1
|
Parrella G, Moury B. A new point mutation in the HC-Pro of potato virus Y is involved in tobacco vein necrosis. PLoS One 2024; 19:e0302692. [PMID: 38722893 PMCID: PMC11081373 DOI: 10.1371/journal.pone.0302692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.
Collapse
Affiliation(s)
- Giuseppe Parrella
- Institute for Sustainable Plant Protection of The National Research Council (IPSP-CNR), Portici, Italy
| | | |
Collapse
|
2
|
Cassedy A, Della Bartola M, Parle-McDermott A, Mullins E, O'Kennedy R. A one-step reverse transcription recombinase polymerase amplification assay for lateral flow-based visual detection of PVY. Anal Biochem 2021; 642:114526. [PMID: 34922917 DOI: 10.1016/j.ab.2021.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
Abstract
Potato virus Y (PVY) is an abundant and damaging virus which reduces crop yield and marketability. Accurate detection of this economically important virus both in-field and in seed potato is considered essential in the control of PVY spread. Current detection methods are focused on immunodetection and PCR-based methods, however, identification of PVY through isothermal amplification is a promising avenue for developing accessible, on-site diagnostics with quick turnaround times. In this work, a rapid recombinase polymerase amplification assay was developed which could readily amplify PVY nucleic acids with good sensitivity and specificity. Additionally, this assay was shown to be capable of amplification directly from RNA in a one-step amplification process, without the need for prior reverse transcription. The assay was coupled with lateral flow technology to provide a rapid visual confirmation of amplification. This nucleic-acid lateral flow immunoassay could feasibly be employed in-field, or at any location where testing is required, to aid in the detection and control of PVY.
Collapse
Affiliation(s)
- Arabelle Cassedy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | - Ewen Mullins
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland; Hamad Bin Khalifa University, Education City, Doha, Qatar; Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
3
|
Zanardo LG, Trindade TA, Mar TB, Barbosa TMC, Milanesi DF, Alves MS, Lima RRPN, Zerbini FM, Janssen A, Mizubuti ESG, Elliot SL, Carvalho CM. Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Res 2021; 303:198389. [PMID: 33716182 DOI: 10.1016/j.virusres.2021.198389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Major themes in pathogen evolution are emergence, evolution of virulence, host adaptation and the processes that underlie them. RNA viruses are of particular interest due to their rapid evolution. The in vivo molecular evolution of an RNA plant virus was demonstrated here using a necrotic isolate of cowpea mild mottle virus (CPMMV) and a susceptible soybean genotype submitted to serial inoculations. We show that the virus lost the capacity to cause necrosis after six passages through the host plant. When a severe bottleneck was imposed, virulence reduction occurred in the second passage. The change to milder symptoms had fitness benefits for the virus (higher RNA accumulation) and for its vector, the whitefly Bemisia tabaci. Genetic polymorphisms were highest in ORF1 (viral replicase) and were independent of the symptom pattern. Recombination was a major contributor to this diversity - even with the strong genetic bottleneck, recombination events and hot spots were detected within ORF1. Virulence reduction was associated with different sites in ORF1 associated to recombination events in both experiments. Overall, the results demonstrate that the reduction in virulence was a consequence of the emergence of new variants, driven by recombination. Besides providing details of the evolutionary mechanisms behind a reduction in virulence and its effect under viral and vector fitness, we propose that this recombination-driven switch in virulence allows the pathogen to rapidly adapt to a new host and, potentially, switch back.
