1
|
Krakowiak PA, Flores ME, Cuddy SR, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid-sensing pathways by HSV-1 UL12.5 for reactivation from latent infection. Proc Natl Acad Sci U S A 2025; 122:e2413965122. [PMID: 39854226 PMCID: PMC11789124 DOI: 10.1073/pnas.2413965122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 01/26/2025] Open
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune-sensing pathways triggered HSV-1 reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA- and DNA-sensing pathways, demonstrating that HSV-1 can respond to and active antiviral nucleic acid-sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Sean R. Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
2
|
Singh N, Zachariah S, Phillips AT, Tscharke D. Lytic promoter activity during herpes simplex virus latency is dependent on genome location. J Virol 2024; 98:e0125824. [PMID: 39431845 PMCID: PMC11575402 DOI: 10.1128/jvi.01258-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a significant pathogen that establishes lifelong latent infections with intermittent episodes of resumed disease. In mouse models of HSV infection, sporadic low-level lytic gene expression has been detected during latency in the absence of reactivation events that lead to production of new viruses. This viral activity during latency has been reported using a sensitive Cre-marking model for several lytic gene promoters placed in one location in the HSV-1 genome. Here, we extend these findings in the same model by examining first, the activity of an ectopic lytic gene promoter in several places in the genome and second, whether any promoters might be active in their natural context. We found that Cre expression was detected during latency from ectopic and native promoters, but only in locations near the ends of the unique long genome segment. This location is significant because it is in close proximity to the region from which latency-associated transcripts (LATs) are derived. These results show that native HSV-1 lytic gene promoters can produce protein products during latency, but that this activity is only detectable when they are located close to the LAT locus.IMPORTANCEHSV is a significant human pathogen and the best studied model of mammalian virus latency. Traditionally, the active (lytic) and inactive (latent) phases of infection were considered to be distinct, but the notion of latency being entirely quiescent is evolving due to the detection of some lytic gene expression during latency. Here, we add to this literature by finding that the activity can be found for native lytic gene promoters as well as for constructs placed ectopically in the HSV genome. However, this activity was only detectable when these promoters were located close by a region known to be transcriptionally active during latency. These data have implications for our understanding of HSV gene regulation during latency and the extent to which transcriptionally active regions are insulated from adjacent parts of the viral genome.
Collapse
Affiliation(s)
- Navneet Singh
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sherin Zachariah
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Aaron T Phillips
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Philip DT, Goins NM, Lazear HM. A fur plucking model to study herpes simplex virus reactivation and recurrent disease. mSphere 2024; 9:e0078323. [PMID: 39382285 PMCID: PMC11520289 DOI: 10.1128/msphere.00783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) most commonly cause ulcerative epithelial lesions (cold sores and genital herpes). Importantly, HSV establishes life-long persistent (latent) infection in peripheral neurons. Reactivation from latency produces recurrent epithelial lesions, which constitute the greatest burden of HSV disease in people. The mechanisms that regulate latency and reactivation remain incompletely understood, in part due to limitations in the animal models available for studying HSV reactivation. We have developed a simple and tractable model to induce HSV-1 and HSV-2 reactivation from latency to cause recurrent skin disease. We infected C57BL/6 mice with HSV-1 (strains NS, F, SC16, 17syn+) or HSV-2 (strain 333) on flank skin depilated by manual plucking. After at least 35 days post-infection (dpi), we replucked the fur from the infected flank and observed recurrent lesions in the same dermatome as the primary infection. We detected HSV DNA in dermatome skin through 4 days post-replucking and observed viral antigen and reporter signal in skin lesions by histology, consistent with viral replication following reactivation. In addition to C57BL/6 mice, we were able to produce reactivation in Balb/c and SKH-1 mice. We found that shaving the ipsilateral flank or plucking the contralateral flank did not induce recurrent skin lesions, suggesting that fur plucking is a specific stimulus that induces HSV reactivation. Furthermore, we were able to induce multiple rounds of plucking-induced recurrent disease, providing a model to investigate the lifelong nature of HSV infection. This new model provides a tractable system for studying pathogenic mechanisms of and therapeutic interventions against HSV reactivation and recurrent disease. IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) have infected over half of the US adult population to cause a lifelong, persistent infection; however, our understanding of the mechanisms that govern HSV reactivation and recurrent disease is incomplete. This is in part due to limitations in the animal models used to study recurrent disease, which are laborious and inefficient in mice. To address this technical gap, we developed a mouse model in which fur plucking after flank skin infection is sufficient to induce episodes of HSV reactivation and recurrent disease. Our work provides a model for the field to investigate the pathogenic mechanisms of HSV and immune responses during recurrent disease and provides an opportunity to investigate the neurobiology of HSV infection.
Collapse
Affiliation(s)
- Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel M. Goins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Cuddy SR, Flores ME, Krakowiak PA, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid sensing pathways by HSV-1 UL12.5 for reactivation from latent Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.601241. [PMID: 39005440 PMCID: PMC11245091 DOI: 10.1101/2024.07.06.601241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt anti-viral responses for their benefit. The ubiquitous human pathogen, Herpes Simplex Virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune sensing pathways and reduces productive replication in non-neuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune sensing pathways triggered HSV reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA and DNA sensing pathways, demonstrating that HSV-1 can both respond to and active antiviral nucleic acid sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna. R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
5
|
Domanico LF, Dunn GP, Kobiler O, Taylor MP. A dual fluorescent herpes simplex virus type 1 recombinant reveals divergent outcomes of neuronal infection. J Virol 2024; 98:e0003224. [PMID: 38651900 PMCID: PMC11092338 DOI: 10.1128/jvi.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.
Collapse
Affiliation(s)
- Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Gary P. Dunn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
6
|
Velusamy T, Singh N, Croft S, Smith S, Tscharke DC. The expression and function of HSV ICP47 and its promoter in mice. J Virol 2023; 97:e0110723. [PMID: 37902400 PMCID: PMC10688380 DOI: 10.1128/jvi.01107-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Immune evasion and latency are key mechanisms that underlie the success of herpesviruses. In each case, interactions between viral and host proteins are required and due to co-evolution, not all mechanisms are preserved across host species, even if infection is possible. This is highlighted by the herpes simplex virus (HSV) protein immediate early-infected cell protein (ICP)47, which inhibits the detection of infected cells by killer T cells and acts with high efficiency in humans, but poorly, if at all in mouse cells. Here, we show that ICP47 retains modest but detectable function in mouse cells, but in an in vivo model we found no role during acute infection or latency. We also explored the activity of the ICP47 promoter, finding that it could be active during latency, but this was dependent on genome location. These results are important to interpret HSV pathogenesis work done in mice.
