1
|
Eldaghayes I, Rothwell L, Skinner M, Dayhum A, Kaiser P. Efficacy of Fowlpox Virus Vector Vaccine Expressing VP2 and Chicken Interleukin-18 in the Protection against Infectious Bursal Disease Virus. Vaccines (Basel) 2023; 11:1716. [PMID: 38006048 PMCID: PMC10675466 DOI: 10.3390/vaccines11111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
In mammals, the role of interleukin-18 (IL-18) in the immune response is to drive inflammatory and, normally therefore, anti-viral responses. IL-18 also shows promise as a vaccine adjuvant in mammals. Chicken IL-18 (chIL-18) has been cloned. The aim of this study was to investigate the potential of chIL-18 to act as a vaccine adjuvant in the context of a live recombinant Fowlpox virus vaccine (fpIBD1) against Infectious bursal disease virus (IBDV). fpIBD1 protects against mortality, but not against damage to the bursa of Fabricius caused by IBDV infection. The Fowlpox virus genome itself contains several candidate immunomodulatory genes, including potential IL-18 binding proteins (IL-18bp). We knocked out (Δ) the potential IL-18bp genes in fpIBD1 and inserted (::) the cDNA encoding chIL-18 into fpIBD1 in the non-essential ORF030, generating five new viral constructs -fpIBD1::chIL-18, fpIBD1ΔORF073, fpIBD1ΔORF073::chIL-18, fpIBD1ΔORF214, and fpIBD1ΔORF214::chIL-18. The subsequent protection from challenge with virulent IBDV, as measured by viral load and bursal damage, given by these altered fpIBD1 strains, was compared to that given by the original fpIBD1. Complete protection was provided following challenge with IBDV in chicken groups vaccinated with either fpIBDIΔ073::IL-18 or fpIBD1Δ214::IL-18, as no bursal damage nor IBDV was detected in the bursae of the birds. The results show that chIL-18 can act as an effective vaccine adjuvant by improving the fpIBD1 vaccine and providing complete protection against IBDV challenge.
Collapse
Affiliation(s)
- Ibrahim Eldaghayes
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli P.O. Box 13662, Libya
| | - Lisa Rothwell
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Michael Skinner
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
- Section of Virology, Department of Medicine, St Mary’s Campus, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Abdunaser Dayhum
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli P.O. Box 13662, Libya
| | - Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
2
|
Deng L, Liu C, Li L, Hao P, Wang M, Jin N, Yin R, Du S, Li C. Genomic characteristics of an avipoxvirus 282E4 strain. Virus Res 2023; 336:199218. [PMID: 37678517 PMCID: PMC10507152 DOI: 10.1016/j.virusres.2023.199218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Avipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs. The 282E4 strain appears to encode two novel thymidine kinase proteins and two TGF-beta-like proteins that may be associated with the suppression of the host's antiviral response. Avipoxvirus 282E4 also encodes 57 ankyrin repeat proteins and 5 variola B22R-like proteins, which composed 7% of the avipoxvirus 282E4 genome. GO and KEGG analysis further revealed that 12 ORFs participate in viral transcription process, 7 ORFs may function during DNA repair, replication and biological synthesis, and ORF 208 is involved in the process of virus life cycle. Interestingly, phylogenetic analysis based on concatenated sequences p4b and DNA polymerase of avipoxviruses gene demonstrates that avipoxvirus 282E4 strain is divergent from known FWPV isolates and is similar to shearwater poxvirus (SWPV-1) that belongs to the CNPV-like virus. Sequencing avipoxvirus 282E4 is a significant step to judge the genetic position of avipoxviruses within the larger Poxviridae phylogenetic tree and provide a new insight into the genetic background of avipoxvirus 282E4 and interspecies transmission of poxviruses, meanwhile, explanation of gene function provides theoretical foundation for vaccine design with 282E4 strain as skeleton.
Collapse
Affiliation(s)
- Lingcong Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Cunxia Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, Jinan, 250100, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Maopeng Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun, 130062, China.
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
3
|
He L, Zhang Y, Jia Y, Li Z, Li J, Shang K, Ding K, Yu H, Sarker S. A novel pathogenic avipoxvirus infecting oriental turtle dove ( Streptopelia orientalis) in China shows a high genomic and evolutionary proximity with the pigeon avipoxviruses isolated globally. Microbiol Spectr 2023; 11:e0119323. [PMID: 37750697 PMCID: PMC10581063 DOI: 10.1128/spectrum.01193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Avipoxviruses are considered as significant viral pathogen infecting a wide range of domestic and wild bird species globally, yet the majority of avipoxviruses that infect the wild bird species remain uncharacterized and their genetic diversities remain unclear. In this study, we present a novel pathogenic avipoxvirus isolated from the cutaneous pox lesions of a wild oriental turtle dove (Streptopelia orientalis), tentatively named as turtle dovepox virus (TDPV). The avipoxvirus was isolated by using the chorioallantoic membranes of specific pathogen-free chicken embryos which showed characteristic focal pock lesions, followed by cytopathic effects in host cells infected with oriental turtle dovepox virus. An effort in sequencing the whole genome of the poxvirus using next-generation sequencing was given, and the first whole genome sequence of TDPV was obtained. The TDPV genome was 281,386 bp in length and contained 380 predicted open reading frames (ORFs). While 336 of the predicted ORFs showed homology to other characterized avipoxviruses, the other 44 ORFs were unique. Subsequent phylogenetic analyses showed that the novel TDPV shared the closest genetic evolutionary linkage with the avipoxviruses isolated from pigeon in South Africa and India, of which the TDPV genome had the highest sequence similarity (92.5%) with South African pigeonpox virus (FeP2). In conclusion, the sequenced TDPV is significantly different from any other avipoxviruses isolated from avian or other natural host species considering genomic architecture and observed sequence similarity index. Thus, it likely should be considered a separate species. IMPORTANCE Over the past few decades, avipoxviruses have been found in a number of wild bird species including the oriental turtle dove. However, there is no whole genome sequence information on avipoxviruses isolated from oriental turtle dove, leaving us unclear about the evolutionary linkage of avipoxviruses in oriental turtle dove and other wild bird species. Thus, we believe that our study makes a significant contribution because it is the first report of the whole genome sequence of TDPV isolated from a wild oriental turtle dove, which enriches the genomic information of the genus Avipoxvirus, furthermore, contributes to tracking the genetic evolution of avipoxviruses-infected oriental turtle dove species.
Collapse
Affiliation(s)
- Lei He
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuhao Zhang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zedian Li
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Shang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Haotong Yu
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
4
|
Kim HR, Jang I, Song HS, Kim SH, Kim HS, Kwon YK. Genetic Diversity of Fowlpox Virus and Putative Genes Involved in Its Pathogenicity. Microbiol Spectr 2022; 10:e0141522. [PMID: 36073826 PMCID: PMC9603804 DOI: 10.1128/spectrum.01415-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
To determine the genomic variations of fowlpox virus (FPV)-the largest, very ancient, and still harmful avian virus-the complete genomes of 21 FPVs were analyzed. The genomes showed low genetic diversity relative to their overall size. Our studies revealed that FPVs could phylogenetically be divided into two clades, based on their regional distribution, and comparative analysis showed that 40 putative proteins of FPV were associated with geographic differences in viruses, viral pathogenicity, or the onset of diphtheritic lesions. The strain, classified into a subgroup different from others in the genomic analysis, showed relatively low pathogenicity in chickens, and the onset of diphtheritic lesions was observed to be caused only by the specific strain. Despite genetic differences, some commercial vaccines are protective against virulent strains, and intact reticuloendotheliosis virus inserted into field FPV strains was activated but there was no enhancement of the pathogenicity of FPV. These findings will expand our knowledge of the viral proteome and help us understand the pathogenicity of FPV. IMPORTANCE This study aims at determining molecular candidates using comparative genomics to differentiate between the diphtheritic and cutaneous forms of FPV infection, in addition to their association with the pathogenicity of the virus. Full-genomic analyses of multiple fowlpox strains, including field viruses, isolated between 1960s and 2019, and vaccine strains showed the genetic diversity due to regional differences. Comparative genomic analysis offered the clues related to viral virulence. We believe that our study makes a significant contribution to the literature because we are the first to perform such an elaborate study that compares 21 FPVs to study and highlight their diversity, despite the high level of homology between them. Our results shall help provide insights for tackling FPV that has been taking a toll on the poultry for years now.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Il Jang
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Hye-Soon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Si-Hyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Hyeon-Su Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yong-Kuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
5
|
Molecular characterisation of a novel pathogenic avipoxvirus from an Australian little crow (Corvus bennetti) directly from the clinical sample. Sci Rep 2022; 12:15053. [PMID: 36064742 PMCID: PMC9445014 DOI: 10.1038/s41598-022-19480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Avipoxviruses are thought to be restricted to avian hosts and considered significant pathogens that may impact the conservation of many birds. However, reports of avipoxvirus-like viruses from reptiles suggest that cross-species transmission, within birds and other species, may be possible. The vast majority of avipoxviruses in wild birds remain uncharacterised and their genetic variability is unclear. Here, cutaneous pox lesions were used to recover a novel full-length crowpox virus genome from an Australian little crow (Corvus bennetti), followed by the detection of immature and intracellular mature virions using electron microscopy. The CRPV genome was 328,768 bp in length and contained 403 predicted open-reading frames. While 356 of the ORFs of CRPV genome had the greatest similarity with other avipoxviruses gene products, a further 47 ORFs were novel. Subsequent phylogenetic analyses showed that the CRPV was most closely related to other avipoxviruses isolated from passerine and marine bird species and demonstrated the highest sequence similarity with an albatrosspox virus (84.4%). Considering the sequence similarity observed between CRPV and other avipoxviruses and phylogenetic position, this study concluded that the CRPV to be a distinct available candidate of avipoxviruses.