Collapse
Affiliation(s)
- Larissa G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tiago A Trindade
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Talita B Mar
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tarsiane M C Barbosa
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diogo F Milanesi
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Murilo S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Roberta R P N Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil; IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Simon L Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudine M Carvalho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
5
|
Stare K, Coll A, Gutiérrez-Aguirre I, Žnidarič MT, Ravnikar M, Kežar A, Kavčič L, Podobnik M, Gruden K. Generation and in Planta Functional Analysis of Potato Virus Y mutants. Bio Protoc 2020; 10:e3692. [PMID: 33659360 DOI: 10.21769/bioprotoc.3692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/26/2020] [Accepted: 05/11/2020] [Indexed: 11/02/2022] Open
Abstract
Potato virus Y (PVY), the type member of the genus Potyvirus (family Potyviridae), is the most widespread virus affecting potato and is included in the top five most economically detrimental plant viruses. Recently, the structure of the PVY virion has been determined by cryo-electron microscopy, which has opened the doors to functional studies that explore the involvement of selected amino acids in different stages of the viral cycle. The only way to functionally challenge in planta the role of particular amino acids in the coat protein of PVY, or in other viral proteins, is by using cDNA clones. The use and manipulation of PVY cDNA clones, unlike those of other potyviruses, has been traditionally impaired by the toxicity that certain sequences within the PVY genome pose to Escherichia coli. Here, we describe the use of a published PVY cDNA clone, which harbours introns that overcome the aforementioned toxicity, to explore the effects of different coat protein modifications on viral infection. The protocol includes manipulation of the cDNA clone in E. coli, biolistic inoculation of plants with the constructed clones, observation of the biological effects on plants, quantification of cDNA clones by reverse transcription quantitative PCR, and confirmation of virion formation by transmission electron microscopy. Future possibilities involve the use of PVY cDNA clones tagged with fluorescent protein reporters to allow further insights into the effects of coat protein mutations on the cell-to-cell movement of PVY virions.
Collapse
Affiliation(s)
- Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| | - Andreja Kežar
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Graduate School of Biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Kavčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
6
|
Cheng DJ, Tian YP, Geng C, Guo Y, Jia MA, Li XD. Development and application of a full-length infectious clone of potato virus Y isolate belonging to SYR-I strain. Virus Res 2020; 276:197827. [PMID: 31785306 DOI: 10.1016/j.virusres.2019.197827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022]
Abstract
Potato virus Y (PVY) causes huge damage to potato and tobacco production worldwide. The complete genome sequence of GZ, a PVY isolate (strain SYR-I) from Guizhou province, China, was cloned into the binary vector pCambia0390. Three introns were individually inserted into the P3 and CI ORFs to produce plasmid pCamPVY-GZ. The plasmid could infect plants of Nicotiana benthamiana, N. tabacum via agroinfiltration and plants of pepper and potato by mechanical inoculation. The green fluorescence protein gene of Aequoria victoriae was cloned into the encoding regions between nuclear inclusion body 'b' and coat protein genes in pCamPVY-GZ to produce pCamPVY-GZ-GFP, which could infect plants of N. benthamiana, N. tabacum, potato and tomato, and produce green fluorescence in the systemic leaves of inoculated plants. Mutations were introduced to pCamPVY-GZ to make the lysine (K) 391 and glutamic acid (E)410 of helper component-proteinase to arginine (R) and asparagic acid (E), respectively. Unlike wild type PVY-GZ, the mutant PVY-K391R/E410D could not induce veinal necrosis in N. tabacum plants. With an interval of 14 days, mutant PVY-K391R/E410D could protect N. tabacum plants from the infection of severe PVY strain. The results presented here provide a promising alternate for the prevention of diseases caused by PVY.
