens. In this study, we evaluated how three Gallid alphaherpesvirus 2 (GaHV-2) vaccines (CVI-988, rMd5-BAC∆Meq, and CVI-LTR) protected against two negative outcomes of vv+MDV infection: (1) reduced viability and frequency of immune cells in the spleen and (2) decreased efficacy of the CEO (chicken embryo origin) vaccine against infectious laryngotracheitis challenge. At 25 days post-infection with vv+MDV 686, all vaccines are protected against the reduced viability of splenocytes. However, there were differences in the frequency of splenic immunophenotypes among groups. Compared to the uninfected control, the frequency of B cells was reduced in the CVI-988/686 group but not in the rMd5-BAC∆Meq/686 and CVI-LTR/686 groups. T cell subset frequencies showed no difference between the negative controls and CVI-988/686; however, there was a reduction in activated CD4+ T cells in the rMd5-BAC∆Meq/686 group and in activated CD4+, activated CD8+, and γδ+ T cells in the CVI-LTR/686 group. We also demonstrated that the three vaccines protected against MDV-induced tumors, but only rMd5-BAC∆Meq and CVI-LTR protected against the negative impact of vv+MDV 648A strain on CEO vaccine efficacy. Our findings demonstrate important differences in the biology and/or mechanisms of protection of these vaccines.
Collapse
Affiliation(s)
- Nagwa Khaled
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (C.G.); (A.M.F.)
- Faculty of Veterinary Medicine, University of Sadat City, El Sadat City 6011007, Menofia Governorate, Egypt
| | - Carissa Gaghan
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (C.G.); (A.M.F.)
| | - Abdelhamid M. Fares
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (C.G.); (A.M.F.)
- Faculty of Veterinary Medicine, University of Sadat City, El Sadat City 6011007, Menofia Governorate, Egypt
| | - Christa Goodell
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA 30096, USA; (C.G.); (W.S.)
| | - William Stanley
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA 30096, USA; (C.G.); (W.S.)
| | - Raveendra R. Kulkarni
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (C.G.); (A.M.F.)
| | - Isabel M. Gimeno
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (C.G.); (A.M.F.)
| |
Collapse
|
5
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
6
|
Zhao J, Zhao Y, Zhang G. Key Aspects of Coronavirus Avian Infectious Bronchitis Virus. Pathogens 2023; 12:pathogens12050698. [PMID: 37242368 DOI: 10.3390/pathogens12050698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an enveloped and positive-sense single-stranded RNA virus. IBV was the first coronavirus to be discovered and predominantly causes respiratory disease in commercial poultry worldwide. This review summarizes several important aspects of IBV, including epidemiology, genetic diversity, antigenic diversity, and multiple system disease caused by IBV as well as vaccination and antiviral strategies. Understanding these areas will provide insight into the mechanism of pathogenicity and immunoprotection of IBV and may improve prevention and control strategies for the disease.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Matsuyama-Kato A, Shojadoost B, Boodhoo N, Raj S, Alizadeh M, Fazel F, Fletcher C, Zheng J, Gupta B, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek's Disease. Viruses 2023; 15:v15020285. [PMID: 36851499 PMCID: PMC9962238 DOI: 10.3390/v15020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Ceva Animal Health Inc., Research Park Centre, Guelph, ON N1G 4T2, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Charlotte Fletcher
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhavya Gupta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Brandon L. Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54641); Fax: +1-519-824-5930
| |
Collapse
|
8
|
Lantier I, Mallet C, Souci L, Larcher T, Conradie AM, Courvoisier K, Trapp S, Pasdeloup D, Kaufer BB, Denesvre C. In vivo imaging reveals novel replication sites of a highly oncogenic avian herpesvirus in chickens. PLoS Pathog 2022; 18:e1010745. [PMID: 36037230 PMCID: PMC9462805 DOI: 10.1371/journal.ppat.1010745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/09/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek’s disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals’ age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host. In vivo bioluminescence imaging is a powerful tool to track virus infection in the whole body of living animals. This system has been successfully used in mice, ferrets, rats and even fishes, but until now never in birds. In this study, we performed the first in vivo imaging assessing the spread of an important avian pathogen, the highly oncogenic Marek’s disease virus (MDV). Using a recombinant virus expressing firefly luciferase, we visualized the course of MDV infection in chicks for 14 days. The bioluminescent signal was consistent with the known kinetics and sites of dissemination of MDV, notably in feathers. With this new approach, we also discovered two novels sites of early infection and replication that may contribute to persistent virus shedding. Both novel sites represent hard skin appendages like the feathers: the beak and the skin of the feet that are covered in scales. These results were confirmed with two recombinant viruses expressing fluorescent proteins. Fifty-five years after the discovery of MDV and thanks to in vivo imaging, we provide new insights in MDV life cycle in vivo, highlighting the importance of bioluminescence imaging of the entire body in living animals.
Collapse
Affiliation(s)
| | - Corentin Mallet
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Laurent Souci
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | | | | | | | - Sascha Trapp
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - David Pasdeloup
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- * E-mail: (BK); (CD)
| | - Caroline Denesvre
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
- * E-mail: (BK); (CD)
| |
Collapse
|
9
|
B cells do not play a role in vaccine-mediated immunity against Marek's disease. Vaccine X 2022; 10:100128. [PMID: 34977551 PMCID: PMC8686028 DOI: 10.1016/j.jvacx.2021.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV), a highly oncogenic α-herpesvirus, is the etiological agent of Marek's disease (MD) in chickens. The antiviral activity of vaccine-induced immunity against MD reduces the level of early cytolytic infection, production of cell-free virions in the feather follicle epithelial cells (FFE), and lymphoma formation. Despite the success of several vaccines that have greatly reduced the economic losses from MD, the mechanism of vaccine-induced immunity is poorly understood. METHODS To provide insight into possible role of B cells in vaccine-mediated protection, we bursectomized birds on day of hatch and vaccinated them eight days later. The birds were challenged 10 days post vaccination with or without receiving adoptive lymphocytes from age-matched control birds prior to inoculation. The study also included vaccinated/challenged and non-vaccinated challenged intact birds. Flowcytometric analysis of PBMN cells were conducted twice post bursectomy to confirm B cell depletion and assess the effect of surgery on T cell population. Immunohistochemical analysis and viral genome copy number assessment in the skin samples at termination was performed to measure the replication rate of MDV in the FFE of the skin tissues of the challenged birds. RESULTS The non-vaccinated/challenged birds developed typical clinical signs of MD while the vaccinated/challenged and bursectomized, vaccinated/challenged groups with or without adoptive lymphocyte transfer, were fully protected with no sign of transient paralysis, weight loss, or T cell lymphomas. Immunohistochemical analysis and viral genome copy number evaluation in the skin samples revealed that unlike the vaccinated/challenged birds a significant number of virus particles were produced in the FFE of the non-vaccinated/challenged birds at termination. In the bursectomized, vaccinated/challenged groups, only a few replicating virions were detected in the skin of birds that received adoptive lymphocytes prior to challenge. CONCLUSIONS The study shows that B cells do not play a critical role in MD vaccine-mediated immunity.
Collapse
|
10
|
Vychodil T, Wight DJ, Nascimento M, Jolmes F, Korte T, Herrmann A, Kaufer BB. Visualization of Marek’s Disease Virus Genomes in Living Cells during Lytic Replication and Latency. Viruses 2022; 14:v14020287. [PMID: 35215880 PMCID: PMC8877148 DOI: 10.3390/v14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek’s disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.