Collapse
|
6
|
Matos M, Bilic I, Palmieri N, Mitsch P, Sommer F, Tvarogová J, Liebhart D, Hess M. Epidemic of cutaneous fowlpox in a naïve population of chickens and turkeys in Austria: Detailed phylogenetic analysis indicates co-evolution of fowlpox virus with reticuloendotheliosis virus. Transbound Emerg Dis 2022; 69:2913-2923. [PMID: 34974640 PMCID: PMC9787674 DOI: 10.1111/tbed.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
Cutaneous fowlpox is a disease of chickens and turkeys caused by the fowlpox virus (FWPV), characterized by the development of proliferative lesions and scabs on unfeathered areas. FWPVs regularly carry an integrated, active copy of the reticuloendotheliosis virus (REV), and it has been hypothesized that such FWPVs are more problematic in the field. Extensive outbreaks are usually observed in tropical and sub-tropical climates, where biting insects are more difficult to control. Here, we report an epidemic of 65 cutaneous fowlpox cases in Austria in layer chickens (91% of the cases) and broiler breeders and turkeys, all of them unvaccinated against the disease, from October 2018 to February 2020. The field data revealed appearance in flocks of different sizes ranging from less than 5000 birds up to more than 20,000 animals, with the majority raised indoors in a barn system. The clinical presentation was characterized by typical epithelial lesions on the head of the affected birds, with an average decrease of 6% in egg production and an average weekly mortality of 1.2% being observed in the flocks. A real-time multiplex polymerase chain reaction (PCR) confirmed the presence of FWPV-REV DNA, not only in the lesions but also in the environmental dust from the poultry houses. The integration of the REV provirus into the FWPV genome was confirmed by PCR, and revealed different FWPV genome populations carrying either the REV long terminal repeats (LTRs) or the full-length REV genome, reiterating the instability of the inserted REV. Two selected samples were fully sequenced by next generation sequencing (NGS), and the whole genome phylogenetic analysis revealed a regional clustering of the FWPV genomes. The extensive nature of these outbreaks in host populations naïve for the virus is a remarkable feature of the present report, highlighting new challenges associated with FWPV infections that need to be considered.
Collapse
Affiliation(s)
- Miguel Matos
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Ivana Bilic
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Nicola Palmieri
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Jana Tvarogová
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Dieter Liebhart
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Michael Hess
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
7
|
Outbreaks of Avipoxvirus Clade E in Vaccinated Broiler Breeders with Exacerbated Beak Injuries and Sex Differences in Severity. Viruses 2022; 14:v14040773. [PMID: 35458503 PMCID: PMC9028998 DOI: 10.3390/v14040773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Avipoxvirus affects chickens and wild birds, and it is characterized by lesions on the nonfeathered parts of the body (the cutaneous form), or necrotic lesions in the upper respiratory tract (the diphtheritic form). In poultry farming, avian pox is usually controlled by live attenuated vaccines. However, there have been many reports of outbreaks, even in flocks of vaccinated birds. In the present study, different outbreaks of the emerging clade E avipoxvirus were detected in commercial breeder flocks of chickens vaccinated against fowlpox virus in Southeast Brazil. Clinical manifestations of these outbreaks included a marked prevalence of moderate to severe progressive lesions in the beaks of affected birds, especially in roosters with increased mortality (up to 8.48%). Also, a reduced hatchability (up to 20.77% fewer hatching eggs) was observed in these flocks. Analysis of clinical samples through light and transmission electron microscopy revealed the presence of Bollinger bodies and poxvirus particles in epithelial cells and affecting chondrocytes. PCR, sequencing, and phylogenetic analysis of major core protein (P4b) and DNA polymerase (pol) genes identified this virus as clade E avipoxvirus. We also developed qPCR assays for open reading frames (ORFs) 49, 114, and 159 to detect and quantify this emergent virus. These results show the arrival and initial spread of this pathogen in the poultry industry, which was associated with harmful outbreaks and exacerbated clinical manifestations in vaccinated commercial breeder flocks. This study also highlights the relevance of permanent vigilance and the need to improve sanitary and vaccination programs.
Collapse
|
8
|
Asif K, O’Rourke D, Legione AR, Shil P, Marenda MS, Noormohammadi AH. Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. PLoS One 2021; 16:e0261122. [PMID: 34914770 PMCID: PMC8675702 DOI: 10.1371/journal.pone.0261122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing.
Collapse
Affiliation(s)
- Kinza Asif
- Department of Veterinary Biosciences, Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Denise O’Rourke
- Department of Veterinary Biosciences, Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Alistair R. Legione
- Department of Veterinary Biosciences, Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pollob Shil
- Department of Veterinary Biosciences, Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Marc S. Marenda
- Department of Veterinary Biosciences, Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Amir H. Noormohammadi
- Department of Veterinary Biosciences, Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
9
|
Umar BN, Adamu J, Ahmad MT, Ahmad KH, Sada A, Orakpoghenor O. Fowlpox virus: an overview of its classification, morphology and genome, replication mechanisms, uses as vaccine vector and disease dynamics. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. N. Umar
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - J Adamu
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - M. T Ahmad
- Avian and Fish Health Unit, Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - K. H. Ahmad
- Diagnostic Laboratory, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - A. Sada
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
- Central Diagnostic Unit, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - O. Orakpoghenor
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
10
|
Genomic characterisation of a novel avipoxvirus, magpiepox virus 2, from an Australian magpie (Gymnorhina tibicen terraereginae). Virology 2021; 562:121-127. [PMID: 34315102 DOI: 10.1016/j.virol.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Avipoxviruses are large, double-stranded DNA viruses and are considered significant pathogens that may impact on the conservation of numerous bird species. The vast majority of avipoxviruses in wild birds remain uncharacterised and their genetic variability is unclear. Here, we fully sequenced a novel avipoxvirus, magpiepox virus 2 (MPPV2), which was isolated 62 years ago (in 1956) from an Australian black-backed magpie. The MPPV2 genome was 298,392 bp in length and contained 419 predicted open-reading frames (ORFs). While 43 ORFs were novel, a further 24 ORFs were absent compared with another magpiepox virus (MPPV) characterised in 2018. The MPPV2 genome contained an additional ten genes that were homologs to shearwaterpox virus 2 (SWPV2). Subsequent phylogenetic analyses showed that the novel MPPV2 was most closely related to other avipoxviruses isolated from passerine and shearwater bird species, and demonstrated a high degree of sequence similarity (95.0%) with MPPV.
Collapse
|
11
|
Mavian C, López-Bueno A, Martín R, Nitsche A, Alcamí A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses 2021; 13:v13061146. [PMID: 34203773 PMCID: PMC8232671 DOI: 10.3390/v13061146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.