Collapse
Affiliation(s)
- Thilaga Velusamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Navneet Singh
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Arbuckle JH, Vogel JL, Efstathiou S, Kristie TM. Deletion of the Transcriptional Coactivator HCF-1 In Vivo Impairs the Removal of Repressive Heterochromatin from Latent HSV Genomes and Suppresses the Initiation of Viral Reactivation. mBio 2023; 14:e0354222. [PMID: 36692302 PMCID: PMC9973298 DOI: 10.1128/mbio.03542-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Transcription of herpes simplex virus 1 (HSV-1) immediate early (IE) genes is controlled at multiple levels by the cellular transcriptional coactivator, HCF-1. HCF-1 is complexed with epigenetic factors that prevent silencing of the viral genome upon infection, transcription factors that drive initiation of IE gene expression, and transcription elongation factors required to circumvent RNAPII pausing at IE genes and promote productive IE mRNA synthesis. Significantly, the coactivator is also implicated in the control of viral reactivation from latency in sensory neurons based on studies that demonstrate that HCF-1-associated epigenetic and transcriptional elongation complexes are critical to initiate IE expression and viral reactivation. Here, an HCF-1 conditional knockout mouse model (HCF-1cKO) was derived to probe the role and significance of HCF-1 in the regulation of HSV-1 latency/reactivation in vivo. Upon deletion of HCF-1 in sensory neurons, there is a striking reduction in the number of latently infected neurons that initiate viral reactivation. Importantly, this correlated with a defect in the removal of repressive chromatin associated with latent viral genomes. These data demonstrate that HCF-1 is a critical regulatory factor that governs the initiation of HSV reactivation, in part, by promoting the transition of latent viral genomes from a repressed heterochromatic state. IMPORTANCE Herpes simplex virus is responsible for a substantial worldwide disease burden. An initial infection leads to the establishment of a lifelong persistent infection in sensory neurons. Periodic reactivation can result in recurrent oral and genital lesions to more significant ocular disease. Despite the significance of this pathogen, many of the regulatory factors and molecular mechanisms that govern the viral latency-reactivation cycles have yet to be elucidated. Initiation of both lytic infection and reactivation are dependent on the expression of the viral immediate early genes. In vivo deletion of a central component of the IE regulatory paradigm, the cellular transcriptional coactivator HCF-1, reduces the epigenetic transition of latent viral genomes, thus suppressing HSV reactivation. These observations define HCF-1 as a critical regulator that controls the initiation of HSV reactivation from latency in vivo and contribute to understanding of the molecular mechanisms that govern viral reactivation.
Collapse
Affiliation(s)
- Jesse H. Arbuckle
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jodi L. Vogel
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stacey Efstathiou
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol 2022; 96:e0050822. [PMID: 35608347 PMCID: PMC9215246 DOI: 10.1128/jvi.00508-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.
Collapse
Affiliation(s)
- Sara Dochnal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Husain Y. Merchant
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Austin R. Schinlever
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Barrozo ER, Aagaard KM. Human placental biology at single-cell resolution: a contemporaneous review. BJOG 2022; 129:208-220. [PMID: 34651399 PMCID: PMC8688323 DOI: 10.1111/1471-0528.16970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
Single-cell technologies capture cellular heterogeneity to focus on previously poorly described subpopulations of cells. Work by our laboratory and many others has metagenomically characterised a low biomass intrauterine microbial community, alongside microbial transcripts, antigens and metabolites, but the functional importance of low biomass microbial communities in placental immuno-microenvironments is still being elucidated. Given their hypothesised role in modulating inflammation and immune ontogeny to enable tolerance of beneficial microbes while warding off pathogens, there is a need for single-cell resolution. Herein, we summarise the potential for mechanistic understanding of these and other key fundamental early developmental processes by applying single-cell approaches.
Collapse
Affiliation(s)
- Enrico R. Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children’s Hospital, Houston, TX, USA
| | - Kjersti M. Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babnis A, Boutell C, Cliffe AR. PML-NB-dependent type I interferon memory results in a restricted form of HSV latency. EMBO Rep 2021; 22:e52547. [PMID: 34197022 PMCID: PMC8419685 DOI: 10.15252/embr.202152547] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sean R Cuddy
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Hiam Baidas
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Chris Boutell
- MRC‐University of Glasgow Centre for Virus Research (CVR)GlasgowUK
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
12
|
Carr DJJ, Gmyrek GB, Filiberti A, Berube AN, Browne WP, Gudgel BM, Sjoelund VH. Distinguishing Features of High- and Low-Dose Vaccine against Ocular HSV-1 Infection Correlates with Recognition of Specific HSV-1-Encoded Proteins. Immunohorizons 2020; 4:608-626. [PMID: 33037098 DOI: 10.4049/immunohorizons.2000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Amanda N Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William P Browne
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Brett M Gudgel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Virginie H Sjoelund
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
13
|
Herpes Simplex Virus Latency Is Noisier the Closer We Look. J Virol 2020; 94:JVI.01701-19. [PMID: 31776275 DOI: 10.1128/jvi.01701-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.
Collapse
|
14
|
Cohen C, Corpet A, Maroui MA, Juillard F, Lomonte P. Latent/Quiescent Herpes Simplex Virus 1 Genome Detection by Fluorescence In Situ Hybridization (FISH). Methods Mol Biol 2020; 2060:185-197. [PMID: 31617179 DOI: 10.1007/978-1-4939-9814-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescence in situ hybridization (FISH) has been widely used to analyze genome loci at a single cell level in order to determine within a cell population potential discrepancies in their regulation according to the nuclear positioning. Latent herpes simplex virus 1 (HSV-1) genome remains as an episome in the nucleus of the infected neurons. Accordingly, depending on the location of the viral genomes in the nucleus, they could be targeted by different types of epigenetic regulations important for the establishment and stability of latency, and ultimately for the capacity of HSV-1 to reactivate. Therefore, it is important to take into consideration the interaction of the viral genomes with the nuclear environment to integrate this aspect in the overall set of physiological, immunological, and molecular data that have been produced, and which constitute the main knowledge regarding the biology of HSV-1. In this method chapter we describe in detail the procedure to perform FISH for the detection of HSV-1 genomes particularly during latency and also the combination of this approach with the detection of cellular and/or viral proteins.
Collapse
Affiliation(s)
- Camille Cohen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Mohamed Ali Maroui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Franceline Juillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France.
| |
Collapse
|
15
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent and important human pathogen that has been studied in a wide variety of contexts. This book provides protocols currently in use in leading laboratories in many fields of HSV-1 research. This introductory chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of virus structure, the prevalence of and diseases caused by the virus, replication in cultured cells, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.
Collapse
|
16
|
Herpes Simplex Virus 1 Replication, Ocular Disease, and Reactivations from Latency Are Restricted Unilaterally after Inoculation of Virus into the Lip. J Virol 2019; 93:JVI.01586-19. [PMID: 31554680 DOI: 10.1128/jvi.01586-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
Ocular herpes simplex keratitis (HSK) is a consequence of viral reactivations from trigeminal ganglia (TG) and occurs almost exclusively in the same eye in humans. In our murine oro-ocular (OO) model, herpes simplex virus 1 (HSV-1) inoculation in one side of the lip propagates virus to infect the ipsilateral TG. Replication here allows infection of the brainstem and infection of the contralateral TG. Interestingly, HSK was observed in our OO model only from the eye ipsilateral to the site of lip infection. Thus, unilateral restriction of HSV-1 may be due to differential kinetics of virus arrival in the ipsilateral versus contralateral TG. We inoculated mice with HSV-1 reporter viruses and then superinfected them to monitor changes in acute- and latent-phase gene expression in TG after superinfection compared to the control (single inoculation). Delaying superinfection by 4 days after initial right lip inoculation elicited failed superinfecting-virus gene expression and eliminated clinical signs of disease. Initial inoculation with thymidine kinase-deficient HSV-1 (TKdel) completely abolished reactivation of wild-type (WT) superinfecting virus from TG during the latent stage. In light of these seemingly failed infections, viral genome was detected in both TG. Our data demonstrate that inoculation of HSV-1 in the lip propagates virus to both TG, but with delay in reaching the TG contralateral to the side of lip infection. This delay is responsible for restricting viral replication to the ipsilateral TG, which abrogates ocular disease and viral reactivations from the contralateral side. These observations may help to understand why HSK is observed unilaterally in humans, and they provide insight into vaccine strategies to protect against HSK.IMPORTANCE Herpetic keratitis (HK) is the leading cause of blindness by an infectious agent in the developed world. This disease can occur after reactivation of herpes simplex virus 1 in the trigeminal ganglia, leading to dissemination of virus to, and infection of, the cornea. A clinical paradox is evidenced by the bilateral presence of latent viral genomes in both trigeminal ganglia, while for any given patient the disease is unilateral with recurrences in a single eye. Our study links the kinetics of early infection to unilateral disease phenomenon and demonstrates protection against viral reactivation when kinetics are exploited. Our results have direct implications in the understanding of human disease pathogenesis and immunotherapeutic strategies for the treatment of HK and viral reactivations.