Collapse
Affiliation(s)
- Tereza Vychodil
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Mariana Nascimento
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Fabian Jolmes
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-51936
| |
Collapse
|
11
|
Matsuyama-Kato A, Iseki H, Boodhoo N, Bavananthasivam J, Alqazlan N, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Phenotypic characterization of gamma delta (γδ) T cells in chickens infected with or vaccinated against Marek's disease virus. Virology 2022; 568:115-125. [DOI: 10.1016/j.virol.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
12
|
Yimer YM, Asfaw Ali D, Getachew Ayalew B, Bitew Asires M, Gelaye E. Pathogenicity of Field Marek’s Disease Virus Serotype-1 and Vaccine Efficacy Test in Chicken in Eastern Shewa Ethiopia. Vet Med (Auckl) 2021; 12:347-357. [PMID: 35223432 PMCID: PMC8866982 DOI: 10.2147/vmrr.s332737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
Background Marek’s disease is a chicken lymphoproliferative viral illness. As new viruses emerge, vaccination immunity is being broken and hence pathogenecity assessment and vaccine evaluation related to the pathogen is critical for developing vaccine immunity in the field. Methods An experimental investigation was conducted to determine the pathogenicity of field isolates against Marek’s disease in antibody-free chicks and to assess the protective efficacy of the Marek’s disease vaccination. The viral isolates in question were discovered during an outbreak investigation for a previous study. The pathogenicity and effectiveness trial used a complete random design. Results In the pathogenicity trial, chickens inoculated with Bishoftu and Mojo field isolate had lower body weight 77.7±3.757 and 78.15±1.95 g at 10 dpi, respectively, when compared to un-inoculated controls, 89.85±3.838 g at 10 dpi. Incidence of early mortality syndrome (35% and 25%), lymphoma (53.8% and 40%), and overall mortality (50% and 45%) between Bishoftu and Mojo isolates, respectively, was discovered. Vaccinations with Herpes virus of turkey challenged chickens were provided complete protection against Marek’s disease. Conclusion Based on the findings in pathogenecity assessment experimental trials, Bishoftu and Mojo isolates were designated as virulent Marek’s disease viruses. Regular vaccinations with Herpes virus of turkey vaccine and supported by biosecurity measures in poultry farms are important to prevent the disease.
Collapse
Affiliation(s)
| | - Destaw Asfaw Ali
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Destaw Asfaw Ali College of Veterinary Medicine and Animal Science, University of Gondar, P.O. Box 196, Gondar, Ethiopia Email
| | | | | | | |
Collapse
|
13
|
Gao L, Zheng S, Wang Y. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Front Microbiol 2021; 12:771292. [PMID: 34777325 PMCID: PMC8581555 DOI: 10.3389/fmicb.2021.771292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The innate immune system constitutes the first line of host defense. Viruses have evolved multiple mechanisms to escape host immune surveillance, which has been explored extensively for human DNA viruses. There is growing evidence showing the interaction between avian DNA viruses and the host innate immune system. In this review, we will survey the present knowledge of chicken DNA viruses, then describe the functions of DNA sensors in avian innate immunity, and finally discuss recent progresses in chicken DNA virus evasion from host innate immune responses.
Collapse
Affiliation(s)
- Li Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathog 2021; 17:e1010006. [PMID: 34673841 PMCID: PMC8562793 DOI: 10.1371/journal.ppat.1010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells. Upon MDV entry via the respiratory tract, B-cells are among the first cells to be infected in the lung and allow an efficient amplification of the virus. B-cells ensure the transmission of the virus to activated T-cells in which it replicates and ultimately transforms CD4-positive T-cells. Although playing a pivotal role in the MDV life cycle, the response of B-cells to MDV is currently not fully understood. Here, by using an in vitro infection model of primary bursal B-cells, we show that MDV infection leads to a prolonged B-cell survival resulting from decreased cell proliferation, protection from apoptosis and activation of autophagy. Our study provides new insights into the B-cell response to MDV infection, demonstrating that MDV triggers a senescence-like phenotype in B-cells that could potentiate their role in MDV pathogenesis.
Collapse
|
15
|
Liao Y, Bajwa K, Al-Mahmood M, Gimeno IM, Reddy SM, Lupiani B. The role of Meq-vIL8 in regulating Marek's disease virus pathogenesis. J Gen Virol 2021; 102. [PMID: 33236979 DOI: 10.1099/jgv.0.001528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Marek's disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes T cell lymphoma in chickens. MDV-encoded Meq and vIL8 proteins play important roles in transformation and early cytolytic infection, respectively. Previous studies identified a spliced transcript, meq-vIL8, formed by alternative splicing of meq and vIL8 genes in MDV lymphoblastoid tumour cells. To determine the role of Meq-vIL8 in MDV pathogenesis, we generated a recombinant MDV (MDV-meqΔSD) by mutating the splice donor site in the meq gene to abrogate the expression of Meq-vIL8. As expected, our results show that MDV-meqΔSD virus grows similarly to the parental and revertant viruses in cell culture, suggesting that Meq-vIL8 is dispensable for MDV growth in vitro. We further characterized the pathogenic properties of MDV-meqΔSD virus in chickens. Our results show that lack of Meq-vIL8 did not affect virus replication during the early cytolytic phase, as determined by immunohistochemistry analysis and/or viral genome copy number, but significantly enhanced viral DNA load in the late phase of infection in the spleen and brain of infected chickens. In addition, we observed that abrogation of Meq-vIL8 expression reduced the mean death time and increased the prevalence of persistent neurological disease, common features of highly virulent strains of MDV, in inoculated chickens. In conclusion, our study shows that Meq-vIL8 is an important virulence factor of MDV.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Kanika Bajwa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Mohammad Al-Mahmood
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Isabel M Gimeno
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA
| | - Sanjay M Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
16
|
Cui L, Ma Y, Liang Y, Zhang Y, Chen Z, Wang Z, Wu H, Li X, Xu L, Liu S, Li H. Polarization of avian macrophages upon avian flavivirus infection. Vet Microbiol 2021; 256:109044. [PMID: 33836389 DOI: 10.1016/j.vetmic.2021.109044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Avian Tembusu virus (TMUV) is a newly emerging avian pathogenic flavivirus that spreads rapidly, has an expanding host range and undergoes cross-species transmission. Our previous study identified avian monocytes/macrophages as the key targets of TMUV infection, since the infection of host monocytes/macrophages was crucial for the replication, transmission, and pathogenesis of TMUV. The polarization of host macrophages determines the functional phenotypes of macrophages; however, the effect of TMUV infection on macrophage polarization remains unclear. Here, we analysed the expression spectra of the marker genes of macrophage polarization upon TMUV infection in the HD11 chicken macrophage cell line and primary monocytes/macrophages isolated from the peripheral blood of specific pathogen-free (SPF) chickens and ducks. We found that viral replication mainly induced M1 marker genes and triggered nitric oxide (NO) release at different levels, suggesting that TMUV infection led mainly to host macrophages polarizing into the classically activated (M1) type. The NO that was increased upon infection did not function as an antiviral agent against TMUV, since the replication of TMUV in HD11 cells was not affected by the addition of an organic NO donor. Furthermore, upon TMUV infection, polarized HD11 cells exhibited increased migration but reduced phagocytosis, as evidenced by scratch assay and neutral red uptake assay, respectively. Our present study characterized the polarization of host monocytes/macrophages upon TMUV infection, which may lay a foundation for further research on the immune escape mechanism and pathogenic mechanism of TMUV.