Collapse
Affiliation(s)
- Carla Mavian
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany;
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
- Correspondence:
| |
Collapse
|
12
|
Gibson MS, Steyn A, Kealy D, Kaspers B, Fife MS. Molecular cloning and characterisation of chicken IL-18 binding protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103850. [PMID: 32918930 PMCID: PMC7661785 DOI: 10.1016/j.dci.2020.103850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The human IL-1 receptor family is comprised of 11 membrane bound or soluble receptors and the IL-18 binding protein (IL-18BP). These receptors are dispersed across seven genomic loci, with the majority at a single locus. Direct orthologues were identified in the chicken at conserved genomic loci; however, the IL-18BP remained absent from the first four builds of the chicken genome sequence. Subsequent assemblies identified the gene at a locus syntenic with mammals; however, these predicted sequences differed between genome builds and contained multiple errors. A partial IL-18BP-like sequence in the NCBI EST database was used to clone the full-length cDNA. A splice variant, which lacks the exon that encodes part of the signal peptide, was also cloned. Human IL-18BP is differentially spliced to produce a number of variants, which are all secreted. By contrast, the spliced chicken isoform was predicted to be intracellular, and we identified similar variants with the same exon missing in a limited number of divergent vertebrate species. Mammalian and viral IL-18BPs inhibit IL-18 activity by directly binding to this cytokine. Full-length and intracellular chicken IL-18BPs were equally effective at inhibiting IL-18-mediated IFN-γ release from an avian B-cell line. Analysis of the predicted chIL-18BP protein sequence revealed two crucial residues, which account for 50% of the binding affinity between human IL-18 and IL-18BP, are conserved in the chicken and a fowlpox-encoded homologue, fpv214. This suggests specific fowlpox viruses used in humans as a vaccine vector have the potential to dampen anti-viral host immune responses.
Collapse
Affiliation(s)
- Mark S Gibson
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | - David Kealy
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York, UK
| | - Bernd Kaspers
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mark S Fife
- The Pirbright Institute, Pirbright, Woking, UK; Aviagen Ltd, Newbridge, UK.
| |
Collapse
|
13
|
Sarker S, Athukorala A, Raidal SR. Molecular characterisation of a novel pathogenic avipoxvirus from an Australian passerine bird, mudlark (Grallina cyanoleuca). Virology 2020; 554:66-74. [PMID: 33385935 DOI: 10.1016/j.virol.2020.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
Avipoxviruses have been recognised as significant pathogens in the conservation of numerous bird species. However, the vast majority of the avipoxviruses that infect wild birds remain uncharacterised. Here, we characterise a novel avipoxvirus, mudlarkpox virus (MLPV) isolated from an Australian passerine bird, mudlark (Grallina cyanoleuca). In this study, tissues with histopathologically confirmed lesions consistent with avian pox were used for transmission electron microscopy, and showed characteristic ovoid to brick-shaped virions, indicative of infectious particles. The MLPV genome was >342.7 Kbp in length and contained six predicted novel genes and a further six genes were missing compared to shearwaterpox virus-2 (SWPV-2). Subsequent phylogenetic analyses of the MLPV genome positioned the virus within a distinct subclade also containing recently characterised avipoxvirus genomes from shearwater, canary and magpie bird species, and demonstrated a high degree of sequence similarity with SWPV-2 (94.92%).
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Ajani Athukorala
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
14
|
Giotis ES, Laidlaw SM, Bidgood SR, Albrecht D, Burden JJ, Robey RC, Mercer J, Skinner MA. Modulation of Early Host Innate Immune Response by an Avipox Vaccine Virus' Lateral Body Protein. Biomedicines 2020; 8:E634. [PMID: 33352813 PMCID: PMC7766033 DOI: 10.3390/biomedicines8120634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
The avian pathogen fowlpox virus (FWPV) has been successfully used as a vaccine vector in poultry and humans, but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication-permissive and nonpermissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, nonessential FWPV gene knockout mutants revealed that FPV184 confers immunomodulatory capacity. We report that the FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 h postinfection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-β promoter and IFN-α activation of the chicken Mx1 promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies, capable of suppressing IFN induction early during the next round of infection.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
- School of Life Sciences, University of Essex, Colchester C04 3SQ, UK
| | - Stephen M. Laidlaw
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| | - Susanna R. Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - David Albrecht
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Jemima J. Burden
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Rebecca C. Robey
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Michael A. Skinner
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| |
Collapse
|
15
|
Molecular Detection of Reticuloendotheliosis Virus 5' Long Terminal Repeat Integration in the Genome of Avipoxvirus Field Strains from Different Avian Species in Egypt. BIOLOGY 2020; 9:biology9090257. [PMID: 32878059 PMCID: PMC7563266 DOI: 10.3390/biology9090257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
Avipoxviruses (APVs) are among the most complex viruses that infect a wide range of birds’ species. The infection by APVs is often associated with breathing and swallowing difficulties, reduced growth, decreased egg production, and high mortalities in domestic poultry. In the present study, 200 cutaneous nodular samples were collected from different avian species (chicken, pigeon, turkey, and canary) suspected to be infected with APVs from Dakahlia Governorate, Egypt. Pooled samples (n = 40) were prepared and inoculated in embryonated chicken eggs (ECEs). APVs were then identified by polymerase chain reaction (PCR) and sequence analysis of the APV P4b gene. Furthermore, the forty strains of APVs were screened for the presence of reticuloendotheliosis virus (REV)-5′LTR in their genomes. Interestingly, the phylogenic tree of the APV P4b gene was separated into 2 clades: clade 1, in which our fowlpox virus (FWPV), turkeypox virus (TKPV), and canarypox virus (CNPV) isolates were grouped, along with reference FWPVs and TKPVs retrieved from GenBank, whereas, in clade2, the pigeonpox virus (PGPV) isolate was grouped with PGPVs retrieved from GenBank. Likewise, REV-5′LTR was amplified from 30 strains isolated from chicken, turkey, and canary, while PGPV strains were free from REV-5′LTR integration. To the best of our knowledge, this study involved the detection and characterization of REV-5′LTR insertions in the APVs field isolates in Egypt for the first time. Given the above information, further future research seems recommended to understand the impact of the resulting REV-5′LTR insertions on the pathogenesis, virulence, and inadequate vaccine protection against APVs.
Collapse
|
16
|
Majid NN, Omar AR, Mariatulqabtiah AR. Negligible effect of chicken cytokine IL-12 integration into recombinant fowlpox viruses expressing avian influenza virus neuraminidase N1 on host cellular immune responses. J Gen Virol 2020; 101:772-777. [PMID: 32427095 PMCID: PMC7660237 DOI: 10.1099/jgv.0.001428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
In comparison to the extensive characterization of haemagglutinin antibodies of avian influenza virus (AIV), the role of neuraminidase (NA) as an immunogen is less well understood. This study describes the construction and cellular responses of recombinant fowlpox viruses (rFWPV) strain FP9, co-expressing NA N1 gene of AIV A/Chicken/Malaysia/5858/2004, and chicken IL-12 gene. Our data shows that the N1 and IL-12 proteins were successfully expressed from the recombinants with 48 kD and 70 kD molecular weights, respectively. Upon inoculation into specific-pathogen-free (SPF) chickens at 105 p.f.u. ml-1, levels of CD3+/CD4+ and CD3+/CD8+ populations were higher in the wild-type fowlpox virus FP9 strain, compared to those of rFWPV-N1 and rFWPV-N1-IL-12 at weeks 2 and 5 time points. Furthermore, rFWPV-N1-IL-12 showed a suppressive effect on chicken body weight within 4 weeks after inoculation. We suggest that co-expression of N1 with or without IL-12 offers undesirable quality as a potential AIV vaccine candidate.
Collapse
Affiliation(s)
- Nadzreeq Nor Majid
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Sarker S, Batinovic S, Talukder S, Das S, Park F, Petrovski S, Forwood JK, Helbig KJ, Raidal SR. Molecular characterisation of a novel pathogenic avipoxvirus from the Australian magpie (Gymnorhina tibicen). Virology 2019; 540:1-16. [PMID: 31726310 DOI: 10.1016/j.virol.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022]
Abstract
Avipoxviruses are significant pathogens infecting a wide range of wild and domestic bird species globally. Here, we describe a novel genome sequence of magpiepox virus (MPPV) isolated from an Australian magpie. In the present study, histopathologically confirmed cutaneous pox lesions were used for transmission electron microscopic analysis, which demonstrated brick-shaped virions with regular spaced thread-like ridges, indicative of likely infectious particles. Subsequent analysis of the recovered MPPV genome positioned phylogenetically to a distinct sub-clade with the recently isolated avipoxvirus genome sequences from shearwater and canary bird species, and demonstrates a high degree of sequence similarity with CNPV (96.14%) and SWPV-2 (95.87%). The novel MPPV complete genome is missing 19 genes with a further 41 genes being truncated/fragmented compared to SWPV-2 and contains nine predicted unique genes. This is the first avipoxvirus complete genome sequence that infects Australian magpie.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Saranika Talukder
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Fiona Park
- Canley Heights Veterinary Clinic, Canley Heights, NSW, 2166, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
18
|
Lebdah M, Ali AM, Ali AA, Hassanin O. Insights into pathological and molecular characterization of avipoxviruses circulating in Egypt. Br Poult Sci 2019; 60:666-674. [PMID: 31298555 DOI: 10.1080/00071668.2019.1639141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Avipoxvirus (APV) infections are one of many threats inflicting economic losses within the poultry industry, particularly in tropical and subtropical countries. A proper and comprehensive study for APVs is needed to increase the knowledge concerning the diversity and evolution of the virus.2. For this purpose, 136 bird flocks of different species and breeding types were examined for APV infection between October 2016 and November 2017. One hundred and thirty samples had visible pocks on the chorioallantoic membrane (CAM) which were designated as fowl pox-like viruses via amplification of 578 bp from the P4b gene and 1800 bp from the fpv140 locus.4. A comprehensive phylogenetic analysis of fpv167 locus (P4b), fpv140 locus (fpv139 and fpv140) and fpv94 (DNA polymerase) revealed that all the analysed strains belong to fowl pox-like viruses (clade A; subclade A1 and A2). Based on the fpv140 locus full nucleotide sequence, three turkey originated strains were seen to be divergent from chicken originated sequences and branched into novel subclade A1.b.5. Trees comparison, within the term of speculation of virus-host specificity, clearly highlighted a high order specific subgrouping among subclades in the case of the fpv140 locus (including fpv139 and fpv140). Hence, the fowl poxvirus, turkey poxvirus and pigeon poxvirus strains clustered into distinct host-specific subclades A1a, A1.b and A2, respectively, which could not be seen in the FWPV-P4b and DNA polymerase phylogeny.