Collapse
|
17
|
Sun B, Wang Q, Pan D. [Mechanisms of herpes simplex virus latency and reactivation]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:89-101. [PMID: 31102363 PMCID: PMC8800643 DOI: 10.3785/j.issn.1008-9292.2019.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Herpes simplex virus (HSV), including HSV-1 and HSV-2, is an important pathogen that can cause many diseases. Usually these diseases are recurrent and incurable. After lytic infection on the surface of peripheral mucosa, HSV can enter sensory neurons and establish latent infection during which viral replication ceases. Moreover, latent virus can re-enter the replication cycle by reactivation and return to peripheral tissues to start recurrent infection. This ability to escape host immune surveillance during latent infection and to spread during reactivation is a viral survival strategy and the fundamental reason why no drug can completely eradicate the virus at present. Although there are many studies on latency and reactivation of HSV, and much progress has been made, many specific mechanisms of the process remain obscure or even controversial due to the complexity of this process and the limitations of research models. This paper reviews the major results of research on HSV latency and reactivation, and discusses future research directions in this field.
Collapse
Affiliation(s)
- Boqiang Sun
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiongyan Wang
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongli Pan
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
18
|
Vaccine-induced antibodies target sequestered viral antigens to prevent ocular HSV-1 pathogenesis, preserve vision, and preempt productive neuronal infection. Mucosal Immunol 2019; 12:827-839. [PMID: 30670763 PMCID: PMC6462227 DOI: 10.1038/s41385-019-0131-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 12/30/2018] [Indexed: 02/04/2023]
Abstract
The cornea is essential for vision yet highly sensitive to immune-mediated damage following infection. Generating vaccines that provide sterile immunity against ocular surface pathogens without evoking vision loss is therefore clinically challenging. Here, we tested a prophylactic live-attenuated vaccine against herpes simplex virus type 1 (HSV-1), a widespread human pathogen that can cause corneal blindness. Parenteral vaccination of mice resulted in sterile immunity to subsequent HSV-1 challenge in the cornea and suppressed productive infection of the nervous system. This protection was unmatched by a relevant glycoprotein subunit vaccine. Efficacy of the live-attenuated vaccine involved a T-dependent humoral immune response and complement C3 but not Fcγ-receptor 3 or interferon-α/β signaling. Proteomic analysis of viral proteins recognized by antiserum revealed an unexpected repertoire dominated by sequestered antigens rather than surface-exposed envelope glycoproteins. Ocular HSV-1 challenge in naive and subunit-vaccinated mice triggered vision loss and severe ocular pathologies including corneal opacification, scar formation, neovascularization, and sensation loss. However, corneal pathology was absent in mice receiving the live-attenuated vaccine concomitant with complete preservation of visual acuity. Collectively, this is the first comprehensive report of a prophylactic vaccine candidate that elicits resistance to ocular HSV-1 infection while fully preserving the cornea and visual acuity.
Collapse
|
19
|
Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/Histone H3.3/H3.3 Chaperone Axis. PLoS Pathog 2018; 14:e1007313. [PMID: 30235352 PMCID: PMC6168178 DOI: 10.1371/journal.ppat.1007313] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) latency establishment is tightly controlled by promyelocytic leukemia (PML) nuclear bodies (NBs) (or ND10), although their exact contribution is still elusive. A hallmark of HSV-1 latency is the interaction between latent viral genomes and PML NBs, leading to the formation of viral DNA-containing PML NBs (vDCP NBs), and the complete silencing of HSV-1. Using a replication-defective HSV-1-infected human primary fibroblast model reproducing the formation of vDCP NBs, combined with an immuno-FISH approach developed to detect latent/quiescent HSV-1, we show that vDCP NBs contain both histone H3.3 and its chaperone complexes, i.e., DAXX/ATRX and HIRA complex (HIRA, UBN1, CABIN1, and ASF1a). HIRA also co-localizes with vDCP NBs present in trigeminal ganglia (TG) neurons from HSV-1-infected wild type mice. ChIP and Re-ChIP show that vDCP NBs-associated latent/quiescent viral genomes are chromatinized almost exclusively with H3.3 modified on its lysine (K) 9 by trimethylation, consistent with an interaction of the H3.3 chaperones with multiple viral loci and with the transcriptional silencing of HSV-1. Only simultaneous inactivation of both H3.3 chaperone complexes has a significant impact on the deposition of H3.3 on viral genomes, suggesting a compensation mechanism. In contrast, the sole depletion of PML significantly impacts the chromatinization of the latent/quiescent viral genomes with H3.3 without any overall replacement with H3.1. vDCP NBs-associated HSV-1 genomes are not definitively silenced since the destabilization of vDCP NBs by ICP0, which is essential for HSV-1 reactivation in vivo, allows the recovery of a transcriptional lytic program and the replication of viral genomes. Consequently, the present study demonstrates a specific chromatin regulation of vDCP NBs-associated latent/quiescent HSV-1 through an H3.3-dependent HSV-1 chromatinization involving the two H3.3 chaperones DAXX/ATRX and HIRA complexes. Additionally, the study reveals that PML NBs are major actors in latent/quiescent HSV-1 H3.3 chromatinization through a PML NB/histone H3.3/H3.3 chaperone axis. An understanding of the molecular mechanisms contributing to the persistence of a virus in its host is essential to be able to control viral reactivation and its associated diseases. Herpes simplex virus 1 (HSV-1) is a human pathogen that remains latent in the PNS and CNS of the infected host. The latency is unstable, and frequent reactivations of the virus are responsible for PNS and CNS pathologies. It is thus crucial to understand the physiological, immunological and molecular levels of interplay between latent HSV-1 and the host. Promyelocytic leukemia (PML) nuclear bodies (NBs) control viral infections by preventing the onset of lytic infection. In previous studies, we showed a major role of PML NBs in favoring the establishment of a latent state for HSV-1. A hallmark of HSV-1 latency establishment is the formation of PML NBs containing the viral genome, which we called “viral DNA-containing PML NBs” (vDCP NBs). The genome entrapped in the vDCP NBs is transcriptionally silenced. This naturally occurring latent/quiescent state could, however, be transcriptionally reactivated. Therefore, understanding the role of PML NBs in controlling the establishment of HSV-1 latency and its reactivation is essential to design new therapeutic approaches based on the prevention of viral reactivation.