Collapse
Affiliation(s)
- Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yong Ma
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yumeng Liang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yanhui Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zhitao Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Hanguang Wu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|
17
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
18
|
M. Najimudeen S, H. Hassan MS, C. Cork S, Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens 2020; 9:pathogens9100779. [PMID: 32987684 PMCID: PMC7598688 DOI: 10.3390/pathogens9100779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
In the early 1930s, infectious bronchitis (IB) was first characterized as a respiratory disease in young chickens; later, the disease was also described in older chickens. The etiology of IB was confirmed later as being due to a coronavirus: the infectious bronchitis virus (IBV). Being a coronavirus, IBV is subject to constant genome change due to mutation and recombination, with the consequence of changing clinical and pathological manifestations. The potential use of live attenuated vaccines for the control of IBV infection was demonstrated in the early 1950s, but vaccine breaks occurred due to the emergence of new IBV serotypes. Over the years, various IBV genotypes associated with reproductive, renal, gastrointestinal, muscular and immunosuppressive manifestations have emerged. IBV causes considerable economic impacts on global poultry production due to its pathogenesis involving multiple body systems and immune suppression; hence, there is a need to better understand the pathogenesis of infection and the immune response in order to help developing better management strategies. The evolution of new strains of IBV during the last nine decades against vaccine-induced immune response and changing clinical and pathological manifestations emphasize the necessity of the rational development of intervention strategies based on a thorough understanding of IBV interaction with the host.
Collapse
|
19
|
Yang Y, Dong M, Hao X, Qin A, Shang S. Revisiting cellular immune response to oncogenic Marek's disease virus: the rising of avian T-cell immunity. Cell Mol Life Sci 2020; 77:3103-3116. [PMID: 32080753 PMCID: PMC7391395 DOI: 10.1007/s00018-020-03477-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Maoli Dong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoli Hao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Shaobin Shang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
20
|
Jin H, Kong Z, Mehboob A, Jiang B, Xu J, Cai Y, Liu W, Hong J, Li Y. Transcriptional Profiles Associated with Marek's Disease Virus in Bursa and Spleen Lymphocytes Reveal Contrasting Immune Responses during Early Cytolytic Infection. Viruses 2020; 12:354. [PMID: 32210095 PMCID: PMC7150966 DOI: 10.3390/v12030354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 01/02/2023] Open
Abstract
Marek's disease virus (MDV), an alpha herpes virus, causes a lymphoproliferative state in chickens known as Marek's disease (MD), resulting in severe monetary losses to the poultry industry. Because lymphocytes of bursa of Fabricius and spleen are prime targets of MDV replication during the early cytolytic phase of infection, the immune response in bursa and spleen should be the foundation of late immunity induced by MDV. However, the mechanism of the MDV-mediated host immune response in lymphocytes in the early stage is poorly understood. The present study is primarily aimed at identifying the crucial genes and significant pathways involved in the immune response of chickens infected with MDV CVI988 and the very virulent RB1B (vvRB1B) strains. Using the RNA sequencing approach, we analyzed the generated transcriptomes from lymphocytes isolated from chicken bursa and spleen. Our findings validated the expression of previously characterized genes; however, they also revealed the expression of novel genes during the MDV-mediated immune response. The results showed that after challenge with CVI988 or vvRB1B strains, 634 and 313 differentially expressed genes (DEGs) were identified in splenic lymphocytes, respectively. However, 58 and 47 DEGs were observed in bursal lymphocytes infected with CVI988 and vvRB1B strains, respectively. Following MDV CVI988 or vvRB1B challenge, the bursal lymphocytes displayed changes in IL-6 and IL-4 gene expression. Surprisingly, splenic lymphocytes exhibited an overwhelming alteration in the expression of cytokines and cytokine receptors involved in immune response signaling. On the other hand, there was no distinct trend between infection with CVI988 and vvRB1B and the expression of cytokines and chemokines, such as IL-10, IFN-γ, STAT1, IRF1, CCL19, and CCL26. However, the expression profiles of IL-1β, IL-6, IL8L1, CCL4 (GGCL1), and CCL5 were significantly upregulated in splenic lymphocytes from chickens infected with CVI988 compared with those of chickens infected with vvRB1B. Because these cytokines and chemokines are considered to be associated with B cell activation and antigenic signal transduction to T cells, they may indicate differences of immune responses initiated by vaccinal and virulent strains during the early phase of infection. Collectively, our study provides valuable data on the transcriptional landscape using high-throughput sequencing to understand the different mechanism between vaccine-mediated protection and pathogenesis of virulent MDV in vivo.
Collapse
Affiliation(s)
- Huan Jin
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zimeng Kong
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Arslan Mehboob
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Bo Jiang
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jian Xu
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Yunhong Cai
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Wenxiao Liu
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jiabing Hong
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongqing Li
- Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (H.J.); (Z.K.); (A.M.); (B.J.); (J.X.); (Y.C.); (W.L.); (J.H.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
21
|
Bertzbach LD, Conradie AM, You Y, Kaufer BB. Latest Insights into Marek's Disease Virus Pathogenesis and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12030647. [PMID: 32164311 PMCID: PMC7139298 DOI: 10.3390/cancers12030647] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
Marek’s disease virus (MDV) infects chickens and causes one of the most frequent cancers in animals. Over 100 years of research on this oncogenic alphaherpesvirus has led to a profound understanding of virus-induced tumor development. Live-attenuated vaccines against MDV were the first that prevented cancer and minimized the losses in the poultry industry. Even though the current gold standard vaccine efficiently protects against clinical disease, the virus continuously evolves towards higher virulence. Emerging field strains were able to overcome the protection provided by the previous two vaccine generations. Research over the last few years revealed important insights into the virus life cycle, cellular tropism, and tumor development that are summarized in this review. In addition, we discuss recent data on the MDV transcriptome, the constant evolution of this highly oncogenic virus towards higher virulence, and future perspectives in MDV research.
Collapse
|
22
|
Fan Z, Wang H, Pan J, Yu S, Xia W. Potential Role of Macrophage Migration Inhibitory Factor in the Pathogenesis of Marek's Disease. J Vet Res 2020; 64:33-38. [PMID: 32258797 PMCID: PMC7105991 DOI: 10.2478/jvetres-2020-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/20/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Marek's disease virus (MDV) can cause malignant T-cell lymphomas and immunosuppression in chickens. Macrophage migration inhibitory factor (MIF) not only plays a critical role in inhibiting T-cell responses, but also contributes to multiple aspects of tumour progression. The aim of this study was to reveal the potential role of MIF in the pathogenesis of MDV infection. MATERIAL AND METHODS MIF gene expression levels were measured by using real-time PCR. Expression was assayed at different times in chicken embryo fibroblast (CEF) cells and tissue samples of SPF chickens infected with different MDV strains and fold change was calculated by the 2-△△CT method. RESULTS The expression of MIF was significantly downregulated (p < 0.05 and FC > 2) in CEF cells infected with the very virulent MDV RB1B strain at 48 h post infection (hpi) and in the skin and spleen at 14 days post infection (dpi). The reduction of MIF expression was also found in CEF cells infected by reticuloendotheliosis virus (REV), avian leukosis virus subgroup J (ALV-J), and MDV vaccine strain CVI988 or in HD11 cells stimulated with TLR2, 3, 4, and 7 ligands. Interestingly, MIF expression decreased continuously from 7 to 28 dpi in the thymus after RB1B virus infection while it increased after CVI988 virus infection. Upregulated expression of MIF was found in CEF infected with RB1B at 96 hpi and in the spleen and skin at 21 and 28 dpi. CONCLUSION The present study revealed the different expression pattern of MIF in response to MDV infection and indicated that MIF level may be associated with MDV pathogenesis.