Collapse
Affiliation(s)
- De-Jie Cheng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China
| | - Chao Geng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Sciences, Guiyang, Guizhou 550001, China
| | - Meng-Ao Jia
- Guizhou Academy of Tobacco Sciences, Guiyang, Guizhou 550001, China.
| | - Xiang-Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China.
| |
Collapse
|
7
|
Functional Transcomplementation between Wheat Dwarf Virus Strains in Wheat and Barley. Viruses 2019; 12:v12010034. [PMID: 31905671 PMCID: PMC7019965 DOI: 10.3390/v12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Wheat dwarf virus, transmitted by the leafhopper Psammotettix alienus in a persistent, non-propagative manner, infects numerous species from the Poaceae family. Data associated with wheat dwarf virus (WDV) suggest that some isolates preferentially infect wheat while other preferentially infect barley. This allowed to define the wheat strain and the barley strain. There are contradictory results in the literature regarding the ability of each of these two strains to infect its non-preferred host. To improve knowledge on the interactions between WDV strains and barley and wheat, transmission experiments were carried out using barcoded P. alienus and an experimental design based on single/sequential acquisitions of WDV strains and on transmissions to wheat and barley. Results showed that (I) WDV strains are transmitted with similar efficiencies by P. alienus males, females and larvae, (II) WDV wheat and barley strains do not infect barley and wheat plants, respectively, and (III) a functional transcomplementation between the wheat and barley strains allows a mixed infection of barley and wheat. The described ability of each WDV strain to infect a non-host plant in the presence of the other viral strain must be considered to analyze data available on WDV host range.
Collapse
|
8
|
Yin Z, Murawska Z, Xie F, Pawełkowicz M, Michalak K, Zhang B, Lebecka R. microRNA response in potato virus Y infected tobacco shows strain-specificity depending on host and symptom severity. Virus Res 2019; 260:20-32. [PMID: 30423361 DOI: 10.1016/j.virusres.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
The present study demonstrates how different potato virus Y (PVY) strains affect the miRNA balance in tobacco cv. Samsun. The two prevalent strains PVYNTN and PVYN-Wi caused severe and mild veinal necrosis (VN) respectively, and the unique PVYZ-NTN strain induced milder vein clearing (VCl) in the upper non-inoculated leaves. A single amino acid polymorphisms (SAPs) I252V and a Q412 to R412 substitution in the HC-Pro cistron of the PVYZ-NTN strain might relate to the loss of VN in tobacco. The abundance of 18 out of the 26 tested miRNAs was increased upon infection by the severe strains PVYNTN and PVYN-Wi. Expression of a group of defense related transcripts were increased accordingly. Two miRNAs, nta-miR6020a-5p and nta-miR6164a/b, which target the TIR-NBS-LRR type resistant TMV N genes involving in signal transduction, might correlate with the PVYNTN and PVYN-Wi induced VN. The down-regulated mRNAs, e.g., RAP2-7 and TOE3, PXC3, LRR-RLK, ATHB-14 and TCP4 targeted by nta-miR172, nta-miR390, nta-miR482, nta-miR166 and nta-miR319/159 respectively, were related to regulation of transcription, protein phosphorylation and cell differentiation. The observed strain-specific alteration of miRNAs and their targets are host dependent and corresponds to the symptom severity and the viral HC-Pro RNA levels.
Collapse
Affiliation(s)
- Zhimin Yin
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland.
| | - Zofia Murawska
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding & Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska Street 159, PL-02-776, Warsaw, Poland
| | - Krystyna Michalak
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Renata Lebecka
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland
| |
Collapse
|
9
|
Michel V, Julio E, Candresse T, Cotucheau J, Decorps C, Volpatti R, Moury B, Glais L, Dorlhac de Borne F, Decroocq V, German-Retana S. NtTPN1: a RPP8-like R gene required for Potato virus Y-induced veinal necrosis in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:700-714. [PMID: 29863810 DOI: 10.1111/tpj.13980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/19/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Potato virus Y (PVY) is one of the most damaging viruses of tobacco. In particular, aggressive necrotic strains (PVYN ) lead to considerable losses in yield. The main source of resistance against PVY is linked to the va locus. However, va-overcoming PVY isolates inducing necrotic symptoms were observed in several countries. In this context, it is important to find va-independent protection strategies. In a previous study, the phenotyping of 162 tobacco varieties revealed 10 accessions that do not carry the va allele and do not exhibit typical PVYN -induced veinal necrosis. Despite the absence of necrotic symptoms, normal viral accumulation in these plants suggests a va-independent mechanism of tolerance to PVYN -induced systemic veinal necrosis. Fine mapping of the genetic determinant(s) was performed in a segregating F2 population. The tolerance trait is inherited as a single recessive gene, and allelism tests demonstrated that eight of the 10 tolerant varieties carry the same determinant. Anchoring the linkage map to the tobacco genome physical map allowed the identification of a RPP8-like R gene, called NtTPN1 (for Nicotiana tabacum Tolerance to PVY-induced Necrosis1), with the same single-nucleotide polymorphism in the eight tolerant accessions. Functional assays using homozygous NtTPN1 EMS mutants confirmed the role of NtTPN1 in the tolerance phenotype. PVYN -induced systemic veinal necrosis in tobacco likely represents an inefficient defense response with hypersensitive response-like characteristics. The identification of NtTPN1 opens breeding options to minimize the impact of emerging and so far uncontrolled va-breaking necrotic PVY isolates.