Collapse
|
20
|
Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. mBio 2018; 9:mBio.01560-18. [PMID: 30206173 PMCID: PMC6134100 DOI: 10.1128/mbio.01560-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HCMV is an important human pathogen that establishes lifelong latent infection in myeloid progenitor cells and reactivates frequently to cause significant disease in immunocompromised people. Our observation that viral gene expression is first turned on and then turned off to establish latency suggests that there is a host defense, which may be myeloid cell specific, responsible for transcriptional silencing of viral gene expression. Our observation that TNF-α induces reactivation independently of differentiation provides insight into molecular mechanisms that control reactivation. We used the Kasumi-3 model to study human cytomegalovirus (HCMV) latency and reactivation in myeloid progenitor cells. Kasumi-3 cells were infected with HCMV strain TB40/Ewt-GFP, flow sorted for green fluorescent protein-positive (GFP+) cells, and cultured for various times to monitor establishment of latency, as judged by repression of viral gene expression (RNA/DNA ratio) and loss of virus production. We found that, in the vast majority of cells, latency was established posttranscriptionally in the GFP+ infected cells: transcription was initially turned on and then turned off. We also found that some of the GFP− cells were infected, suggesting that latency might be established in these cells at the outset of infection. We were not able to test this hypothesis because some GFP− cells expressed lytic genes and thus it was not possible to separate them from GFP− quiescent cells. In addition, we found that the pattern of expression of lytic genes that have been associated with latency, including UL138, US28, and RNA2.7, was the same as that of other lytic genes, indicating that there was no preferential expression of these genes once latency was established. We confirmed previous studies showing that tumor necrosis factor alpha (TNF-α) induced reactivation of infectious virus, and by analyzing expression of the progenitor cell marker CD34 as well as myeloid cell differentiation markers in IE+ cells after treatment with TNF-α, we showed that TNF-α induced transcriptional reactivation of IE gene expression independently of differentiation. TNF-α-mediated reactivation in Kasumi-3 cells was correlated with activation of NF-κB, KAP-1, and ATM.
Collapse
|
21
|
Royer DJ, Elliott MH, Le YZ, Carr DJJ. Corneal Epithelial Cells Exhibit Myeloid Characteristics and Present Antigen via MHC Class II. Invest Ophthalmol Vis Sci 2018; 59:1512-1522. [PMID: 29625473 PMCID: PMC5861930 DOI: 10.1167/iovs.17-23279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To explore the impact of ocular surface insults on the immunomodulatory capacity and phenotype of corneal epithelial cells (CECs) with a focus on epithelial-mesenchymal transition (EMT). Methods Corneas were harvested from mice 6 days following scratch injury, ragweed pollen-induced allergy, or herpes simplex virus type 1 (HSV-1) infection and compared to healthy tissue controls. Corneas were enzymatically digested and CECs phenotypically characterized using flow cytometry. CECs were defined as epithelial cell adhesion molecule (EpCAM)-positive CD45-negative cells. CECs were assessed by PCR to evaluate EMT-associated transcripts. Recombinant HSV-1 and transgenic mice were utilized to investigate the role of vascular endothelial growth factor A (VEGFA) on the phenotype observed. The immunomodulatory potential of CECs was assessed in coculture assays with ovalbumin-specific CD4 T cells. Results Ectopic expression of classic "myeloid" antigens Ly6G, CCR2, and CX3CR1 was identified in CEC subsets from all groups with evidence supporting an underlying partial EMT event resulting from loss of cell-cell contacts. Corneal HSV-1 infection induced Ly6C expression and major histocompatibility complex (MHC)-II upregulation in CECs through a VEGFA-linked mechanism. These Ly6C+ MHC-II+ CECs were found to function as amateur antigen-presenting cells and induced CD4 T cell proliferation in vitro. Conclusions This study characterizes a novel immunomodulatory CEC phenotype with possible implications for immune privilege, chronic inflammation, and tissue fibrosis. Moreover, the identification of CECs masquerading with multiple "myeloid" antigens warrants careful evaluation of flow cytometry data involving corneal digests.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Yun Z Le
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
22
|
Suzich JB, Cliffe AR. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018; 522:81-91. [PMID: 30014861 DOI: 10.1016/j.virol.2018.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus (HSV) establishes a latent infection in peripheral neurons and can periodically reactivate to cause disease. Reactivation can be triggered by a variety of stimuli that activate different cellular processes to result in increased HSV lytic gene expression and production of infectious virus. The use of model systems has contributed significantly to our understanding of how reactivation of the virus is triggered by different physiological stimuli that are correlated with recrudescence of human disease. Furthermore, these models have led to the identification of both common and distinct mechanisms of different HSV reactivation pathways. Here, we summarize how the use of these diverse model systems has led to a better understanding of the complexities of HSV reactivation, and we present potential models linking cellular signaling pathways to changes in viral gene expression.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
23
|
Abstract
Herpesvirus latency has been difficult to understand molecularly due to low levels of viral genomes and gene expression. In the case of the betaherpesvirus human cytomegalovirus (HCMV), this is further complicated by the heterogeneity inherent to hematopoietic subpopulations harboring genomes and, as a consequence, the various patterns of infection that simultaneously exist in a host, ranging from latent to lytic. Single-cell RNA sequencing (scRNA-seq) provides tremendous potential in measuring the gene expression profiles of heterogeneous cell populations for a wide range of applications, including in studies of cancer, immunology, and infectious disease. A recent study by Shnayder et al. (mBio 9:e00013-18, 2018, https://doi.org/10.1128/mBio.00013-18) utilized scRNA-seq to define transcriptomal characteristics of HCMV latency. They conclude that latency-associated gene expression is similar to the late lytic viral program but at lower levels of expression. The study highlights the numerous challenges, from the definition of latency to the analysis of scRNA-seq, that exist in defining a latent transcriptome.
Collapse
|
24
|
Russell TA, Velusamy T, Tseng YY, Tscharke DC. Increasing antigen presentation on HSV-1-infected cells increases lesion size but does not alter neural infection or latency. J Gen Virol 2018; 99:682-692. [PMID: 29620508 PMCID: PMC5994700 DOI: 10.1099/jgv.0.001059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CD8+ T cells have a role in the control of acute herpes simplex virus (HSV) infection and may also be important in the maintenance of latency. In this study we have explored the consequences of boosting the efficacy of CD8+ T cells against HSV by increasing the amount of an MHC I-presented epitope on the surface of infected cells. To do this we used HSVs engineered to express an extra copy of the immunodominant CD8+ T cell epitope in C57Bl/6 mice, namely gB498 (SSIEFARL). Despite greater presentation of gB498 on infected cells, CD8+ T cell responses to these viruses in mice were similar to those elicited by a control virus. Further, the expression of extra gB498 did not significantly alter the extent or stability of latency in our mouse model, and virus loads in skin and sensory ganglia of infected mice were not affected. Surprisingly, mice infected with these viruses developed significantly larger skin lesions than those infected with control viruses and notably, this phenotype was dependent on MHC haplotype. Therefore increasing the visibility of HSV-infected cells to CD8+ T cell attack did not impact neural infection or latency, but rather enhanced pathology in the skin.
Collapse
Affiliation(s)
- Tiffany A Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Present address: Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Thilaga Velusamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
25
|
CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection. mBio 2018; 9:mBio.02372-17. [PMID: 29437926 PMCID: PMC5801469 DOI: 10.1128/mbio.02372-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. Herpes simplex virus 1 (HSV-1) is a human pathogen that persists for the lifetime of the host as a result of its ability to establish latent infection within sensory neurons. The mechanism by which HSV-1 transitions from the lytic to latent infection program is largely unknown; however, HSV-1 is able to coopt cellular silencing mechanisms to facilitate the suppression of lytic gene expression. Here, we demonstrate that the cellular CCCTC-binding factor (CTCF)-binding site within the latency associated transcript (LAT) region is critical for the maintenance of a specific local chromatin structure. Additionally, loss of CTCF binding has detrimental effects on the ability to reactivate from latent infection. These results argue that CTCF plays a critical role in epigenetic regulation of viral gene expression to establish and/or maintain a form of latent infection that can reactivate efficiently.