Collapse
Affiliation(s)
- Zhongjun Fan
- College of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng224002, China
| | - Huanli Wang
- College of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng224002, China
| | - Jiahao Pan
- College of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng224002, China
| | - Shupei Yu
- College of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng224002, China
| | - Wenlong Xia
- College of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng224002, China
| |
Collapse
|
23
|
Bertzbach LD, van Haarlem DA, Härtle S, Kaufer BB, Jansen CA. Marek's Disease Virus Infection of Natural Killer Cells. Microorganisms 2019; 7:microorganisms7120588. [PMID: 31757008 PMCID: PMC6956363 DOI: 10.3390/microorganisms7120588] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are key players in the innate immune response. They kill virus-infected cells and are crucial for the induction of adaptive immune responses. Marek’s disease virus (MDV) is a highly contagious alphaherpesvirus that causes deadly T cell lymphomas in chickens. Host resistance to MDV is associated with differences in NK cell responses; however, the exact role of NK cells in the control of MDV remains unknown. In this study, we assessed if MDV can infect NK cells and alter their activation. Surprisingly, we could demonstrate that primary chicken NK cells are very efficiently infected with very virulent RB-1B MDV and the live-attenuated CVI988 vaccine. Flow cytometry analysis revealed that both RB-1B and CVI988 enhance NK cell degranulation and increase interferon gamma (IFNγ) production in vitro. In addition, we could show that the MDV Eco Q-encoded oncogene (meq) contributes to the induction of NK cell activation using meq knockout viruses. Taken together, our data revealed for the first time that NK cells are efficiently infectable with MDV and that this oncogenic alphaherpesvirus enhances NK cell degranulation and increased IFNγ production in vitro.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Daphne A. van Haarlem
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence: (B.B.K.); (C.A.J.)
| | - Christine A. Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands;
- Correspondence: (B.B.K.); (C.A.J.)
| |
Collapse
|
24
|
Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol 2019; 93:JVI.00978-19. [PMID: 31462573 DOI: 10.1128/jvi.00978-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Avian Tembusu virus (TMUV) is a newly emerging avian pathogenic flavivirus in China and Southeast Asia with features of rapid spread, an expanding host range, and cross-species transmission. The mechanisms of its infection and pathogenesis remain largely unclear. Here, we investigated the tropism of this arbovirus in peripheral blood mononuclear cells of specific-pathogen-free (SPF) ducks and SPF chickens and identified monocytes/macrophages as the key targets of TMUV infection. In vivo studies in SPF ducks and SPF chickens with monocyte/macrophage clearance demonstrated that the infection of monocytes/macrophages was crucial for viral replication, transmission, and pathogenesis. Further genome-wide transcriptome analyses of TMUV-infected chicken macrophages revealed that host antiviral innate immune barriers were the major targets of TMUV in macrophages. Despite the activation of major pattern recognition receptor signaling, the inductions of alpha interferon (IFN-α) and IFN-β were blocked by TMUV infection on transcription and translation levels, respectively. Meanwhile, TMUV inhibited host redox responses by repressing the transcription of genes encoding NADPH oxidase subunits and promoting Nrf2-mediated antioxidant responses. The recovery of either of the above-mentioned innate immune barriers was sufficient to suppress TMUV infection. Collectively, we identify an essential step of TMUV infection and reveal extensive subversion of host antiviral innate immune responses.IMPORTANCE Mosquito-borne flaviviruses include a group of pathogenic viruses that cause serious diseases in humans and animals, including dengue, West Nile, and Japanese encephalitis viruses. These flaviviruses are zoonotic and use animals, including birds, as amplifying and reservoir hosts. Avian Tembusu virus (TMUV) is an emerging mosquito-borne flavivirus that is pathogenic for many avian species and can infect cells derived from mammals and humans in vitro Although not currently pathogenic for primates, the infection of duck industry workers and the potential risk of TMUV infection in immunocompromised individuals have been highlighted. Thus, the prevention of TMUV in flocks is important for both avian and mammalian health. Our study reveals the escape of TMUV from the first line of the host defense system in the arthropod-borne transmission route of arboviruses, possibly helping to extend our understanding of flavivirus infection in birds and refine the design of anti-TMUV therapeutics.
Collapse
|
25
|
Holz CL, Sledge DG, Kiupel M, Nelli RK, Goehring LS, Soboll Hussey G. Histopathologic Findings Following Experimental Equine Herpesvirus 1 Infection of Horses. Front Vet Sci 2019; 6:59. [PMID: 30886853 PMCID: PMC6409500 DOI: 10.3389/fvets.2019.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Histopathological differences in horses infected with equine herpesvirus type 1 (EHV-1) of differing neuropathogenic potential [wild-type (Ab4), polymerase mutant (Ab4 N752), EHV-1/4 gD mutant (Ab4 gD4)] were evaluated to examine the impact of viral factors on clinical disease, tissue tropism and pathology. Three of 8 Ab4 infected horses developed Equine Herpesvirus Myeloencephalopathy (EHM) requiring euthanasia of 2 horses on day 9 post-infection. None of the other horses showed neurologic signs and all remaining animals were sacrificed 10 weeks post-infection. EHM horses had lymphohistiocytic vasculitis and lymphocytic infiltrates in the lungs, spinal cord, endometrium and eyes. EHV-1 antigen was detected within the eyes and spinal cord. In 3/6 of the remaining Ab4 infected horses, 4/9 Ab4 N752 infected horses, and 8/8 Ab4 gD4 infected horses, choroiditis was observed. All males had interstitial lymphoplasmacytic and/or histiocytic orchitis and EHV-1 antigen was detected. In conclusion, only animals sacrificed due to EHM developed overt vasculitis in the CNS and the eye. Mild choroiditis persisted in many animals and appeared to be more common in Ab4 gD4 infected animals. Finally, we report infiltrates and changes in the reproductive organs of all males associated with EHV-1 antigen. While the exact significance of these changes is unclear, these findings raise concern for long-term effects on reproduction and prolonged shedding of virus through semen.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Dodd G Sledge
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Rahul K Nelli
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lutz S Goehring
- Equine Hospital - Division of Medicine and Reproduction, Ludwig-Maximilians University, Munich, Germany
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
26
|
Unraveling the role of B cells in the pathogenesis of an oncogenic avian herpesvirus. Proc Natl Acad Sci U S A 2018; 115:11603-11607. [PMID: 30337483 DOI: 10.1073/pnas.1813964115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4+ T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4+ and CD8+ T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.