Collapse
Affiliation(s)
- M Lebdah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A M Ali
- The Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A Ali
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - O Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Yeo G, Wang Y, Chong SM, Humaidi M, Lim XF, Mailepessov D, Chan S, How CB, Lin YN, Huangfu T, Fernandez CJ, Hapuarachchi HC, Yap G. Characterization of Fowlpox virus in chickens and bird-biting mosquitoes: a molecular approach to investigating Avipoxvirus transmission. J Gen Virol 2019; 100:838-850. [PMID: 30907721 DOI: 10.1099/jgv.0.001209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian pox is a highly contagious avian disease, yet relatively little is known about the epidemiology and transmission of Avipoxviruses. Using a molecular approach, we report evidence for a potential link between birds and field-caught mosquitoes in the transmission of Fowlpox virus (FWPV) in Singapore. Comparison of fpv167 (P4b), fpv126 (VLTF-1), fpv175-176 (A11R-A12L) and fpv140 (H3L) gene sequences revealed close relatedness between FWPV strains obtained from cutaneous lesions of a chicken and four pools of Culex pseudovishnui, Culex spp. (vishnui group) and Coquellitidea crassipes caught in the vicinity of the study site. Chicken-derived viruses characterized during two separate infections two years later were also identical to those detected in the first event, suggesting repeated transmission of closely related FWPV strains in the locality. Since the study location is home to resident and migratory birds, we postulated that wild birds could be the source of FWPV and that bird-biting mosquitoes could act as bridging mechanical vectors. Therefore, we determined whether the FWPV-positive mosquito pools (n=4) were positive for avian DNA using a polymerase chain reaction-sequencing assay. Our findings confirmed the presence of avian host DNA in all mosquito pools, suggesting a role for Cx. pseudovishnui, Culex spp. (vishnui group) and Cq. crassipes mosquitoes in FWPV transmission. Our study exemplifies the utilization of molecular tools to understand transmission networks of pathogens affecting avian populations, which has important implications for the design of effective control measures to minimize disease burden and economic loss.
Collapse
Affiliation(s)
- Gladys Yeo
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Yifan Wang
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Shin Min Chong
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Mahathir Humaidi
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Xiao Fang Lim
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore.,†Present address: Duke-NUS Medical School, 8, College Road, Singapore 169857, Singapore
| | - Diyar Mailepessov
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Sharon Chan
- 3Sungei Buloh Wetlands Reserve, National Parks Board, 301, Neo Tiew Cresent, 301, Neo Tiew Cresent, Singapore 718925, Singapore.,‡Present address: Conservation Division, Central Nature Reserve, National Parks Board, 6, Island Club Road, Singapore 578775, Singapore
| | - Choon Beng How
- 3Sungei Buloh Wetlands Reserve, National Parks Board, 301, Neo Tiew Cresent, 301, Neo Tiew Cresent, Singapore 718925, Singapore
| | - Yueh Nuo Lin
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Taoqi Huangfu
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Charlene Judith Fernandez
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | | | - Grace Yap
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore.,§Present address: Control of Operations Branch 2, National Environment Agency, 40, Scotts Road, Singapore 228231, Singapore
| |
Collapse
|
20
|
Chicken Embryonic-Stem Cells Are Permissive to Poxvirus Recombinant Vaccine Vectors. Genes (Basel) 2019; 10:genes10030237. [PMID: 30897824 PMCID: PMC6471371 DOI: 10.3390/genes10030237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of mammalian pluripotent embryonic stem cells (ESC) has revolutionised cell research and regenerative medicine. More recently discovered chicken ESC (cESC), though less intensively studied, are increasingly popular as vaccine substrates due to a dearth of avian cell lines. Information on the comparative performance of cESC with common vaccine viruses is limited. Using RNA-sequencing, we compared cESC transcriptional programmes elicited by stimulation with chicken type I interferon or infection with vaccine viruses routinely propagated in primary chicken embryo fibroblasts (CEF). We used poxviruses (fowlpox virus (FWPV) FP9, canarypox virus (CNPV), and modified vaccinia virus Ankara (MVA)) and a birnavirus (infectious bursal disease virus (IBDV) PBG98). Interferon-stimulated genes (ISGs) were induced in cESC to levels comparable to those in CEF and immortalised chicken fibroblast DF-1 cells. cESC are permissive (with distinct host transcriptional responses) to MVA, FP9, and CNPV but, surprisingly, not to PBG98. MVA, CNPV, and FP9 suppressed innate immune responses, while PBG98 induced a subset of ISGs. Dysregulation of signalling pathways (i.e., NFκB, TRAF) was observed, which might affect immune responses and viral replication. In conclusion, we show that cESC are an attractive alternative substrate to study and propagate poxvirus recombinant vaccine vectors.
Collapse
|
21
|
Mariatulqabtiah AR, Nor Majid N, Giotis ES, Omar AR, Skinner MA. Inoculation of fowlpox viruses coexpressing avian influenza H5 and chicken IL-15 cytokine gene stimulates diverse host immune responses. ACTA ACUST UNITED AC 2019. [DOI: 10.35118/apjmbb.2019.027.1.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fowlpox virus (FWPV) has been used as a recombinant vaccine vector to express antigens from several important avian pathogens. Attempts have been made to improve vaccine strains induced-host immune responses by coexpressing cytokines. This study describes the construction of recombinant FWPV (rFWPV) strain FP9 and immunological responses in specific-pathogen-free (SPF) chickens, co-expressing avian influenza virus (AIV) H5 of A/Chicken/Malaysia/5858/2004, and chicken IL-15 cytokine genes. Expression of H5 (50 kD) was confirmed by western blotting. Anti-H5 antibodies, which were measured by the haemagglutinin inhibition test, were at the highest levels at Week 3 post-inoculation in both rFWPV/H5- and rFWPV/H5/IL-15-vaccinated chickens, but decreased to undetectable levels from Week 5 onwards. CD3+/CD4+ or CD3+/CD8+T cell populations, assessed using flow cytometry, were significantly increased in both WT FP9- and rFWPV/H5-vaccinated chickens and were also higher than in rFWPV/H5/IL-15- vaccinated chickens, at Week 2. Gene expression analysis using real time quantitative polymerase chain reaction (qPCR) demonstrated upregulation of IL-15 expression in all vaccinated groups with rFWPV/H5/IL-15 having the highest fold change, at day 2 (117±51.53). Despite showing upregulation, fold change values of the IL-18 expression were below 1.00 for all vaccinated groups at day 2, 4 and 6. This study shows successful construction of rFWPV/H5 co-expressing IL-15, with modified immunogenicity upon inoculation into SPF chickens.