Collapse
|
26
|
Collins-McMillen D, Goodrum FD. The loss of binary: Pushing the herpesvirus latency paradigm. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:124-131. [PMID: 29250481 DOI: 10.1007/s40588-017-0072-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of Review Herpesvirus latency has been viewed as a binary state where replication is either on or off. During latency, gene expression is thought to be restricted to non-coding RNAs or very few proteins so that the virus avoids detection by the immune system. However, a number of recent studies across herpesvirus families call into question the existence of a binary switch for latency, and suggest that latency is far more dynamic than originally presumed. These studies are the focus of this review. Recent Findings Highly sensitive and global approaches to investigate viral gene expression in the context of latency have revealed low level viral transcripts, and in some cases protein, from each of the three kinetic gene classes during the latent alpha and beta herpesvirus infection either in vitro or in vivo. Further, low level, asymptomatic virus shedding persists following acute infection. Together, these findings have raised questions about how silent the latent infection truly is. Summary Emerging evidence suggests that viral gene expression associated with latent states may be broader and more dynamic than originally presumed during herpesvirus latency. This is an important possibility to consider in understanding the molecular programs associated with the establishment, maintenance and reactivation of herpesvirus latency. Here, we review these findings and detail how they contribute to the emergence of a biphasic model of reactivation.
Collapse
Affiliation(s)
| | - Felicia D Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, Department of Cellular and Molecular Medicine, Department of Molecular and Cellular Biology, Arizona Center on Aging, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses 2017; 9:v9080210. [PMID: 28783105 PMCID: PMC5580467 DOI: 10.3390/v9080210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.
Collapse
|
28
|
Menendez CM, Carr DJJ. Herpes simplex virus-1 infects the olfactory bulb shortly following ocular infection and exhibits a long-term inflammatory profile in the form of effector and HSV-1-specific T cells. J Neuroinflammation 2017; 14:124. [PMID: 28645309 PMCID: PMC5481928 DOI: 10.1186/s12974-017-0903-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/15/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) infection can result in a life-threatening condition known as herpes simplex encephalitis (HSE). Trafficking patterns by which the virus reaches the central nervous system (CNS) following ocular infection are unresolved. We evaluated early viral dissemination pathways following ocular infection that involve trafficking to the olfactory bulb (OB). Additionally, we have characterized the capacity of HSV-1 to establish latency within OB tissue and profiled the local T lymphocyte response over the course of the acute infection into latency. METHODS Scarified corneas of C57BL/6 or reporter-inducible Rosa mice (RosaTd/Tm) were inoculated with HSV-1 and assessed for viral dissemination into the peripheral nervous system (PNS) and CNS by RT-PCR and confocal microscopy. T cells and the resident microglia activation signatures were analyzed by flow cytometry. T cell effector function in the form of IFN-γ secretion was measured by T cells isolated from OB in comparison to T cells from other nervous system sites known to harbor HSV-1-specific memory T cells. RESULTS Following ocular infection, HSV-1 viral titers from nasal secretions were detected as early as 48 h through 8 days post infection (8 DPI). HSV-1 gene expression was expressed as early as 2 days following ocular infection in the OB and was consistent with an enhanced expression in the ophthalmic, maxillary, and mandibular branch of the trigeminal nerve ganglia (TG). Rosa fluorescence protein expression (RFP+) representing HSV-1-infected cells from RosaTd/Tm mice was detected in the OB before other areas of the CNS (2 DPI). Additionally, during acute infection, most infected cells appeared to be anatomically distributed within the OB rather than other regions of the CNS. During latency (i.e., 30 DPI and beyond) despite no detectable infectious virus or lytic gene expression and low levels of latency associated transcripts, total effector (CD44+ CD62-) CD4+ T, CD8+ T, HSV-1-specific CD8+ T cells, and MHC class II positive resident microglia numbers continued to increase. CD4+ and CD8+ T cell populations isolated from the OB during latency were capable of responding to PMA/ionomycin in the production of IFN-γ similar to T cells from other tissue that possess latent virus including the TG and brain stem. CONCLUSIONS It is currently understood that HSV-1 traffics to the TG following ocular infection. We have identified a second conduit by which HSV-1 can directly access the CNS bypassing the brain stem. We have also recognized that the OB is unique in that during HSV-1 latency, latency-associated transcripts levels were marginally above uninfected controls. Despite these findings, the local immune response mimicked the phenotype of an active infection during latency.
Collapse
Affiliation(s)
| | - Daniel J. J. Carr
- Departments of Microbiology, Immunology, Oklahoma City, OK USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, DMEI #415A, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104 USA
| |
Collapse
|
29
|
An Immortalized Human Dorsal Root Ganglion Cell Line Provides a Novel Context To Study Herpes Simplex Virus 1 Latency and Reactivation. J Virol 2017; 91:JVI.00080-17. [PMID: 28404842 DOI: 10.1128/jvi.00080-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/01/2017] [Indexed: 01/20/2023] Open
Abstract
A defining characteristic of alphaherpesviruses is the establishment of lifelong latency in host sensory ganglia with occasional reactivation causing recurrent lytic infections. As an alternative to rodent models, we explored the use of an immortalized cell line derived from human dorsal root ganglia. HD10.6 cells proliferate by virtue of a transduced tetracycline-regulated v-myc oncogene. In the presence of doxycycline, HD10.6 cells mature to exhibit neuronal morphology and express sensory neuron-associated markers such as neurotrophin receptors TrkA, TrkB, TrkC, and RET and the sensory neurofilament peripherin. Infection of mature HD10.6 neurons by herpes simplex virus 1 (HSV-1) results in a delayed but productive infection. However, infection at a low multiplicity of infection (MOI) in the presence of acyclovir results in a quiescent infection resembling latency in which viral genomes are retained in a low number of neurons, viral gene expression is minimal, and infectious virus is not released. At least some of the quiescent viral genomes retain the capacity to reactivate, resulting in viral DNA replication and release of infectious virus. Reactivation can be induced by depletion of nerve growth factor; other commonly used reactivation stimuli have no significant effect.IMPORTANCE Infections by herpes simplex viruses (HSV) cause painful cold sores or genital lesions in many people; less often, they affect the eye or even the brain. After the initial infection, the virus remains inactive or latent in nerve cells that sense the region where that infection occurred. To learn how virus maintains and reactivates from latency, studies are done in neurons taken from rodents or in whole animals to preserve the full context of infection. However, some cellular mechanisms involved in HSV infection in rodents are different from those in humans. We describe the use of a human cell line that has the properties of a sensory neuron. HSV infection in these cultured cells shows the properties expected for a latent infection, including reactivation to produce newly infectious virus. Thus, we now have a cell culture model for latency that is derived from the normal host for this virus.
Collapse
|
30
|
Phelan D, Barrozo ER, Bloom DC. HSV1 latent transcription and non-coding RNA: A critical retrospective. J Neuroimmunol 2017; 308:65-101. [PMID: 28363461 DOI: 10.1016/j.jneuroim.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.
Collapse
Affiliation(s)
- Dane Phelan
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - Enrico R Barrozo
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| |
Collapse
|
31
|
Restarting Lytic Gene Transcription at the Onset of Herpes Simplex Virus Reactivation. J Virol 2017; 91:JVI.01419-16. [PMID: 27807236 DOI: 10.1128/jvi.01419-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus (HSV) establishes a latent reservoir in neurons of human peripheral nerves. In this quiescent state, the viral genome persists as a circular, histone-associated episome, and transcription of viral lytic cycle genes is largely suppressed through epigenetic processes. Periodically, latent virus undergoes reactivation whereby lytic genes are activated and viral replication occurs. In this Gem, we review recent evidence that mechanisms governing the initial transcription of lytic genes are distinct from those of de novo infection and directly link reactivation to neuronal stress response pathways. We also discuss evidence that lytic cycle gene expression can be uncoupled from the full reactivation program, arguing for a less sharply bimodal definition of latency.