Collapse
Affiliation(s)
- Vincent Michel
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Emilie Julio
- Imperial Tobacco, La Tour, 24100, Bergerac, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | | | | | | | - Benoît Moury
- Pathologie Végétale, INRA, 84140, Montfavet, France
| | - Laurent Glais
- FN3PT/RD3PT, 75008, Paris, France
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | | | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sylvie German-Retana
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
10
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
11
|
The entry of cucumber mosaic virus into cucumber xylem is facilitated by co-infection with zucchini yellow mosaic virus. Arch Virol 2016; 161:2683-92. [PMID: 27400992 DOI: 10.1007/s00705-016-2970-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
We investigated the synergistic effects of co-infection by zucchini yellow mosaic virus (ZYMV) and cucumber mosaic virus (CMV) on viral distribution in the vascular tissues of cucumber. Immunohistochemical observations indicated that ZYMV was present in both the phloem and xylem tissues. ZYMV-RNA was detected in both the xylem wash and guttation fluid of ZYMV-inoculated cucumber. Steam treatment at a stem internode indicated that ZYMV enters the xylem vessels and moves through them but does not cause systemic infection in the plant. CMV distribution in singly infected cucumbers was restricted to phloem tissue. By contrast, CMV was detected in the xylem tissue of cotyledons in plants co-infected with CMV and ZYMV. Although both ZYMV-RNA and CMV-RNA were detected in the xylem wash and upper internodes of steam-treated, co-infected cucumbers grown at 24 °C, neither virus was detected in the upper leaves using an ELISA assay. Genetically modified CMV harboring the ZYMV HC-Pro gene was distributed in the xylem and phloem tissues of singly inoculated cucumber cotyledons. These results indicate that the ZYMV HC-Pro gene facilitates CMV entry into the xylem vessels of co-infected cucumbers.
Collapse
|
12
|
Sokhandan Bashir N, Poorsmaile M, Hajizadeh M. Heterologous Expression of Potato Virus Y Coat Protein, Isolate Pot187. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:48-52. [PMID: 28959310 PMCID: PMC5492231 DOI: 10.15171/ijb.1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 09/07/2015] [Accepted: 09/26/2015] [Indexed: 06/07/2023]
Abstract
BACKGROUND The advent of recombinant DNA technology has facilitated heterologous expression of proteins from various sources in different host systems including Escherichia coli. If a plant virus coat protein is expressed in the bacterium it can be used as the antigen for antibody preparation. Such a recombinant antigen preparation can be particularly useful where equipment such as ultracentrifuge is unavailable to purify virus particles to use as the antigen for conventional antibody preparation. OBJECTIVES Heterologous protein expression and purification of the full length Potato virus Y (PVY) coat protein (CP) from isolate pot187 (an affiliate of strain N) to be used as an antigen was the aim of the study. MATERIALS AND METHODS Reverse transcription Polymerase Chain Reaction (RT-PCR) was carried out to amplify an 801 bp fragment of the CP gene from PVY-infected potato leaves. The amplicon was cloned into pGEM-T Easy. The cloned fragment was restricted by BamHI + SacI and the purified fragment was cloned into the expression vector pET21a(+) which was restricted with the same enzymes. The generated plasmid was introduced into E. coli strain RosettaTM. The expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) and its protein content was subjected to SDSPAGE and western blotting. RESULTS SDS-PAGE analysis of protein from the induced bacteria showed a ~35 KDa protein corresponding to PVY CP. Expression of the recombinant protein was confirmed by anti-His anitibody. CONCLUSIONS The full-length cDNA of PVY-CP was amplified from the infected potato leaves. The cDNA was heterologously expressed in E. coli. The produced recombinant CP can be used as an antigen to generate polyclonal antibody.