Collapse
Affiliation(s)
- Abdul Razak Mariatulqabtiah
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadzreeq Nor Majid
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Efstathios S. Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG United Kingdom
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Michael A. Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG United Kingdom
| |
Collapse
|
22
|
Joshi LR, Bauermann FV, Hain KS, Kutish GF, Armién AG, Lehman CP, Neiger R, Afonso CL, Tripathy DN, Diel DG. Detection of Fowlpox virus carrying distinct genome segments of Reticuloendotheliosis virus. Virus Res 2019; 260:53-59. [DOI: 10.1016/j.virusres.2018.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
23
|
Jacob JM, Subramaniam K, Tu SL, Nielsen O, Tuomi PA, Upton C, Waltzek TB. Complete genome sequence of a novel sea otterpox virus. Virus Genes 2018; 54:756-767. [PMID: 30225673 DOI: 10.1007/s11262-018-1594-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/07/2018] [Indexed: 11/28/2022]
Abstract
Members of the Poxviridae family are large, double-stranded DNA viruses that replicate in the cytoplasm of their host cells. The subfamily Chordopoxvirinae contains viruses that infect a wide range of vertebrates including marine mammals within the Balaenidae, Delphinidae, Mustelidae, Odobenidae, Otariidae, Phocidae, and Phocoenidae families. Recently, a novel poxvirus was found in a northern sea otter pup (Enhydra lutris kenyoni) that stranded in Alaska in 2009. The phylogenetic relationships of marine mammal poxviruses are not well established because of the lack of complete genome sequences. The current study sequenced the entire sea otterpox virus Enhydra lutris kenyoni (SOPV-ELK) genome using an Illumina MiSeq sequencer. The SOPV-ELK genome is the smallest poxvirus genome known at 127,879 bp, is 68.7% A+T content, is predicted to encode 132 proteins, and has 2546 bp inverted terminal repeats at each end. Genetic and phylogenetic analyses based on the concatenated amino acid sequences of 7 chorodopoxvirus core genes revealed the SOPV-ELK is 52.5-74.1% divergent from other known chordopoxviruses and is most similar to pteropoxvirus from Australia (PTPV-Aus). SOPV-ELK represents a new chordopoxvirus species and may belong to a novel genus. SOPV-ELK encodes eight unique genes. While the function of six predicted genes remains unknown, two genes appear to function as novel immune-modulators. SOPV-ELK-003 appears to encode a novel interleukin-18 binding protein (IL-18 BP), based on limited sequence and structural similarity to other poxviral IL-18 BPs. SOPV-ELK-035 appears to encode a novel tumor necrosis factor receptor-like (TNFR) protein that may be associated with the depression of the host's antiviral response. Additionally, SOPV-ELK-036 encodes a tumor necrosis factor-like apoptosis-inducing ligand (TRAIL) protein that has previously only been found in PTPV-Aus. The SOPV-ELK genome is the first mustelid poxvirus and only the second poxvirus from a marine mammal to be fully sequenced. Sequencing of the SOPV-ELK genome is an important step in unraveling the position of marine mammal poxviruses within the larger Poxviridae phylogenetic tree and provides the necessary sequence to develop molecular tools for future diagnostics and epidemiological studies.
Collapse
Affiliation(s)
- Jessica M Jacob
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Shin-Lin Tu
- Biochemistry and Microbiology Department, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Central and Arctic Region, Winnipeg, MB, R3T 2N6, Canada
| | | | - Chris Upton
- Biochemistry and Microbiology Department, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Carulei O, Douglass N, Williamson AL. Comparative analysis of avian poxvirus genomes, including a novel poxvirus from lesser flamingos (Phoenicopterus minor), highlights the lack of conservation of the central region. BMC Genomics 2017; 18:947. [PMID: 29207949 PMCID: PMC5718139 DOI: 10.1186/s12864-017-4315-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Avian poxviruses are important pathogens of both wild and domestic birds. To date, seven isolates from subclades A and B and one from proposed subclade E, have had their genomes completely sequenced. The genomes of these isolates have been shown to exhibit typical poxvirus genome characteristics with conserved central regions and more variable terminal regions. Infection with avian poxviruses (APVs) has been reported in three species of captive flamingo, as well as a free-living, lesser flamingo at Kamfers dam, near Kimberley, South Africa. This study was undertaken to further characterise this virus which may have long term effects on this important and vulnerable, breeding population. RESULTS Gene content and synteny as well as percentage identities between conserved orthologues was compared between Flamingopox virus (FGPV) and the other sequenced APV genomes. Dotplot comparisons revealed major differences in central regions that have been thought to be conserved. Further analysis revealed five regions of difference, of differing lengths, spread across the central, conserved regions of the various genomes. Although individual gene identities at the nucleotide level did not vary greatly, gene content and synteny between isolates/species at these identified regions were more divergent than expected. CONCLUSION Basic comparative genomics revealed the expected similarities in genome architecture but an in depth, comparative, analysis showed all avian poxvirus genomes to differ from other poxvirus genomes in fundamental and unexpected ways. The reasons for these large genomic rearrangements in regions of the genome that were thought to be relatively conserved are yet to be elucidated. Sequencing and analysis of further avian poxvirus genomes will help characterise this complex genus of poxviruses.
Collapse
Affiliation(s)
- Olivia Carulei
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
25
|
Sarker S, Das S, Lavers JL, Hutton I, Helbig K, Imbery J, Upton C, Raidal SR. Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genomics 2017; 18:298. [PMID: 28407753 PMCID: PMC5390406 DOI: 10.1186/s12864-017-3680-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/05/2017] [Indexed: 01/18/2023] Open
Abstract
Background Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A. pacificus) (SWPV-2). Results Epidermal pox lesions, liver, and blood samples were examined from A. carneipes and A. pacificus of breeding colonies in eastern Australia. After histopathological confirmation of the disease, PCR screening was conducted for avipoxvirus, circovirus, reticuloendotheliosis virus, and fungal agents. Two samples that were PCR positive for poxvirus were further assessed by next generation sequencing, which yielded complete Shearwaterpox virus (SWPV) genomes from A. pacificus and A. carneipes, both showing the highest degree of similarity with Canarypox virus (98% and 67%, respectively). The novel SWPV-1 complete genome from A. carneipes is missing 43 genes compared to CNPV and contains 4 predicted genes which are not found in any other poxvirus, whilst, SWPV-2 complete genome was deemed to be missing 18 genes compared to CNPV and a further 15 genes significantly fragmented as to probably cause them to be non-functional. Conclusion These are the first avipoxvirus complete genome sequences that infect marine seabirds. In the comparison of SWPV-1 and −2 to existing avipoxvirus sequences, our results indicate that the SWPV complete genome from A. carneipes (SWPV-1) described here is not closely related to any other avipoxvirus genome isolated from avian or other natural host species, and that it likely should be considered a separate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3680-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, 2898, Australia
| | - Karla Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jacob Imbery
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
26
|
Townsend DG, Trivedi S, Jackson RJ, Ranasinghe C. Recombinant fowlpox virus vector-based vaccines: expression kinetics, dissemination and safety profile following intranasal delivery. J Gen Virol 2017; 98:496-505. [PMID: 28056224 PMCID: PMC5797952 DOI: 10.1099/jgv.0.000702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
We have previously established that mucosal uptake of recombinant fowlpox virus (rFPV) vaccines is far superior to other vector-based vaccines. Specifically, intranasal priming with rFPV vaccines can recruit unique antigen-presenting cells, which induce excellent mucosal and systemic HIV-specific CD8+ T-cell immunity. In this study, we have for the first time investigated the in vivo dissemination, safety and expression kinetics of rFPV post intranasal delivery using recombinant viruses expressing green fluorescent protein or mCherry. Both confocal microscopy of tissue sections using green fluorescent protein and in vivo Imaging System (IVIS) spectrum live animal and whole organ imaging studies using mCherry revealed that (i) the peak antigen expression occurs 12 to 24 h post vaccination and no active viral gene expression is detected 96 h post vaccination. (ii) The virus only infects the initial vaccination site (lung and nasal cavity) and does not disseminate to distal sites such as the spleen or gut. (iii) More importantly, rFPV does not cross the olfactory receptor neuron pathway. Collectively, our findings indicate that rFPV vector-based vaccines have all the hallmarks of a safe and effective mucosal delivery vector, suitable for clinical evaluation.
Collapse
Affiliation(s)
- David G Townsend
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Present address: Division of Infectious Diseases, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
27
|
Bányai K, Palya V, Dénes B, Glávits R, Ivanics É, Horváth B, Farkas SL, Marton S, Bálint Á, Gyuranecz M, Erdélyi K, Dán Á. Unique genomic organization of a novel Avipoxvirus detected in turkey (Meleagris gallopavo). INFECTION GENETICS AND EVOLUTION 2015; 35:221-9. [PMID: 26282613 DOI: 10.1016/j.meegid.2015.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Avipoxviruses are emerging pathogens affecting over 200 bird species worldwide. Genetic characterization of avipoxviruses is performed by analysis of genomic regions encoding the 4b and DNA polymerase. Whole genome sequence data are limited to a few avipoxvirus isolates. Based on phylogenetic analysis three major genetic clades are distinguished. In this study we report a novel avipoxvirus strain causing skin lesions in domestic turkey. The virus was identified in Hungary during 2011 in a flock of turkey vaccinated against avipoxvirus infection. The genome of the isolated strain, TKPV-HU1124/2011, was uniquely short (∼188.5kbp) and was predicted to encode reduced number of proteins. Phylogenetic analysis of the genes encoding the 4b and DNA polymerase separated TKPV-HU1124/2011 from other turkey origin avipoxviruses and classified it into a new genetic clade. This study permits new insight into the genetic and genomic heterogeneity of avipoxviruses and pinpoints the importance of strain diversity in vaccine efficacy.