Collapse
|
32
|
Maroui MA, Callé A, Cohen C, Streichenberger N, Texier P, Takissian J, Rousseau A, Poccardi N, Welsch J, Corpet A, Schaeffer L, Labetoulle M, Lomonte P. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment. PLoS Pathog 2016; 12:e1005834. [PMID: 27618691 PMCID: PMC5019400 DOI: 10.1371/journal.ppat.1005834] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/30/2016] [Indexed: 01/12/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely “multiple-acute”). Viral genomes in the “multiple-acute” pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the “multiple-latency” pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual. Establishment of latency of herpes simplex virus 1 (HSV-1) at the cellular level results from the combination of a series of complex molecular events involving cellular and viral-associated features. HSV-1 establishes latency in trigeminal ganglia (TG) sensory neurons. HSV-1 genomes remain as extrachromosomal DNA; their initial interaction with the nuclear architecture is likely to determine commitment toward the lytic or the latent transcriptional program. Among the major nuclear components that influence the infection process the promyelocytic leukemia (PML) nuclear bodies (NBs) play a major role as nuclear relays of the intrinsic antiviral response. In this study, using infected mice and cultured mouse primary TG neuron models, as well as human TGs, we investigated the interaction between HSV-1 genomes and the nuclear environment in individual neurons. We found that the inability of HSV-1 to initiate a lytic program at the initial stages of infection led to the formation of latency-associated viral DNA-containing PML-NBs (vDCP-NBs), or another pattern if the type 1 interferon pathway was activated prior to infection. vDCP-NB–like structures were also present in neurons of latently infected human TGs, designating PML-NBs as major nuclear components involved in the control of HSV-1 latency for the entire life of an individual.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Aleth Callé
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Camille Cohen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Nathalie Streichenberger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle Interactions, Lyon, France
- Univ Lyon, Centre Hospitalier Universitaire de Lyon, Hospices Civils de Lyon, Centre de Pathologie et Neuropathologie Est, Bron, France
| | - Pascale Texier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Julie Takissian
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
| | - Antoine Rousseau
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
- Université Paris Sud, Centre Hospitalier Universitaire de Bicêtre, Service d'Ophthalmologie, Le Kremlin-Bicêtre, France
| | - Nolwenn Poccardi
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
| | - Jérémy Welsch
- Ecole Normale Supérieure de Lyon, CNRS UMR 5308, INSERM U 1111, Centre International de Recherche en Infectiologie (CIRI), team Immunobiologie des infections virales, Lyon, France
| | - Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Laurent Schaeffer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle Interactions, Lyon, France
| | - Marc Labetoulle
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
- Université Paris Sud, Centre Hospitalier Universitaire de Bicêtre, Service d'Ophthalmologie, Le Kremlin-Bicêtre, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
- * E-mail:
| |
Collapse
|
33
|
Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol 2016; 90:8661-72. [PMID: 27440876 DOI: 10.1128/jvi.00881-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control.
Collapse
|
34
|
Sawtell NM, Thompson RL. De Novo Herpes Simplex Virus VP16 Expression Gates a Dynamic Programmatic Transition and Sets the Latent/Lytic Balance during Acute Infection in Trigeminal Ganglia. PLoS Pathog 2016; 12:e1005877. [PMID: 27607440 PMCID: PMC5015900 DOI: 10.1371/journal.ppat.1005877] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system. Herpes simplex virus remains a significant human pathogen associated with extensive acute and chronic disease in humans worldwide. The virus invades the peripheral and central nervous systems where it replicates but also establishes life-long latent infections in neurons. Two distinct viral transcriptional programs support these distinct lifestyles, but how entry into either the lytic or latent programs is regulated in the neuron is not understood. This process is fundamentally important to a virus with the capacity to be extremely virulent, in balancing two objectives, efficient widespread seeding of the nervous system and host survival. In this report, we provide new insight into this regulation and data that support a novel model in which virus transported into the neuron from the body surface enters the latent program by default. In a subset of these, there is a transition into the lytic cycle, which requires VP16 transactivation and is gated by a region in the VP16 promoter. Thus, HSV takes advantage of the anatomy and axonal transport systems in sensory neurons so that VP16 is left behind and latency is favored, while features of the VP16 promoter insure adequate virus spread in the nervous system and maximized latent infections.
Collapse
Affiliation(s)
- Nancy M. Sawtell
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (NMS); (RLT)
| | - Richard L. Thompson
- Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (NMS); (RLT)
| |
Collapse
|
35
|
Gurung HR, Carr MM, Carr DJJ. Cornea lymphatics drive the CD8 + T-cell response to herpes simplex virus-1. Immunol Cell Biol 2016; 95:87-98. [PMID: 27577867 PMCID: PMC5209249 DOI: 10.1038/icb.2016.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/19/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the cornea induces vascular endothelial growth factor (VEGF)-A-dependent lymphangiogenesis. However, the extent to which HSV-1-induced corneal lymphangiogenesis impacts the adaptive immune response has not been characterized. Here, we used floxed VEGF-A mice to study the importance of newly created corneal lymphatic vessels in the host adaptive immune response to infection. Whereas the mice infected with the parental virus (strain SC16) exhibited robust corneal lymphangiogenesis, mice that received the recombinant virus (SC16 ICP0-Cre) that expresses Cre recombinase under the control of infected cell protein 0 (ICP0), an HSV-1 immediate early gene, showed a significant reduction in lymphangiogenesis. There was no difference in virus recovered from the cornea of mice infected with SC16 vs SC16 ICP0-Cre. However, viral loads were significantly elevated in the trigeminal ganglia (TG) of mice with reduced corneal lymphangiogenesis. The increase in viral titer correlated with a significant loss of HSV-1-specific CD8+ T cells that traffic to the TG of mice infected with the recombinant virus. Intrastromal delivery of size exclusion dye (FITC-dextran) revealed a time-dependent defect in the ability of the lymphatic vessels in SC16 ICP0-Cre infected mice to transport soluble antigen from the cornea to the draining lymph nodes. We interpret these results to suggest that the newly created lymphatic vessels in the cornea driven by HSV-1 infection are critical in the delivery of soluble viral antigen to the draining lymph node and subsequent development of the CD8+ T cell response to HSV-1.
Collapse
Affiliation(s)
- Hem R Gurung
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Russell TA, Tscharke DC. Lytic Promoters Express Protein during Herpes Simplex Virus Latency. PLoS Pathog 2016; 12:e1005729. [PMID: 27348812 PMCID: PMC4922595 DOI: 10.1371/journal.ppat.1005729] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. Herpes simplex virus, which causes cold sores and genital herpes, has active and inactive (or latent) phases of infection that have been considered to be distinct. In this study we found that the active phase of infection, including spread in the nervous system, continues longer than has been previously appreciated. We also show evidence that virus genes previously only associated with active infection are turned on during latency. These genes are of particular interest because other work has found that they are targets of the immune response to HSV. The extent and nature of residual viral activity during latency is important to understand because it may suggest therapeutic targets to reduce recurrent HSV disease.
Collapse
Affiliation(s)
- Tiffany A. Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
37
|
Abstract
UNLABELLED Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. IMPORTANCE Latent infection by viruses usually involves minimizing viral protein synthesis so that the host immune system cannot recognize the infected cells and eliminate them. Herpes simplex virus has been thought to express only noncoding RNAs as abundant gene products during latency. In this study, we found genetic evidence that an HSV lytic protein is functional during latent infection, and this protein may provide a new target for antivirals that target both lytic and latent infections.