Collapse
Affiliation(s)
- Nemat Sokhandan Bashir
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahin Poorsmaile
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
13
|
Tian YP, Valkonen JPT. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc. MOLECULAR PLANT PATHOLOGY 2015; 16:735-47. [PMID: 25557768 PMCID: PMC6638495 DOI: 10.1111/mpp.12231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato.
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
14
|
Matevz R, Florence F, Michel T, Ion GA, Agnès D, Laurent G, Maja K, David D, Kristina G, Emmanuel J, Maja R. Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:739-50. [PMID: 25761209 DOI: 10.1094/mpmi-07-14-0218-ta] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato virus Y (PVY) is an economically important plant virus that infects Solanaceous crops such as tobacco and potato. To date, studies into the localization and movement of PVY in plants have been limited to detection of viral RNA or proteins ex vivo. Here, a PVY N605 isolate was tagged with green fluorescent protein (GFP), characterized and used for in vivo tracking. In Nicotiana tabacum cv. Xanthi, PVY N605-GFP was biologically comparable to nontagged PVY N605, stable through three plant-to-plant passages and persisted for four months in infected plants. GFP was detected before symptoms and fluorescence intensity correlated with PVY RNA concentrations. PVY N605-GFP provided in vivo tracking of long-distance movement, allowing estimation of the cell-to-cell movement rate of PVY in N. tabacum cv. Xanthi (7.1 ± 1.5 cells per hour). PVY N605-GFP was adequately stable in Solanum tuberosum cvs. Désirée and NahG-Désirée and able to infect S. tuberosum cvs. Bintje and Bea, Nicotiana benthamiana, and wild potato relatives. PVY N605-GFP is therefore a powerful tool for future studies of PVY-host interactions, such as functional analysis of viral and plant genes involved in viral movement.
Collapse
Affiliation(s)
- Rupar Matevz
- 1 National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Faurez Florence
- 2 INRA, UMR 1349 IGEPP, Domaine de la Motte F-35653, Le Rheu, France
- 3 FN3PT/RD3PT, 43-45 rue de Naples, 75008 Paris, France
| | - Tribodet Michel
- 2 INRA, UMR 1349 IGEPP, Domaine de la Motte F-35653, Le Rheu, France
| | | | - Delaunay Agnès
- 4 INRA-CIRAD-Montpellier SupAgro, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Glais Laurent
- 2 INRA, UMR 1349 IGEPP, Domaine de la Motte F-35653, Le Rheu, France
- 3 FN3PT/RD3PT, 43-45 rue de Naples, 75008 Paris, France
| | - Kriznik Maja
- 1 National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Dobnik David
- 1 National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gruden Kristina
- 1 National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Jacquot Emmanuel
- 4 INRA-CIRAD-Montpellier SupAgro, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Ravnikar Maja
- 1 National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Glais L, Faurez F, Tribodet M, Boulard F, Jacquot E. The amino acid 419 in HC-Pro is involved in the ability of PVY isolate N605 to induce necrotic symptoms on potato tubers. Virus Res 2015; 208:110-9. [PMID: 26071382 DOI: 10.1016/j.virusres.2015.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/04/2015] [Accepted: 05/31/2015] [Indexed: 11/30/2022]
Abstract