Collapse
Affiliation(s)
- Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | - Béla Dénes
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Róbert Glávits
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Éva Ivanics
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Balázs Horváth
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szilvia L Farkas
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| |
Collapse
|
28
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
29
|
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses 2015; 7:709-38. [PMID: 25690795 PMCID: PMC4353913 DOI: 10.3390/v7020709] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023] Open
Abstract
Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.
Collapse
Affiliation(s)
- Michael H Herbert
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Christopher J Squire
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
30
|
|
31
|
Offerman K, Carulei O, van der Walt AP, Douglass N, Williamson AL. The complete genome sequences of poxviruses isolated from a penguin and a pigeon in South Africa and comparison to other sequenced avipoxviruses. BMC Genomics 2014; 15:463. [PMID: 24919868 PMCID: PMC4229897 DOI: 10.1186/1471-2164-15-463] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022] Open
Abstract
Background Two novel avipoxviruses from South Africa have been sequenced, one from a Feral Pigeon (Columba livia) (FeP2) and the other from an African penguin (Spheniscus demersus) (PEPV). We present a purpose-designed bioinformatics pipeline for analysis of next generation sequence data of avian poxviruses and compare the different avipoxviruses sequenced to date with specific emphasis on their evolution and gene content. Results The FeP2 (282 kbp) and PEPV (306 kbp) genomes encode 271 and 284 open reading frames respectively and are more closely related to one another (94.4%) than to either fowlpox virus (FWPV) (85.3% and 84.0% respectively) or Canarypox virus (CNPV) (62.0% and 63.4% respectively). Overall, FeP2, PEPV and FWPV have syntenic gene arrangements; however, major differences exist throughout their genomes. The most striking difference between FeP2 and the FWPV-like avipoxviruses is a large deletion of ~16 kbp from the central region of the genome of FeP2 deleting a cc-chemokine-like gene, two Variola virus B22R orthologues, an N1R/p28-like gene and a V-type Ig domain family gene. FeP2 and PEPV both encode orthologues of vaccinia virus C7L and Interleukin 10. PEPV contains a 77 amino acid long orthologue of Ubiquitin sharing 97% amino acid identity to human ubiquitin. Conclusions The genome sequences of FeP2 and PEPV have greatly added to the limited repository of genomic information available for the Avipoxvirus genus. In the comparison of FeP2 and PEPV to existing sequences, FWPV and CNPV, we have established insights into African avipoxvirus evolution. Our data supports the independent evolution of these South African avipoxviruses from a common ancestral virus to FWPV and CNPV.
Collapse
Affiliation(s)
| | | | | | | | - Anna-Lise Williamson
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
32
|
El-Mahdy SS, Awaad MHH, Soliman YA. Molecular identification of local field isolated fowl pox virus strain from Giza governorate of Egypt. Vet World 2014. [DOI: 10.14202/vetworld.2014.66-71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Mitsuhashi W, Miyamoto K, Wada S. The complete genome sequence of the Alphaentomopoxvirus Anomala cuprea entomopoxvirus, including its terminal hairpin loop sequences, suggests a potentially unique mode of apoptosis inhibition and mode of DNA replication. Virology 2014; 452-453:95-116. [PMID: 24606687 DOI: 10.1016/j.virol.2013.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/28/2013] [Accepted: 12/26/2013] [Indexed: 02/07/2023]
Abstract
Complete genome sequence of Anomala cuprea entomopoxvirus, which belongs to the genus Alphaentomopoxvirus, including its terminal hairpin loop sequences, is reported. This is the first genome sequence of Alphaentomopoxvirus reported, and hairpin loops in entomopoxviruses have not previously been sequenced. The genome is 245,717 bp, which is smaller than had previously been estimated for Alphaentomopoxvirus. The inverted terminal repeats are quite long, and experimental results suggest that one genome molecule has one type of hairpin at one end and another type at the other end. The genome contains unexpected ORFs, e.g., that for the ubiquitin-conjugating enzyme E2 of eukaryotes. The BIR and RING domains found in a single ORF for an inhibitor of apoptosis in baculoviruses and entomopoxviruses occurred in two different, widely separated ORFs. Furthermore, an ORF in the genome contains a serpin domain that was previously found in vertebrate poxviruses for apoptosis inhibition but not in insect viruses.
Collapse
Affiliation(s)
- Wataru Mitsuhashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | - Kazuhisa Miyamoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Sanae Wada
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
34
|
Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 2014; 4:63-76. [PMID: 15757474 DOI: 10.1586/14760584.4.1.63] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live vaccines against fowlpox virus, which causes moderate pathology in poultry and is the type species of the Avipoxvirus genus, were developed in the 1920s. Development of recombinant fowlpox virus vector vaccines began in the 1980s, for use not only in poultry, but also in mammals including humans. In common with other avipoxviruses, such as canarypox virus, fowlpox virus enters mammalian cells and expresses proteins, but replicates abortively. The use of fowlpox virus as a safe vehicle for expression of foreign antigens and host immunomodulators, is being evaluated in numerous clinical trials of vaccines against cancer, malaria, tuberculosis and AIDS, notably in heterologous prime-boost regimens. In this article, technical approaches to, and issues surrounding, the use of fowlpox virus as a recombinant vaccine vector in poultry and mammals are reviewed.
Collapse
Affiliation(s)
- Michael A Skinner
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Subclinical immunosuppression in chickens is an important but often underestimated factor in the subsequent development of clinical disease. Immunosuppression can be caused by pathogens such as chicken infectious anemia virus, infectious bursal disease virus, reovirus, and some retroviruses (e.g., reticuloendotheliosis virus). Mycotoxins and stress, often caused by poor management practices, can also cause immunosuppression. The effects on the innate and acquired immune responses and the mechanisms by which mycotoxins, stress and infectious agents cause immunosuppression are discussed. Immunoevasion is a common ploy by which viruses neutralize or evade immune responses. DNA viruses such as herpesvirus and poxvirus have multiple genes, some of them host-derived, which interfere with effective innate or acquired immune responses. RNA viruses may escape acquired humoral and cellular immune responses by mutations in protective antigenic epitopes (e.g., avian influenza viruses), while accessory non-structural proteins or multi-functional structural proteins interfere with the interferon system (e.g., Newcastle disease virus).
Collapse
|
36
|
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:15-40. [PMID: 24161410 PMCID: PMC3945082 DOI: 10.1016/j.meegid.2013.10.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.
Collapse
Affiliation(s)
- Sherry L Haller
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Chen Peng
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA.
| |
Collapse
|
37
|
Abdellatif MM, Salim B, Ibrahim AA, Asil T, Khalafalla AI. Analysis of TK and C18L genes of wild-type and cell culture passaged camelpox virus. Virol Sin 2013; 28:239-241. [PMID: 23913181 PMCID: PMC8208364 DOI: 10.1007/s12250-013-3329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/09/2013] [Indexed: 02/08/2023] Open
Affiliation(s)
- Muaz M. Abdellatif
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314 Sudan
- Department of Microbiology, Faculty of Veterinary Science, University of Nyala, Southern Darfur, P.O. Box 155, Nyala, Sudan
| | - Bashir Salim
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314 Sudan
| | - Awad A. Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314 Sudan
| | - Tigani Asil
- Department of Pathology, Faculty of Veterinary Science, University of Nyala, Southern Darfur, P.O. Box 155, Nyala, Sudan
| | - Abdelmalik I. Khalafalla
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314 Sudan
| |
Collapse
|
38
|
Offerman K, Carulei O, Gous TA, Douglass N, Williamson AL. Phylogenetic and histological variation in avipoxviruses isolated in South Africa. J Gen Virol 2013; 94:2338-2351. [PMID: 23860490 PMCID: PMC3785031 DOI: 10.1099/vir.0.054049-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thirteen novel avipoxviruses were isolated from birds from different regions of South Africa. These viruses could be divided into six groups, according to gross pathology and pock appearance on chick chorioallantoic membranes (CAMs). Histopathology revealed distinct differences in epidermal and mesodermal cell proliferation, as well as immune cell infiltration, caused by the different avipoxviruses, even within groups of viruses causing similar CAM gross pathology. In order to determine the genetic relationships among the viruses, several conserved poxvirus genetic regions, corresponding to vaccinia virus (VACV) A3L (fpv167 locus, VACV P4b), G8R (fpv126 locus, VLTF-1), H3L (fpv140 locus, VACV H3L) and A11R–A12L (fpv175–176 locus) were analysed phylogenetically. The South African avipoxvirus isolates in this study all grouped in clade A, in either subclade A2 or A3 of the genus Avipoxvirus and differ from the commercial fowlpox vaccines (subclade A1) in use in the South African poultry industry. Analysis of different loci resulted in different branching patterns. There was no correlation between gross morphology, histopathology, pock morphology and phylogenetic grouping. There was also no correlation between geographical distribution and virus phenotype or genotype.