Collapse
|
38
|
Abstract
Alphaherpesviruses infect a variety of species from sea turtles to man and can cause significant disease in mammals including humans and livestock. These viruses are characterized by a lytic and latent state in nerve ganglia, with the ability to establish a lifelong latent infection that is interrupted by periodic reactivation. Previously, it was accepted that latency was a dominant state and that only during relatively infrequent reactivation episodes did latent genomes within ganglia become transcriptionally active. Here, we review recent data, focusing mainly on Herpes Simplex Virus type 1 which indicate that the latent state is more dynamic than recently appreciated.
Collapse
Affiliation(s)
- David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
39
|
Proença JT, Nelson D, Nicoll MP, Connor V, Efstathiou S. Analyses of herpes simplex virus type 1 latency and reactivation at the single cell level using fluorescent reporter mice. J Gen Virol 2015; 97:767-777. [PMID: 26694770 DOI: 10.1099/jgv.0.000380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes a latent infection in sensory neurons from which the virus can periodically reactivate. Whilst latency establishment is thought to result from a failure to express immediate-early genes, we have previously shown that subpopulations of the latent neuronal reservoir have undergone lytic promoter activation prior to latency establishment. In the present study, we have investigated the biological properties of such latently infected neuronal subpopulations using Ai6 fluorescent reporter mice. Using this system we have determined that prior ICP0 or TK promoter activation does not correlate with increased latent virus DNA loads within individual cells and that neurons with evidence of historical lytic cycle promoter activity exhibit a comparable frequency of reactivation to that of the general latent cell population. Comparison of viral DNA content within cells harbouring latent HSV-1 genomes and those undergoing the earliest stages of reactivation has revealed that reactivation can initiate from cells harbouring a wide range of HSV-1 genome copies, but that exiting latency is biased towards cells bearing higher latent virus DNA loads.
Collapse
Affiliation(s)
- J T Proença
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - D Nelson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - M P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Division of Virology, National Institute for Biological Reagents and Control, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - V Connor
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - S Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Division of Virology, National Institute for Biological Reagents and Control, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| |
Collapse
|
40
|
Russell TA, Stefanovic T, Tscharke DC. Engineering herpes simplex viruses by infection-transfection methods including recombination site targeting by CRISPR/Cas9 nucleases. J Virol Methods 2014; 213:18-25. [PMID: 25479355 DOI: 10.1016/j.jviromet.2014.11.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022]
Abstract
Herpes simplex viruses (HSVs) are frequent human pathogens and the ability to engineer these viruses underpins much research into their biology and pathogenesis. Often the ultimate aim is to produce a virus that has the desired phenotypic change and no additional alterations in characteristics. This requires methods that minimally disrupt the genome and, for insertions of foreign DNA, sites must be found that can be engineered without disrupting HSV gene function or expression. This study advances both of these requirements. Firstly, the use of homologous recombination between the virus genome and plasmids in mammalian cells is a reliable way to engineer HSV such that minimal genome changes are made. This has most frequently been achieved by cotransfection of plasmid and isolated viral genomic DNA, but an alternative is to supply the virus genome by infection in a transfection-infection method. Such approaches can also incorporate CRISPR/Cas9 genome engineering methods. Current descriptions of infection-transfection methods, either with or without the addition of CRISPR/Cas9 targeting, are limited in detail and the extent of optimization. In this study it was found that transfection efficiency and the length of homologous sequences improve the efficiency of recombination in these methods, but the targeting of the locus to be engineered by CRISPR/Cas9 nucleases has an overriding positive impact. Secondly, the intergenic space between UL26 and UL27 was reexamined as a site for the addition of foreign DNA and a position identified that allows insertions without compromising HSV growth in vitro or in vivo.
Collapse
Affiliation(s)
- Tiffany A Russell
- Research School of Biology, The Australian National University, Bldg #134 Linnaeus Way, Canberra, ACT 0200, Australia.
| | - Tijana Stefanovic
- Research School of Biology, The Australian National University, Bldg #134 Linnaeus Way, Canberra, ACT 0200, Australia
| | - David C Tscharke
- Research School of Biology, The Australian National University, Bldg #134 Linnaeus Way, Canberra, ACT 0200, Australia.
| |
Collapse
|
41
|
Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC. Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLoS Pathog 2014; 10:e1004237. [PMID: 25058429 PMCID: PMC4110040 DOI: 10.1371/journal.ppat.1004237] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity. Primary herpes simplex virus (HSV) infections are characterized by acute disease that resolves rapidly, but the virus persists in a latent form in sensory neurons that can be a source of renewed disease. Analyzing gene expression in single mouse neurons harboring latent HSV, we show directly that HSV latency is dynamic and heterogeneous. HSV lytic gene transcripts were frequently detected in latently infected neurons and often in combinations. Expression of selected cellular anti-viral and survival genes showed that transcriptional profiles differed between latently infected and uninfected neurons from the same ganglia. The pattern of host gene expression also differed between latently infected neurons that were and were not experiencing HSV lytic gene expression. Our study suggests that HSV latency is characterized by very frequent switching on of lytic genes and a rapid response by the host, presumably to halt progression to reactivation.
Collapse
Affiliation(s)
- Joel Z. Ma
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (JZM); (FRC); (DCT)
| | - Tiffany A. Russell
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tim Spelman
- Victorian Infectious Diseases Service, Melbourne Health, Melbourne, Victoria, Australia
- Centre of Population Health, Burnet Institute, Melbourne, Victoria, Australia
| | - Francis R. Carbone
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (JZM); (FRC); (DCT)
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (JZM); (FRC); (DCT)
| |
Collapse
|
42
|
Catez F, Rousseau A, Labetoulle M, Lomonte P. Detection of the genome and transcripts of a persistent DNA virus in neuronal tissues by fluorescent in situ hybridization combined with immunostaining. J Vis Exp 2014:e51091. [PMID: 24514006 DOI: 10.3791/51091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Collapse
Affiliation(s)
- Frédéric Catez
- Virus and Centromere Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS UMR 5534
| | | | | | | |
Collapse
|
43
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a common and important human pathogen that has been studied in a wide variety of contexts for several decades. This book presents chapters on protocols on many strands of HSV-1 research that are currently in use in leading laboratories. This chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of the virus and its replication in cultured cells, the diseases caused by the virus, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.
Collapse
Affiliation(s)
- Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, Scotland UK,
| |
Collapse
|
44
|
Nicoll MP, Efstathiou S. Expression of the herpes simplex virus type 1 latency-associated transcripts does not influence latency establishment of virus mutants deficient for neuronal replication. J Gen Virol 2013; 94:2489-2494. [PMID: 23907392 PMCID: PMC3809108 DOI: 10.1099/vir.0.056176-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 establishes latency within neurons of the trigeminal ganglion. During latency, viral gene expression is largely restricted to the latency-associated transcripts (LATs), which, whilst not essential for any aspect of latency, function to suppress lytic gene expression and enhance the survival of virus-infected neurons. The latent cell population comprises primary-order neurons infected directly from peripheral tissues and cells infected following further virus spread within the ganglion. In order to assess the role of LAT expression on latency establishment within first-order neurons, we infected ROSA26R reporter mice with Cre recombinase-expressing recombinant viruses harbouring deletion of the thymidine kinase lytic gene and/or the core LAT promoter. We found that LAT expression did not impact on latency establishment in viruses unable to replicate in neurons, and under these conditions, it was not required for the survival of neurons between 3 and 31 days post-infection.