Collapse
|
27
|
Neerukonda SN, Katneni UK, Bott M, Golovan SP, Parcells MS. Induction of the unfolded protein response (UPR) during Marek's disease virus (MDV) infection. Virology 2018; 522:1-12. [PMID: 29979959 DOI: 10.1016/j.virol.2018.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
Marek's disease (MD) is a pathology of chickens associated with paralysis, immune suppression, and the rapid formation of T-cell lymphomas. MD is caused by the herpesvirus, Marek's disease virus (MDV). We examined endoplasmic reticulum (ER) stress and the activation of unfolded protein response (UPR) pathways during MDV infection of cells in culture and lymphocytes in vivo. MDV strains activate the UPR as measured by increased mRNA expression of GRP78/BiP with concomitant XBP1 splicing and induction of its target gene, EDEM1. Cell culture replication of virulent, but not vaccine MDVs, activated the UPR at late in infection. Pathotype-associated UPR activation was induced to a greater level by a vv + MDV. Discrete UPR activation was observed during MDV in vivo infection, with the level of UPR modulation being affected by the MDV oncoprotein Meq. Finally, ATF6 was found to be activated in vv + MDV-induced primary lymphomas, suggesting a possible role in tumor progression.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | - Upendra K Katneni
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | - Matthew Bott
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | | | - Mark S Parcells
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| |
Collapse
|
28
|
Zhang P, Ding Z, Liu X, Chen Y, Li J, Tao Z, Fei Y, Xue C, Qian J, Wang X, Li Q, Stoeger T, Chen J, Bi Y, Yin R. Enhanced Replication of Virulent Newcastle Disease Virus in Chicken Macrophages Is due to Polarized Activation of Cells by Inhibition of TLR7. Front Immunol 2018; 9:366. [PMID: 29670609 PMCID: PMC5893744 DOI: 10.3389/fimmu.2018.00366] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Newcastle disease (ND), caused by infections with virulent strains of Newcastle disease virus (NDV), is one of the most important infectious disease affecting wild, peridomestic, and domestic birds worldwide. Vaccines constructed from live, low-virulence (lentogenic) viruses are the most accepted prevention and control strategies for combating ND in poultry across the globe. Avian macrophages are one of the first cell lines of defense against microbial infection, responding to signals in the microenvironment. Although macrophages are considered to be one of the main target cells for NDV infection in vivo, very little is known about the ability of NDV to infect chicken macrophages, and virulence mechanisms of NDV as well as the polarized activation patterns of macrophages and correlation with viral infection and replication. In the present study, a cell culture model (chicken bone marrow macrophage cell line HD11) and three different virulence and genotypes of NDV (including class II virulent NA-1, class II lentogenic LaSota, and class I lentogenic F55) were used to solve the above underlying questions. Our data indicated that all three NDV strains had similar replication rates during the early stages of infection. Virulent NDV titers were shown to increase compared to the other lentogenic strains, and this growth was associated with a strong upregulation of both pro-inflammatory M1-like markers/cytokines and anti-inflammatory M2-like markers/cytokines in chicken macrophages. Virulent NDV was found to block toll-like receptor (TLR) 7 expression, inducing higher expression of type I interferons in chicken macrophages at the late stage of viral infection. Only virulent NDV replication can be inhibited by pretreatment with TLR7 ligand. Overall, this study demonstrated that virulent NDV activates a M1-/M2-like mixed polarized activation of chicken macrophages by inhibition of TLR7, resulting in enhanced replication compared to lentogenic viruses.
Collapse
Affiliation(s)
- Pingze Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yanyu Chen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjiao Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhi Tao
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yidong Fei
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cong Xue
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Qian
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Qingmei Li
- Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
29
|
Berthault C, Larcher T, Härtle S, Vautherot JF, Trapp-Fragnet L, Denesvre C. Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia. Vet Res 2018; 49:31. [PMID: 29587836 PMCID: PMC5870490 DOI: 10.1186/s13567-018-0526-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells.
Collapse
Affiliation(s)
| | | | - Sonja Härtle
- Department of Veterinary Science, Ludwig-Maximilians University of Munich, 80539, Muenchen, Germany
| | | | | | | |
Collapse
|
30
|
Low pathogenic avian influenza virus infection increases the staining intensity of KUL01+ cells including macrophages yet decrease of the staining intensity of KUL01+ cells using clodronate liposomes did not affect the viral genome loads in chickens. Vet Immunol Immunopathol 2018; 198:37-43. [PMID: 29571516 PMCID: PMC7112785 DOI: 10.1016/j.vetimm.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 11/24/2022]
Abstract
H4N6 low pathogenic avian influenza virus infection leads to increased staining intensity of KUL01+ cell populations in trachea, lung and duodenum. Clodronate liposomes are capable of decreasing the staining intensity of KUL01+ cell populations in trachea and duodenum of chicken. KUL01+ cell staining intensity decrease using clodronate liposomes have no effect on H4N6 LPAIV genome loads in chicken tissues.
The effect of depletion of macrophages using clodronate liposomes as well as macrophage response following viral infections have been studied in various mouse-virus infection models, but they have not been extensively studied in chickens relevant to virus infections. When we infected day 6 chickens with H4N6 low pathogenic avian influenza virus (LPAIV), we observed that H4N6 LPAIV infection increased the staining intensity of KUL01+ cells in trachea, lungs and duodenum of chickens at 3 days post-infection. Then, we used clodronate liposomes intra-abdominally in 5 day-old chickens and found significant reduction of staining intensity of KUL01+ cells in trachea and duodenum but not in lungs at 4 days post-treatment. When we infected the clodronate liposome and PBS liposome treated chickens with H4N6 LPAIV intra-nasally at day 6, we found no effect on H4N6 LPAIV genome loads in trachea, lungs and duodenum of chickens. This study indicates that although KUL01+ cell intensity are increased in respiratory and gastrointestinal tissues in chickens following H4N6 LPAIV infection, the decrease of KUL01+ cell intensity using clodronate liposomes did not change the H4N6 LPAIV genome loads in any of the examined tissues suggesting that KUL01+ cells may not be critical during H4N6 LPAIV infection in chicken.
Collapse
|
31
|
da Silva SEL, Ferreira HL, Garcia AF, Silva FES, Gameiro R, Fabri CUF, Vieira DS, Cardoso TC. Mitochondrial bioenergy alterations in avian HD11 macrophages infected with infectious bronchitis virus. Arch Virol 2018; 163:1043-1049. [PMID: 29302792 DOI: 10.1007/s00705-018-3704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/05/2023]
Abstract
To establish an association between mitochondrial dysfunction and apoptosis following infectious bronchitis virus (IBV) infection, HD11 avian macrophage cells were infected with the Massachusetts 41 (M41) strain. Our results show that the M41 strain of IBV induced cytopathic effects followed by the release of new viral particles. Elevated numbers of apoptotic cells were observed at 24, 48 and 72 h post-infection (p.i.). Viral infection was associated with mitochondrial membrane depolarization and reactive oxygen species (ROS) production at all of the examined timepoints p.i. In summary, IBV M41 replication in infected HD11 macrophages seems to induce mitochondrial bioenergy failure, acting as a respiratory chain uncoupler, without compromising viral replication.