Collapse
Affiliation(s)
- Kristy Offerman
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Olivia Carulei
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Nicola Douglass
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
39
|
Draper SJ, Cottingham MG, Gilbert SC. Utilizing poxviral vectored vaccines for antibody induction-progress and prospects. Vaccine 2013; 31:4223-30. [PMID: 23746455 PMCID: PMC7131268 DOI: 10.1016/j.vaccine.2013.05.091] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
Poxviral vectors are now regarded as robust tools for B cell and antibody induction. Antibody responses can be induced against the vector as well as a transgene. Increasing application is seen in heterologous prime–boost immunization regimes. Effective veterinary poxviral vaccine products are now licensed. Promising results of antibody induction are being reported in human clinical trials.
Over the last decade, poxviral vectors emerged as a mainstay approach for the induction of T cell-mediated immunity by vaccination, and their suitability for human use has led to widespread clinical testing of candidate vectors against infectious intracellular pathogens and cancer. In contrast, poxviruses have been widely perceived in the vaccine field as a poor choice of vector for the induction of humoral immunity. However, a growing body of data, from both animal models and recent clinical trials, now suggests that these vectors can be successfully utilized to prime and boost B cells and effective antibody responses. Significant progress has been made in the context of heterologous prime–boost immunization regimes, whereby poxviruses are able to boost responses primed by other vectors, leading to the induction of high-titre antigen-specific antibody responses. In other cases, poxviral vectors have been shown to stimulate humoral immunity against both themselves and encoded transgenes, in particular viral surface proteins such as influenza haemagglutinin. In the veterinary field, recombinant poxviral vectors have made a significant impact with numerous vectors licensed for use against a variety of animal viruses. On-going studies continue to explore the potential of poxviral vectors to modulate qualitative aspects of the humoral response, as well as their amenability to adjuvantation seeking to improve quantitative antibody immunogenicity. Nevertheless, the underlying mechanisms of B cell induction by recombinant poxviruses remain poorly defined, and further work is necessary to help guide the rational optimization of future poxviral vaccine candidates aiming to induce antibodies.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | | | | |
Collapse
|
40
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|
41
|
Genetic screen of a library of chimeric poxviruses identifies an ankyrin repeat protein involved in resistance to the avian type I interferon response. J Virol 2013; 87:5028-40. [PMID: 23427151 DOI: 10.1128/jvi.02738-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viruses must be able to resist host innate responses, especially the type I interferon (IFN) response. They do so by preventing the induction or activity of IFN and/or by resisting the antiviral effectors that it induces. Poxviruses are no exception, with many mechanisms identified whereby mammalian poxviruses, notably, vaccinia virus (VACV), but also cowpox and myxoma viruses, are able to evade host IFN responses. Similar mechanisms have not been described for avian poxviruses (avipoxviruses). Restricted for permissive replication to avian hosts, they have received less attention; moreover, the avian host responses are less well characterized. We show that the prototypic avipoxvirus, fowlpox virus (FWPV), is highly resistant to the antiviral effects of avian IFN. A gain-of-function genetic screen identified fpv014 to contribute to increased resistance to exogenous recombinant chicken alpha IFN (ChIFN1). fpv014 is a member of the large family of poxvirus (especially avipoxvirus) genes that encode proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. By binding the Skp1/cullin-1 complex, the F box in such proteins appears to target ligands bound by the ANKs for ubiquitination. Mass spectrometry and immunoblotting demonstrated that tandem affinity-purified, tagged fpv014 was complexed with chicken cullin-1 and Skp1. Prior infection with an fpv014-knockout mutant of FWPV still blocked transfected poly(I·C)-mediated induction of the beta IFN (ChIFN2) promoter as effectively as parental FWPV, but the mutant was more sensitive to exogenous ChIFN1. Therefore, unlike the related protein fpv012, fpv014 does not contribute to the FWPV block to induction of ChIFN2 but does confer resistance to an established antiviral state.
Collapse
|
42
|
Genetic screen of a mutant poxvirus library identifies an ankyrin repeat protein involved in blocking induction of avian type I interferon. J Virol 2013; 87:5041-52. [PMID: 23427153 DOI: 10.1128/jvi.02736-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian poxviruses, including vaccinia virus (VACV), have evolved multiple mechanisms to evade the host type I interferon (IFN) responses at different levels, with viral proteins targeting IFN induction, signaling, and antiviral effector functions. Avian poxviruses (avipoxviruses), which have been developed as recombinant vaccine vectors for permissive (i.e., poultry) and nonpermissive (i.e., mammals, including humans) species, encode no obvious equivalents of any of these proteins. We show that fowlpox virus (FWPV) fails to induce chicken beta IFN (ChIFN2) and is able to block its induction by transfected poly(I·C), an analog of cytoplasmic double-stranded RNA (dsRNA). A broad-scale loss-of-function genetic screen was used to find FWPV-encoded modulators of poly(I·C)-mediated ChIFN2 induction. It identified fpv012, a member of a family of poxvirus genes highly expanded in the avipoxviruses (31 in FWPV; 51 in canarypox virus [CNPV], representing 15% of the total gene complement), encoding proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. Under ectopic expression, the first ANK of fpv012 is dispensable for inhibitory activity and the CNPV ortholog is also able to inhibit induction of ChIFN2. FWPV defective in fpv012 replicates well in culture and barely induces ChIFN2 during infection, suggesting that other factors are involved in blocking IFN induction and resisting the antiviral effectors. Nevertheless, unlike parental and revertant viruses, the mutants induce moderate levels of expression of interferon-stimulated genes (ISGs), suggesting either that there is sufficient ChIFN2 expression to partially induce the ISGs or the involvement of alternative, IFN-independent pathways that are also normally blocked by fpv012.
Collapse
|
43
|
Rowland R, Pathan AA, Satti I, Poulton ID, Matsumiya MML, Whittaker M, Minassian AM, O'Hara GA, Hamill M, Scott JT, Harris SA, Poyntz HC, Bateman C, Meyer J, Williams N, Gilbert SC, Lawrie AM, Hill AVS, McShane H. Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: a phase I clinical trial. Hum Vaccin Immunother 2012; 9:50-62. [PMID: 23143773 PMCID: PMC3667946 DOI: 10.4161/hv.22464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The safety and immunogenicity of a new candidate tuberculosis (TB) vaccine, FP85A was evaluated alone and in heterologous prime-boost regimes with another candidate TB vaccine, MVA85A. This was an open label, non-controlled, non-randomized Phase I clinical trial. Healthy previously BCG-vaccinated adult subjects were enrolled sequentially into three groups and vaccinated with FP85A alone, or both FP85A and MVA85A, with a four week interval between vaccinations. Passive and active data on adverse events were collected. Immunogenicity was evaluated by Enzyme Linked Immunospot (ELISpot), flow cytometry and Enzyme Linked Immunosorbent assay (ELISA). Most adverse events were mild and there were no vaccine-related serious adverse events. FP85A vaccination did not enhance antigen 85A-specific cellular immunity. When MVA85A vaccination was preceded by FP85A vaccination, cellular immune responses were lower compared with when MVA85A vaccination was the first immunisation. MVA85A vaccination, but not FP85A vaccination, induced anti-MVA IgG antibodies. Both MVA85A and FP85A vaccinations induced anti-FP9 IgG antibodies. In conclusion, FP85A vaccination was well tolerated but did not induce antigen-specific cellular immune responses. We hypothesize that FP85A induced anti-FP9 IgG antibodies with cross-reactivity for MVA85A, which may have mediated inhibition of the immune response to subsequent MVA85A. ClinicalTrials.gov identification number: NCT00653770
Collapse
|
44
|
Mahgoub HA, Bailey M, Kaiser P. An overview of infectious bursal disease. Arch Virol 2012; 157:2047-57. [PMID: 22707044 DOI: 10.1007/s00705-012-1377-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/08/2012] [Indexed: 11/27/2022]
Abstract
Infectious bursal disease (IBD) is a viral immunosuppressive disease of chickens attacking mainly an important lymphoid organ in birds [the bursa of Fabricius (BF)]. The emergence of new variant strains of the causative agent [infectious bursal disease virus (IBDV)] has made it more urgent to develop new vaccination strategies against IBD. One of these strategies is the use of recombinant vaccines (DNA and viral-vectored vaccines). Several studies have investigated the host immune response towards IBDV. This review will present a detailed background on the disease and its causative agent, accompanied by a summary of the most recent findings regarding the host immune response to IBDV infection and the use of recombinant vaccines against IBD.