Collapse
Affiliation(s)
- M P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - S Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
45
|
Abstract
Herpes simplex virus 1 (HSV-1) is a ubiquitous and important human pathogen. It is known to persist in trigeminal ganglia (TG), but how it reaches this site has been difficult to determine, as viral transmission is sporadic, pathogenesis is complicated, and early infection is largely asymptomatic. We used mice to compare the most likely natural HSV-1 host entry routes: oral and nasal. Intranasal infection was 100-fold more efficient than oral and targeted predominantly the olfactory neuroepithelium. Live imaging of HSV-1-expressed luciferase showed infection progressing from the nose to the TG and then reemerging in the facial skin. The brain remained largely luciferase negative throughout. Infected cell tagging by viral Cre recombinase expression in floxed reporter gene mice showed nasal virus routinely reaching the TG and only rarely reaching the olfactory bulbs. Thus, HSV-1 spread from the olfactory neuroepithelium to the TG and reemerged peripherally without causing significant neurological disease. This recapitulation of typical clinical infection suggests that HSV-1 might sometimes also enter humans via the respiratory tract.
Collapse
|
46
|
Kinetics of facultative heterochromatin and polycomb group protein association with the herpes simplex viral genome during establishment of latent infection. mBio 2013; 4:mBio.00590-12. [PMID: 23322639 PMCID: PMC3551550 DOI: 10.1128/mbio.00590-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The herpes simplex virus (HSV) genome is associated with heterochromatic histone modifications, including trimethylation of the lysine 27 residue of histone H3 (H3K27me3), during latent infection of neurons. Here we have examined the kinetics of general chromatin and H3K27me3 association with the viral genome during establishment of latent infection. Using both wild-type virus and a mutant virus that is unable to undergo replication in neurons, we found that histone H3 associates with viral gene promoters by 7 days postinfection (dpi). Levels of H3K27me3 were low at 7 dpi but increased dramatically by 14 dpi. Hence, general chromatin association and/or other factors may play a key role(s) in the initial silencing of lytic genes, and H3K27me3 may play a role in further suppression of the genome and/or the maintenance of latency. A component of Polycomb repressive complex 2 (PRC2), which mediates the addition of K27me3 to histone H3 (Suz12), was also recruited by 14 dpi. We have shown previously that the levels of H3K27me3 during latent infection are increased in the presence of the latency-associated transcript (LAT). However, the initial targeting of PRC2 was not found to be dependent on the LAT. We found that a component of the PRC1 complex (Bmi1), which binds to H3K27me3, was not enriched at promoters found previously to be enriched for H3K27me3. Our results are consistent with (i) chromatinization of viral DNA or other mechanisms causing the initial silencing of HSV lytic genes and (ii) facultative heterochromatin maintaining that silencing during latent infection of neurons. The human pathogen herpes simplex virus (HSV) hides for the lifetime of the host in peripheral neurons. The mechanism by which HSV is able to shut off its gene expression and persist in neurons is not known. Here we show that the HSV DNA first associates with histone H3, with later recruitment of Polycomb repressor complex 2 (PRC2) and trimethylation of the lysine 27 residue of histone H3 (H3K27me3), a modification associated with heterochromatin. This work indicates that the initial silencing of HSV gene expression is not correlated with enrichment of H3K27me3 and that PRC2 may be recruited to already-silenced genes to further silence gene expression and/or maintain gene silencing. We demonstrate that recruitment of PRC2 is not dependent upon expression of the noncoding HSV latency-associated transcripts, indicating the presence of unknown triggers for PRC2 recruitment during the establishment of latent infection.
Collapse
|
47
|
Boutell C, Everett RD. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 2012; 94:465-481. [PMID: 23239572 DOI: 10.1099/vir.0.048900-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is important for the regulation of lytic and latent viral infection. Like the related proteins expressed by other alphaherpesviruses, ICP0 has a zinc-stabilized RING finger domain that confers E3 ubiquitin ligase activity. This domain is essential for the core functions of ICP0 and its activity leads to the degradation of a number of cellular proteins, some of which are involved in cellular defences that restrict viral infection. The article reviews recent advances in ICP0-related research, with an emphasis on the mechanisms by which ICP0 and related proteins counteract antiviral restriction and the roles in this process of cellular nuclear substructures known as ND10 or PML nuclear bodies. We also summarize recent advances in the understanding of the biochemical aspects of ICP0 activity. These studies highlight the importance of the SUMO conjugation pathway in both intrinsic resistance to HSV-1 infection and in substrate targeting by ICP0. The topics discussed in this review are relevant not only to HSV-1 infection, but also to cellular intrinsic resistance against herpesviruses more generally and the mechanisms by which viruses can evade this restriction.
Collapse
Affiliation(s)
- Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, UK
| | - Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, UK
| |
Collapse
|
48
|
HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 2012; 8:e1002852. [PMID: 22912575 PMCID: PMC3415458 DOI: 10.1371/journal.ppat.1002852] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/26/2012] [Indexed: 02/04/2023] Open
Abstract
Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called “Single” and “Multiple”, which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. “Single” and “Multiple” patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the “Multiple” pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction. After an initial lytic infection, many viruses establish a lifelong latent infection that hides them from the host immune system activity until reactivation. To understand the resurgence of the associated diseases, it is indispensable to acquire a better knowledge of the different mechanisms involved in the antiviral defense. During latency, viral genomes of nuclear-replicative viruses, such as herpes simplex virus type 1 (HSV-1), are stored in the nucleus of host cells in a non-integrated form. Latency establishment is associated with a drastic change in HSV-1 gene expression program that is maintained until reactivation occurs. The last two decades of research has revealed that the functional organization of the cell nucleus, so-called nuclear architecture, is a major factor of regulation of cellular genes expression. Nonetheless, the role of nuclear architecture on HSV-1 gene expression has been widely overlooked. Here we describe that the genome of HSV-1 selectively interacts with two major nuclear structures, the promyelocytic nuclear bodies (PMLNBs or ND10) and the centromeres. We provide evidence supporting that these nuclear domains directly influence the behavior of latent viral genomes and their transcriptional activity. Overall, this study demonstrates that nuclear architecture is a major parameter driving the highly complex HSV-1 latency process.
Collapse
|
49
|
Influence of herpes simplex virus 1 latency-associated transcripts on the establishment and maintenance of latency in the ROSA26R reporter mouse model. J Virol 2012; 86:8848-58. [PMID: 22696655 DOI: 10.1128/jvi.00652-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can establish life-long latent infection in sensory neurons, from which periodic reactivation can occur. During latency, viral gene expression is largely restricted to the latency-associated transcripts (LATs). While not essential for any phase of latency, to date the LATs have been shown to increase the efficiency of both establishment and reactivation of latency in small-animal models. We sought to investigate the role of LAT expression in the frequency of latency establishment within the ROSA26R reporter mouse model utilizing Cre recombinase-encoding recombinant viruses harboring deletions of the core LAT promoter (LAP) region. HSV-1 LAT expression was observed to influence the number of latently infected neurons in trigeminal but not dorsal root ganglia. Furthermore, the relative frequencies of latency establishment of LAT-positive and LAT-negative viruses are influenced by the inoculum dose following infection of the mouse whisker pads. Finally, analysis of the infected cell population at two latent time points revealed a relative loss of latently infected cells in the absence of LAT expression. We conclude that the HSV-1 LATs facilitate the long-term stability of the latent cell population within the infected host and that interpretation of LAT establishment phenotypes is influenced by infection methodology.
Collapse
|
50
|
Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 2012; 36:684-705. [PMID: 22150699 PMCID: PMC3492847 DOI: 10.1111/j.1574-6976.2011.00320.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency.
Collapse
Affiliation(s)
- Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|