Collapse
Affiliation(s)
- Sergio E L da Silva
- Faculdade de Medicina Veterinária (FAMEV), Universidade Federal Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Helena L Ferreira
- Department of Veterinary Medicine, FZEA-USP-University of Sao Paulo, Pirassununga, SP, Brazil
| | - Andrea F Garcia
- Centro Universitário Católico Salesiano Auxilium, UniSLESIANO, Araçatuba, SP, Brazil
| | - Felipe E S Silva
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Roberto Gameiro
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Carolina U F Fabri
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Dielson S Vieira
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Tereza C Cardoso
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil.
| |
Collapse
|
32
|
Induction of innate host responses characterized by production of interleukin (IL)-1β and recruitment of macrophages to the respiratory tract of chickens following infection with infectious bronchitis virus (IBV). Vet Microbiol 2018; 215:1-10. [PMID: 29426399 DOI: 10.1016/j.vetmic.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Infectious bronchitis virus (IBV) infection is a major cause of economic losses to the poultry industry. Due to limitations in current control measures, alternative approaches, based on thorough understanding of the host responses are required. As one of the key component of the avian immune system, the innate immune system has a crucial role in limiting virus replication at the initial stage of the infection. As parts of the innate host response, macrophages and cytokines, such as interleukin (IL)-1β, are critical components as shown in other host-virus infection models. Since information on the importance of macrophages and IL-1β in IBV infection in chickens is limited, our objective was to determine the association of IL-1β, originating from avian macrophages and IBV infection in the trachea and lung. Following experimental IBV infection in 6 days old chickens, we found increased production of IL-1β and increased recruitment of macrophages in the respiratory tract. Towards the end of the study (5 and 7 days following the IBV infection), the recruited macrophages appear to be a significant source IL-1β. However, only the recruitment of macrophages in the lung correlated with IBV genome loads in this tissue. In conclusion, the present study demonstrates that recruitment of macrophages and the production of IL-1β originating from macrophages, as well as other sources, occur following IBV infection in the respiratory tract suggesting potential roles of these mediators in the host responses to IBV infection. However, further studies are warranted to elucidate whether macrophages and IL-1β are the causes of reduced IBV genome loads in the respiratory tract and also to investigate whether immune mediators that were not measured in the current study were involved in reducing IBV genome load in the respiratory tract towards the end of the study.
Collapse
|
33
|
Morga B, Faury N, Guesdon S, Chollet B, Renault T. Haemocytes from Crassostrea gigas and OsHV-1: A promising in vitro system to study host/virus interactions. J Invertebr Pathol 2017; 150:45-53. [PMID: 28911815 DOI: 10.1016/j.jip.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/28/2022]
Abstract
Since 2008, mass mortality outbreaks associated with the detection of particular variants of OsHV-1 have been reported in Crassostrea gigas spat and juveniles in several countries. Recent studies have reported information on viral replication during experimental infection. Viral DNA and RNA were also detected in the haemolymph and haemocytes suggesting that the virus could circulate through the circulatory system. However, it is unknown if the virus is free in the haemolymph, passively associated at the surface of haemocytes, or able to infect and replicate inside these cells inducing (or not) virion production. In the present study, we collected haemocytes from the haemolymphatic sinus of the adductor muscle of healthy C. gigas spat and exposed them in vitro to a viral suspension. Results showed that viral RNAs were detectable one hour after contact and the number of virus transcripts increased over time in association with an increase of viral DNA detection. These results suggested that the virus is able to initiate replication rapidly inside haemocytes maintained in vitro. These in vitro trials were also used to carry out a dual transcriptomic study. We analyzed concomitantly the expression of some host immune genes and 15 viral genes. Results showed an up regulation of oyster genes currently studied during OsHV-1 infection. Additionally, transmission electron microscopy examination was carried out and did not allow the detection of viral particles. Moreover, All the results suggested that the in vitro model using haemocytes can be valuable for providing new perspective on virus-oyster interactions.
Collapse
Affiliation(s)
- Benjamin Morga
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France.
| | - Nicole Faury
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Stéphane Guesdon
- Ifremer, Laboratoire Environnement Ressources des Pertuis Charentais (LER PC), La Tremblade, France
| | - Bruno Chollet
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, Nantes, France
| |
Collapse
|
34
|
Amarasinghe A, Abdul-Cader MS, Nazir S, De Silva Senapathi U, van der Meer F, Cork SC, Gomis S, Abdul-Careem MF. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions. PLoS One 2017; 12:e0181801. [PMID: 28763472 PMCID: PMC5538654 DOI: 10.1371/journal.pone.0181801] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/09/2017] [Indexed: 12/19/2022] Open
Abstract
Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.
Collapse
Affiliation(s)
- Aruna Amarasinghe
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
| | - Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
| | - Sadiya Nazir
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
| | - Upasama De Silva Senapathi
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
| | - Frank van der Meer
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
| | - Susan Catherine Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
35
|
Chakraborty P, Vervelde L, Dalziel RG, Wasson PS, Nair V, Dutia BM, Kaiser P. Marek's disease virus infection of phagocytes: a de novo in vitro infection model. J Gen Virol 2017; 98:1080-1088. [PMID: 28548038 PMCID: PMC5656796 DOI: 10.1099/jgv.0.000763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
Marek's disease virus (MDV) is an alphaherpesvirus that induces T-cell lymphomas in chickens. Natural infections in vivo are caused by the inhalation of infected poultry house dust and it is presumed that MDV infection is initiated in the macrophages from where the infection is passed to B cells and activated T cells. Virus can be detected in B and T cells and macrophages in vivo, and both B and T cells can be infected in vitro. However, attempts to infect macrophages in vitro have not been successful. The aim of this study was to develop a model for infecting phagocytes [macrophages and dendritic cells (DCs)] with MDV in vitro and to characterize the infected cells. Chicken bone marrow cells were cultured with chicken CSF-1 or chicken IL-4 and chicken CSF-2 for 4 days to produce macrophages and DCs, respectively, and then co-cultured with FACS-sorted chicken embryo fibroblasts (CEFs) infected with recombinant MDV expressing EGFP. Infected phagocytes were identified and sorted by FACS using EGFP expression and phagocyte-specific mAbs. Detection of MDV-specific transcripts of ICP4 (immediate early), pp38 (early), gB (late) and Meq by RT-PCR provided evidence for MDV replication in the infected phagocytes. Time-lapse confocal microscopy was also used to demonstrate MDV spread in these cells. Subsequent co-culture of infected macrophages with CEFs suggests that productive virus infection may occur in these cell types. This is the first report of in vitro infection of phagocytic cells by MDV.
Collapse
Affiliation(s)
- Pankaj Chakraborty
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Present address: Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Lonneke Vervelde
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert G. Dalziel
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Peter S. Wasson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Present address: MRC Technology, Crewe Road South, Edinburgh EH4 2SP, UK
| | - Venugopal Nair
- Avian Oncogenic Virus Group, The Pirbright Institute, Guildford GU24 0NF, UK
| | - Bernadette M. Dutia
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
36
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
37
|
Reddy VRAP, Trus I, Desmarets LMB, Li Y, Theuns S, Nauwynck HJ. Productive replication of nephropathogenic infectious bronchitis virus in peripheral blood monocytic cells, a strategy for viral dissemination and kidney infection in chickens. Vet Res 2016; 47:70. [PMID: 27412035 PMCID: PMC4944500 DOI: 10.1186/s13567-016-0354-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022] Open
Abstract
In the present study, the replication kinetics of nephropathogenic (B1648) and respiratory (Massachusetts-M41) IBV strains were compared in vitro in respiratory mucosa explants and blood monocytes (KUL01+ cells), and in vivo in chickens to understand why some IBV strains have a kidney tropism. B1648 was replicating somewhat better than M41 in the epithelium of the respiratory mucosa explants and used more KUL01+ cells to penetrate the deeper layers of the respiratory tract. B1648 was productively replicating in KUL01+ monocytic cells in contrast with M41. In B1648 inoculated animals, 102.7–6.8 viral RNA copies/100 mg were detected in tracheal secretions at 2, 4, 6, 8, 10 and 12 days post inoculation (dpi), 102.4–4.5 viral RNA copies/mL in plasma at 2, 4, 6, 8, 10 and 12 dpi and 101.8–4.4 viral RNA copies/106 mononuclear cells in blood at 2, 4, 6 and 8 dpi. In M41 inoculated animals, 102.6–7.0 viral RNA copies/100 mg were detected in tracheal secretions at 2, 4, 6, 8 and 10 dpi, but viral RNA was not demonstrated in plasma and mononuclear cells (except in one chicken at 6 dpi). Infectious virus was detected only in plasma and mononuclear cells of the B1648 group. At euthanasia (12 dpi), viral RNA and antigen positive cells were detected in lungs, liver, spleen and kidneys of only the B1648 group and in tracheas of both the B1648 and M41 group. In conclusion, only B1648 can easily disseminate to internal organs via a cell-free and -associated viremia with KUL01+ cells as important carrier cells.