The ability to induce the potato tuber necrosis ringspot disease (PTNRD) is a property shared by PVY isolates belonging to different groups (e.g. PVY(N) and PVY(O)) and variants (e.g. PVY(NTN) and PVY(N)-W). The identification of viral molecular determinant(s) involved in the expression of PTNRD symptoms is essential for (i) an easier detection of tuber necrosis isolates and (ii) an improvement of our knowledge on the epidemiology of this potato disease. A reverse genetic approach associated with a biological typing of a collection of PVY chimeras and mutants indicated that residue E419 of the HC-Pro protein is linked to the ability of PVY to induce tuber necrosis on four PTNRD-susceptible potato cultivars. Indeed, the substitution of the N-type glutamic acid (E) in O-type aspartic acid (D) at position 419 in the HC-Pro cistron prevents the expression of tuber necrosis on infected tubers without reducing the virulence of the corresponding E/D419 mutant. This result opens opportunities for the future studies on potato/PVY interactions.
Collapse
Affiliation(s)
- Laurent Glais
- FN3PT/RD3PT, 43-45 rue de Naples, F-75008 Paris, France; INRA, UMR 1349 IGEPP, F-35653 Le Rheu, France.
| | - Florence Faurez
- FN3PT/RD3PT, 43-45 rue de Naples, F-75008 Paris, France; INRA, UMR 1349 IGEPP, F-35653 Le Rheu, France.
| | | | - Frédéric Boulard
- FN3PT/RD3PT, 43-45 rue de Naples, F-75008 Paris, France; INRA, UMR 1349 IGEPP, F-35653 Le Rheu, France.
| | - Emmanuel Jacquot
- INRA-Cirad-Supagro Montpellier, UMR 385 BGPI, F-34398 Montpellier, France.
| |
Collapse
|
16
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
17
|
Glais L, Jacquot E. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays. Methods Mol Biol 2015; 1302:207-25. [PMID: 25981257 DOI: 10.1007/978-1-4939-2620-6_16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.
Collapse
Affiliation(s)
- Laurent Glais
- INRA, UMR1349 IGEPP, BP 35327, Le Rheu, 35653, France,
| | | |
Collapse
|
18
|
Janzac B, Tribodet M, Lacroix C, Moury B, Verrier JL, Jacquot E. Evolutionary Pathways to Break Down the Resistance of Allelic Versions of the PVY Resistance Gene va. PLANT DISEASE 2014; 98:1521-1529. [PMID: 30699784 DOI: 10.1094/pdis-11-13-1126-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Emergence of viral genotypes can make control strategies based on resistance genes ineffective. A few years after the deployment of tobacco genotypes carrying alleles of the Potato virus Y (PVY) recessive resistance gene va, virulent PVY isolates have been reported, suggesting the low durability of va. To have a broader view of the evolutionary processes involved in PVY adaptation to va, we studied mutational pathways leading to the emergence of PVY resistance-breaking populations. The viral genome-linked protein (VPg) has been described to be potentially involved in va adaptation. Analyses of the VPg sequence of PVY isolates sampled from susceptible and resistant tobacco allowed us to identify mutations in the central part of the VPg. Analysis of the virulence of wild-type isolates with known VPg sequences and of mutated versions of PVY infectious clones allowed us to (i) validate VPg as the PVY virulence factor corresponding to va, (ii) highlight the fact that virulence gain in PVY occurs rapidly and preferentially by substitution at position AA105 in the VPg, and (iii) show that the 101G substitution in the VPg of a PVYC isolate is responsible for cross-virulence toward two resistance sources. Moreover, it appears that the evolutionary pathway of PVY adaptation to va depends on both virus and host genetic backgrounds.