Collapse
|
45
|
Weli SC, Tryland M. Avipoxviruses: infection biology and their use as vaccine vectors. Virol J 2011; 8:49. [PMID: 21291547 PMCID: PMC3042955 DOI: 10.1186/1743-422x-8-49] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/03/2011] [Indexed: 11/21/2022] Open
Abstract
Avipoxviruses (APVs) belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV) causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production) mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses) and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.
Collapse
Affiliation(s)
- Simon C Weli
- National Veterinary Institute, Ullevålsveien 68, N-0106 Oslo, Norway.
| | | |
Collapse
|
46
|
Jeshtadi A, Burgos P, Stubbs CD, Parker AW, King LA, Skinner MA, Botchway SW. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy. J Virol 2010; 84:12886-94. [PMID: 20943972 PMCID: PMC3004322 DOI: 10.1128/jvi.01395-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/24/2010] [Indexed: 11/20/2022] Open
Abstract
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.
Collapse
Affiliation(s)
- Ananya Jeshtadi
- School of Life Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
47
|
Genome comparison of a nonpathogenic myxoma virus field strain with its ancestor, the virulent Lausanne strain. J Virol 2008; 83:2397-403. [PMID: 19091868 DOI: 10.1128/jvi.02189-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the best-studied examples of host-virus coevolution is the release of myxoma virus (MV) for biological control of European rabbits in Australia and Europe. To investigate the genetic basis of MV adaptation to its new host, we sequenced the genome of 6918, an attenuated Spanish field strain, and compared it with that of Lausanne, the strain originally released in Europe in 1952. Although isolated 43 years apart, the genomes were highly conserved (99.95% identical). Only 32 of the 159 MV predicted proteins revealed amino acid changes. Four genes (M009L, M036L, M135R, and M148R) in 6918 were disrupted by frameshift mutations.
Collapse
|
48
|
Toppo S, Vanin S, Bosello V, Tosatto SCE. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal 2008; 10:1501-14. [PMID: 18498225 DOI: 10.1089/ars.2008.2057] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glutathione peroxidase (GPx) is a widespread protein superfamily found in many organisms throughout all kingdoms of life. Although it was initially thought to use only glutathione as reductant, recent evidence suggests that the majority of GPxs have specificity for thioredoxin. We present a thorough in silico analysis performed on 724 sequences and 12 structures aimed to clarify the evolutionary, structural, and sequence determinants of GPx specificity. Structural variability was found to be limited to only two regions, termed oligomerization loop and functional helix, which modulate both reduced substrate specificity and oligomerization state. We show that mammalian GPx-1, the canonic selenocysteine-based tetrameric glutathione peroxidase, is a recent "invention" during evolution. Contrary to common belief, cysteine-based thioredoxin-specific GPx, which we propose the TGPx, are both more common and more ancient. This raises interesting evolutionary considerations regarding oligomerization and the use of active-site selenocysteine residue. In addition, phylogenetic analysis has revealed the presence of a novel member belonging to the GPx superfamily in Mammalia and Amphibia, for which we propose the name GPx-8, following the present numeric order of the mammalian GPxs.
Collapse
Affiliation(s)
- Stefano Toppo
- Department of Biological Chemistry, University of Padova, Italy.
| | | | | | | |
Collapse
|
49
|
Rogers SL, Kaufman J. High allelic polymorphism, moderate sequence diversity and diversifying selection for B-NK but not B-lec, the pair of lectin-like receptor genes in the chicken MHC. Immunogenetics 2008; 60:461-75. [PMID: 18574582 DOI: 10.1007/s00251-008-0307-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/16/2008] [Indexed: 11/25/2022]
Abstract
We previously characterised the C-type lectin-like receptor genes B-NK and B-lec, located next to each other in opposite orientations in the chicken major histocompatibility complex (MHC). We showed that B-NK is an inhibitory receptor expressed on natural killer cells, whereas B-lec is an activation-induced receptor with a broader expression pattern. It is interesting to note that the chicken MHC has been linked with resistance or susceptibility to Marek's disease virus (MDV), an oncogenic herpes virus. Recent reports show that the C-type lectin-like receptors in mouse and rat (Ly49H, NKR-P1 and Clr) are associated with resistance to another herpesvirus, cytomegalovirus (CMV). Therefore, B-NK and B-lec are potential candidate genes for the MHC-mediated resistance to MDV. In this paper, we report that both genes encode glycosylated type II membrane proteins that form disulphide-linked homodimers. The gene sequences from nine lines of domestic chicken representing seven haplotypes show that B-lec is well conserved between the different haplotypes, apparently under purifying selection. In contrast, B-NK has high allelic polymorphism and moderate sequence diversity, with 21 nucleotide changes in the complementary deoxyribonucleic acids (cDNAs) resulting in 20 amino acid substitutions. The allelic variations include substitutions, an indel and loss/gain of three predicted N-linked glycosylation sites. Strikingly, there is as much as 7% divergence between protein sequences of B-NK from different haplotypes, greater than the difference observed between the highly polymorphic human KIR NK receptors. Analysis of ds and dn reveal evidence of strong positive selection for B-NK to be polymorphic at the protein level, and modelling demonstrates significant variation between haplotypes in the predicted ligand binding face of B-NK.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Chickens/genetics
- Chickens/immunology
- Chickens/metabolism
- DNA, Complementary/genetics
- Flow Cytometry
- Genetic Variation
- Haplotypes/genetics
- Humans
- Killer Cells, Natural/immunology
- Lectins, C-Type/genetics
- Models, Immunological
- Molecular Sequence Data
- Polymorphism, Genetic/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Mitogen/genetics
- Selection, Genetic
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Sally L Rogers
- Immunology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | |
Collapse
|
50
|
Guzman E, Taylor G, Charleston B, Skinner MA, Ellis SA. An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV. J Gen Virol 2008; 89:667-675. [PMID: 18272757 DOI: 10.1099/vir.0.83417-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hooved animals that carries enormous economic consequences. CD8(+) cytotoxic T lymphocytes play an important role in protection and disease outcome in viral infections but, to date, the role of the CD8(+) T-cell immune response to FMDV remains unclear. This study aimed to investigate major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell responses to FMDV in vaccinated and in infected cattle. An in vitro assay was used to detect antigen-specific gamma interferon release by CD8(+) T cells in FMDV-infected cattle of known MHC class I genotypes. A significant MHC class I-restricted CD8(+) T-cell response was detected to both FMDV strain O1 BFS and a recombinant fowlpox virus expressing the structural proteins of FMDV. Antigen-specific MHC class I-restricted CD8(+) T-cell responses were also detected in cattle vaccinated with inactivated FMDV. These responses were shown to be directed, at least in part, to epitopes within the structural proteins (P12A region) of the virus. By using mouse cells expressing single cattle MHC class I alleles, it was possible to identify the restriction elements in each case. Identification of these epitopes will facilitate the quantitative and qualitative analysis of FMDV-specific memory CD8(+) T cells in cattle and help to ensure that potential vaccines induce a qualitatively appropriate CD8(+) T-cell response.
Collapse
Affiliation(s)
- Efrain Guzman
- Institute for Animal Health (IAH), Division of Immunology, Compton, Newbury RG20 7NN, UK
| | - Geraldine Taylor
- Institute for Animal Health (IAH), Division of Immunology, Compton, Newbury RG20 7NN, UK
| | - Bryan Charleston
- Institute for Animal Health (IAH), Division of Immunology, Compton, Newbury RG20 7NN, UK
| | - Michael A Skinner
- Department of Virology, Division of Investigative Science, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Shirley A Ellis
- Institute for Animal Health (IAH), Division of Immunology, Compton, Newbury RG20 7NN, UK
| |
Collapse
|