Collapse
Affiliation(s)
- Vishwanatha R A P Reddy
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lowiese M B Desmarets
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Yewei Li
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sebastiaan Theuns
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
38
|
McPherson MC, Delany ME. Virus and host genomic, molecular, and cellular interactions during Marek's disease pathogenesis and oncogenesis. Poult Sci 2016; 95:412-29. [PMID: 26755654 PMCID: PMC4957504 DOI: 10.3382/ps/pev369] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 01/16/2023] Open
Abstract
Marek's Disease Virus (MDV) is a chicken alphaherpesvirus that causes paralysis, chronic wasting, blindness, and fatal lymphoma development in infected, susceptible host birds. This disease and its protective vaccines are highly relevant research targets, given their enormous impact within the poultry industry. Further, Marek's disease (MD) serves as a valuable model for the investigation of oncogenic viruses and herpesvirus patterns of viral latency and persistence--as pertinent to human health as to poultry health. The objectives of this article are to review MDV interactions with its host from a variety of genomic, molecular, and cellular perspectives. In particular, we focus on cytogenetic studies, which precisely assess the physical status of the MDV genome in the context of the chicken host genome. Combined, the cytogenetic and genomic research indicates that MDV-host genome interactions, specifically integration of the virus into the host telomeres, is a key feature of the virus life cycle, contributing to the viral achievement of latency, transformation, and reactivation of lytic replication. We present a model that outlines the variety of virus-host interactions, at the multiple levels, and with regard to the disease states.
Collapse
Affiliation(s)
- M C McPherson
- Department of Animal Science, University of California, Davis, CA 95616
| | - M E Delany
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
39
|
Parvizi P, Brisbin JT, Read LR, Sharif S. Cytokine Gene Expression in Lung Mononuclear Cells of Chickens Vaccinated with Herpesvirus of Turkeys and Infected with Marek's Disease Virus. Viral Immunol 2015; 28:538-43. [DOI: 10.1089/vim.2015.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jennifer T. Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Leah R. Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
40
|
Gennart I, Coupeau D, Pejaković S, Laurent S, Rasschaert D, Muylkens B. Marek's disease: Genetic regulation of gallid herpesvirus 2 infection and latency. Vet J 2015; 205:339-48. [PMID: 26067852 DOI: 10.1016/j.tvjl.2015.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Gallid herpesvirus-2 (GaHV-2) is an oncogenic α-herpesvirus that causes Marek's disease (MD), a T cell lymphosarcoma (lymphoma) of domestic fowl (chickens). The GaHV-2 genome integrates by homologous recombination into the host genome and, by modulating expression of viral and cellular genes, induces transformation of latently infected cells. MD is a unique model of viral oncogenesis. Mechanisms implicated in the regulation of viral and cellular genes during GaHV-2 infection operate at transcriptional, post-transcriptional and post-translational levels, with involvement of viral and cellular transcription factors, along with epigenetic modifications, alternative splicing, microRNAs and post-translational modifications of viral proteins. Meq, the major oncogenic protein of GaHV-2, is a viral transcription factor that modulates expression of viral genes, for example by binding to the viral bidirectional promoter of the pp38-pp24/1.8 kb mRNA, and also modulates expression of cellular genes, such as Bcl-2 and matrix metalloproteinase 3. GaHV-2 expresses viral telomerase RNA subunit (vTR), which forms a complex with the cellular telomerase reverse transcriptase (TERT), thus contributing to tumorigenesis, while vTR independent of telomerase activity is implicated in metastasis. Expression of a viral interleukin 8 homologue may contribute to lymphomagenesis. Inhibition of expression of the pro-apoptotic factors JARID2 and SMAD2 by viral microRNAs may promote the survival and proliferation of GaHV-2 latently infected cells, thus enhancing tumorigenesis, while inhibition of interleukin 18 by viral microRNAs may be involved in evasion of immune surveillance. Viral envelope glycoproteins derived from glycoprotein B (gp60 and gp49), as well as glycoprotein C, may also play a role in immune evasion.
Collapse
Affiliation(s)
- Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Damien Coupeau
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejaković
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Sylvie Laurent
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Denis Rasschaert
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Benoit Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
41
|
The effects of administration of ligands for Toll-like receptor 4 and 21 against Marek's disease in chickens. Vaccine 2014; 32:1932-8. [PMID: 24530927 DOI: 10.1016/j.vaccine.2014.01.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/05/2014] [Accepted: 01/30/2014] [Indexed: 12/11/2022]
Abstract
Ligands for Toll-like receptors (TLRs) are known to stimulate immune responses, leading to protection against bacterial and viral pathogens. Here, we aimed to examine the effects of various TLR ligands on the development of Marek's disease in chickens. Specific-pathogen free chickens were treated with a series of TLR ligands that interact with TLR3, TLR9 and TLR21. In a pilot study, it was determined that TLR4 and TLR21 ligands are efficacious, in that they could reduce the incidence of Marek's disease tumors in infected birds. Hence, in a subsequent study, chickens were treated with lipopolysaccharide (LPS) as a TLR4 and CpG oligodeoxynucleotides (ODN) as TLR21 agonists before being challenged with the RB1B strain of Marek's disease virus (MDV) via the respiratory route. The results demonstrated that the administration of LPS or CpG ODN, but not PBS or non-CpG ODN, delayed disease onset and reduced MDV genome copy number in the spleens of infected chickens. Taken together, our data demonstrate that TLR4 and 21 agonists modulate anti-virus innate immunity including cytokine responses in MD-infected chicken and this response can only delay, but not inhibit, disease progression.
Collapse
|
42
|
Abstract
Subclinical immunosuppression in chickens is an important but often underestimated factor in the subsequent development of clinical disease. Immunosuppression can be caused by pathogens such as chicken infectious anemia virus, infectious bursal disease virus, reovirus, and some retroviruses (e.g., reticuloendotheliosis virus). Mycotoxins and stress, often caused by poor management practices, can also cause immunosuppression. The effects on the innate and acquired immune responses and the mechanisms by which mycotoxins, stress and infectious agents cause immunosuppression are discussed. Immunoevasion is a common ploy by which viruses neutralize or evade immune responses. DNA viruses such as herpesvirus and poxvirus have multiple genes, some of them host-derived, which interfere with effective innate or acquired immune responses. RNA viruses may escape acquired humoral and cellular immune responses by mutations in protective antigenic epitopes (e.g., avian influenza viruses), while accessory non-structural proteins or multi-functional structural proteins interfere with the interferon system (e.g., Newcastle disease virus).