Collapse
Affiliation(s)
- B Janzac
- INRA-Agrocampus Ouest-Université Rennes 1, UMR 1349 IGEPP, F-35653 Le Rheu, France; Imperial Tobacco Group, SEITA, Institut du Tabac, Domaine de la Tour, F-24100 Bergerac France; and INRA-Cirad Montpellier SupAgro, UMR 385 BGPI, Cirad TA A-54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | - M Tribodet
- INRA-Agrocampus Ouest-Université Rennes 1
| | - C Lacroix
- INRA-Agrocampus Ouest-Université Rennes 1 and Imperial Tobacco Group, SEITA, Institut du Tabac
| | - B Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, BP94, F-84140 Montfavet, France
| | - J L Verrier
- Imperial Tobacco Group, SEITA, Institut du Tabac
| | - E Jacquot
- INRA-Agrocampus Ouest-Université Rennes 1 and INRA-Cirad Montpellier SupAgro
| |
Collapse
|
19
|
Feng X, Poplawsky AR, Nikolaeva OV, Myers JR, Karasev AV. Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean. PHYTOPATHOLOGY 2014; 104:786-793. [PMID: 24915430 DOI: 10.1094/phyto-08-13-0243-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bean common mosaic virus (BCMV) exists as a complex of strains classified by reactions to resistance genes found in common bean (Phaseolus vulgaris); seven BCMV pathotypes have been distinguished thus far, numbered I to VII. Virus genetic determinants involved in pathogenicity interactions with resistance genes have not yet been identified. Here, we describe the characterization of two novel field isolates of BCMV that helped to narrow down these genetic determinants interacting with specific P. vulgaris resistance factors. Based on a biological characterization on common bean differentials, both isolates were classified as belonging to pathotype VII, similar to control isolate US10, and both isolates exhibited the B serotype. The whole genome was sequenced for both isolates and found to be 98 to 99% identical to the BCMV isolate RU1 (pathotype VI), and a single name was retained: BCMV RU1-OR. To identify a genetic determinant of BCMV linked to the BCMV pathotype VII, the whole genome was also sequenced for two control isolates, US10 and RU1-P. Inspection of the nucleotide sequences for BCMV RU1-OR and US10 (both pathotype VII) and three closely related sequences of BCMV (RU1-P, RU1-D, and RU1-W, all pathotype VI) revealed that RU1-OR originated through a series of recombination events between US10 and an as-yet-unidentified BCMV parental genome, resulting in changes in virus pathology. The data obtained suggest that a fragment of the RU1-OR genome between positions 723 and 1,961 nucleotides that is common to US10 and RU1-OR in the P1-HC-Pro region of the BCMV genome may be responsible for the ability to overcome resistance in bean conferred by the bc-2(2) gene. This is the first report of a virus genetic determinant responsible for overcoming a specific BCMV resistance gene in common bean.
Collapse
|
20
|
Quenouille J, Vassilakos N, Moury B. Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. MOLECULAR PLANT PATHOLOGY 2013; 14:439-52. [PMID: 23480826 PMCID: PMC6638879 DOI: 10.1111/mpp.12024] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
TAXONOMY Potato virus Y (PVY) is the type member of the genus Potyvirus in the family Potyviridae. VIRION AND GENOME PROPERTIES: PVY virions have a filamentous, flexuous form, with a length of 730 nm and a diameter of 12 nm. The genomic RNA is single stranded, messenger sense, with a length of 9.7 kb, covalently linked to a viral-encoded protein (VPg) at the 5' end and to a 3' polyadenylated tail. The genome is expressed as a polyprotein of approximately 3062 amino acid residues, processed by three virus-specific proteases into 11 mature proteins. HOSTS PVY is distributed worldwide and has a broad host range, consisting of cultivated solanaceous species and many solanaceous and nonsolanaceous weeds. It is one of the most economically important plant pathogens and causes severe diseases in cultivated hosts, such as potato, tobacco, tomato and pepper, as well as in ornamental plants. TRANSMISSION PVY is transmitted from plant to plant by more than 40 aphid species in a nonpersistent manner and, in potato, by planting contaminated seed tubers. DIVERSITY: Five major clades, named C1, C2, Chile, N and O, have been described within the PVY species. In recent decades, a strong increase in prevalence of N × O recombinant isolates has been observed worldwide. A correlation has been observed between PVY phylogeny and certain pathogenicity traits. GENETIC CONTROL OF PVY: Resistance genes against PVY have been used widely in breeding programmes and deployed in the field. These resistance genes show a large diversity of spectrum of action, durability and genetic determinism. Notably, recessive and dominant major resistance genes show highly contrasting patterns of interaction with PVY populations, displaying rapid co-evolution or stable relationships, respectively.