Collapse
|
43
|
Haq K, Schat KA, Sharif S. Immunity to Marek's disease: where are we now? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:439-446. [PMID: 23588041 DOI: 10.1016/j.dci.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Marek's disease (MD) in chickens was first described over a century ago and the causative agent of this disease, Marek's disease virus (MDV), was first identified in the 1960's. There has been extensive and intensive research over the last few decades to elucidate the underlying mechanisms of the interactions between the virus and its host. We have also made considerable progress in terms of developing efficacious vaccines against MD. The advent of the chicken genetic map and genome sequence as well as development of approaches for chicken transcriptome and proteome analyses, have greatly facilitated the process of illuminating underlying genetic mechanisms of resistance and susceptibility to disease. However, there are still major gaps in our understanding of MDV pathogenesis and mechanisms of host immunity to the virus and to the neoplastic events caused by this virus. Importantly, vaccines that can disrupt virus transmission in the field are lacking. The current review explores mechanisms of host immunity against Marek's disease and makes an attempt to identify the areas that are lacking in this field.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | |
Collapse
|
44
|
Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J. Analysis of protein expression profiles in the thymus of chickens infected with Marek's disease virus. Virol J 2012; 9:256. [PMID: 23116199 PMCID: PMC3545960 DOI: 10.1186/1743-422x-9-256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 10/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV) is a highly cell-associated oncogenic α-herpesvirus that causes a disease characterised by T-cell lymphomas. The pathogenesis, or the nature of the interaction of the virus and the host, in the thymus are still unclear. RESULTS In this study, we identified 119 differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry from the thymuses of chickens infected with the RB1B strain of MDV. These differentially expressed proteins were found mainly at 21, 28 and 35 days post-infection. More than 20 of the differentially expressed proteins were directly associated with immunity, apoptosis, tumour development and viral infection and replication. Five of these proteins, ANXA1, MIF, NPM1, OP18 and VIM, were further confirmed using real-time PCR. The functional associations and roles in oncogenesis of these proteins are discussed. CONCLUSIONS This work provides a proteomic profiling of host responses to MDV in the thymus of chickens and further characterises proteins related to the mechanisms of MDV oncogenesis and pathogenesis.
Collapse
Affiliation(s)
- Xuming Hu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No,12 East Wenhui Road, Yangzhou, Jiangsu 225009, P,R,China
| | | | | | | | | | | | | |
Collapse
|
45
|
Xu M, Fitzgerald SD, Zhang H, Karcher DM, Heidari M. Very Virulent Plus Strains of MDV Induce an Acute Form of Transient Paralysis in Both Susceptible and Resistant Chicken Lines. Viral Immunol 2012; 25:306-23. [DOI: 10.1089/vim.2012.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ming Xu
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan
- College of Animal and Veterinary Science, Jilin University, Changchun, China
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Scott D. Fitzgerald
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
- Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan
| | - Huanmin Zhang
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan
| | - Darrin M. Karcher
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Mohammad Heidari
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan
| |
Collapse
|
46
|
Spatz SJ, Smith LP, Baigent SJ, Petherbridge L, Nair V. Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Virol 2011; 92:1500-1507. [PMID: 21450941 DOI: 10.1099/vir.0.027706-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The identification of specific genetic changes associated with differences in the pathogenicity of Marek's disease virus strains (GaHV-2) has been a formidable task due to the large number of mutations in mixed-genotype populations within DNA preparations. Very virulent UK isolate C12/130 induces extensive lymphoid atrophy, neurological manifestations and early mortality in young birds. We have recently reported the construction of several independent full-length bacterial artificial chromosome (BAC) clones of C12/130 capable of generating fully infectious viruses with significant differences in their pathogenicity profiles. Two of these clones (vC12/130-10 and vC12/130-15), which showed differences in virulence relative to each other and to the parental strain, had similar replication kinetics both in vitro and in vivo in spite of the fact that vC12/130-15 was attenuated. To investigate the possible reasons for this, the nucleotide sequences of both clones were determined. Sequence analysis of the two genomes identified mutations within eight genes. A single 494 bp insertion was identified within the genome of the virulent vC12/130-10 clone. Seven non-synonymous substitutions distinguished virulent vC12/130-10 from that of attenuated vC12/130-15. By sequencing regions of parental DNA that differed between the two BAC clones, we confirmed that C12/130 does contain these mutations in varying proportions. Since the individual reconstituted BAC clones were functionally attenuated in vivo and derived from a single DNA source of phenotypically very virulent C12/130, this suggests that the C12/130 virus population exists as a collection of mixed genotypes.
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, USA
| | | | - Susan J Baigent
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | | | - Venugopal Nair
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
47
|
Abstract
It is more than a century since Marek's disease (MD) was first reported in chickens and since then there have been concerted efforts to better understand this disease, its causative agent and various approaches for control of this disease. Recently, there have been several outbreaks of the disease in various regions, due to the evolving nature of MD virus (MDV), which necessitates the implementation of improved prophylactic approaches. It is therefore essential to better understand the interactions between chickens and the virus. The chicken immune system is directly involved in controlling the entry and the spread of the virus. It employs two distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms comprise secretion of soluble factors as well as cells such as macrophages and natural killer cells as the first line of defense. These innate responses provide the adaptive arm of the immune system including antibody- and cell-mediated immune responses to be tailored more specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms contribute to the outcome of MDV infection in chickens. This review discusses our current understanding of immune responses elicited against MDV and genetic factors that contribute to the nature of the response.
Collapse
|
48
|
Pathogenicity of a very virulent strain of Marek's disease herpesvirus cloned as infectious bacterial artificial chromosomes. J Biomed Biotechnol 2010; 2011:412829. [PMID: 21127705 PMCID: PMC2992818 DOI: 10.1155/2011/412829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs) are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130) of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.
Collapse
|
49
|
Heidari M, Sarson AJ, Huebner M, Sharif S, Kireev D, Zhou H. Marek's Disease Virus–Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling. Viral Immunol 2010; 23:309-19. [DOI: 10.1089/vim.2009.0079] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammad Heidari
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan
| | - Aimie J. Sarson
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Dmitry Kireev
- D.I. Ivanovski Institute of Virology, Moscow, Russia
| | - Huaijun Zhou
- Department of Poultry Science, Texas A&M University, College Station, Texas
| |
Collapse
|
50
|
Baaten BJG, Staines KA, Smith LP, Skinner H, Davison TF, Butter C. Early replication in pulmonary B cells after infection with Marek's disease herpesvirus by the respiratory route. Viral Immunol 2010; 22:431-44. [PMID: 19951180 DOI: 10.1089/vim.2009.0047] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract Natural infection with Marek's disease virus occurs through the respiratory mucosa after chickens inhale dander shed from infected chickens. The early events in the lung following exposure to the feather and squamous epithelial cell debris containing the viral particles remain unclear. In order to elucidate the virological and immunological consequences of MDV infection for the respiratory tract, chickens were infected by intratracheal administration of infective dander. Differences between susceptible and resistant chickens were immediately apparent, with delayed viral replication and earlier onset of interferon (IFN)-gamma production in the latter. CD4(+) and CD8(+) T cells surrounded infected cells in the lung. Although viral replication was evident in macrophages, pulmonary B cells were the main target cell type in susceptible chickens following intratracheal infection with MDV. In accordance, depletion of B cells curtailed viremia and substantially affected pathogenesis in susceptible chickens. Together the data described here demonstrate the role of pulmonary B cells as the primary and predominant target cells and their importance for MDV pathogenesis.
Collapse
Affiliation(s)
- B J G Baaten
- Institute for Animal Health, Compton, Newbury, Berkshire, UK.
| | | | | | | | | | | |
Collapse
|