Collapse
Affiliation(s)
- Julie Quenouille
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | | | | |
Collapse
|
21
|
Tian YP, Valkonen JPT. Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:297-305. [PMID: 23113714 DOI: 10.1094/mpmi-09-12-0219-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato virus Y (PVY) (genus Potyvirus) is the most economically damaging and widely distributed virus in potato. Spread of PVY in the field is controlled by growing resistant cultivars. The dominant potato gene Ny(tbr) for hypersensitive resistance (HR) controls ordinary PVY strains (PVY(O)) but is overcome by PVY(N) strains. Studies with infectious PVY chimeras and mutants indicated that the viral determinants necessary and sufficient to overcome Ny(tbr) reside within the helper component proteinase (HC-Pro) (residues 227 to 327). Specifically, eight residues and the modeled three-dimensional conformation of this HC-Pro region distinguish PVY(N) from PVY(O) strains. According to the model, the conserved IGN and CCCT motifs implicated in potyvirus replication and movement, respectively, are situated in a coiled structure and an α-helix, respectively, within this region in PVY(O); however, their locations are reversed in PVY(N). Two residues (R269 and K270) are crucial for the predicted PVY(O)-specific HC-Pro conformation. Two viral chimeras triggered Ny(tbr) and induced veinal necrosis in tobacco, which is novel for PVY. One chimera belonged to strain group PVY(E). Our results suggest a structure-function relationship in recognition of PVY(O) HC-Pro by Ny(tbr), reveal HC-Pro amino acid signatures specific to PVY(O) and PVY(N), and facilitate identification of PVY strains overcoming Ny(tbr).
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, Finland
| | | |
Collapse
|
22
|
Rupar M, Kogovšek P, Pompe-Novak M, Gutiérrez-Aguirre I, Delaunay A, Jacquot E, Ravnikar M. Assessment of SNaPshot and single step RT-qPCR methods for discriminating Potato virus Y (PVY) subgroups. J Virol Methods 2013; 189:93-100. [PMID: 23396125 DOI: 10.1016/j.jviromet.2013.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
Potato virus Y (PVY) is the most important virus infecting potato (Solanum tuberosum), causing potato tuber necrotic ringspot disease (PTNRD), with a great impact on seed potato production. Numerous PVY strain groups with different pathogenicity and economical impact are distributed worldwide. Tools for accurate and reliable detection and discrimination of PVY strain groups are therefore essential for successful disease management. Two state of the art characterization tools based on detecting molecular markers - RT-qPCR (Kogovsek et al., 2008) and SNaPshot (Rolland et al., 2008) - were assessed for their ability to assign PVY accurately to the correct group. The results were validated by bioassay, ELISA and in silico sequence analysis. The spectrum of PVY strain groups distinguished by SNaPshot is broader than that by RT-qPCR. However, the latter was more reliable in discriminating the PVY(NTN) group members, known for their ability to induce PTNRD on selected potato cultivars. The difference in discrimination precision was due to different molecular markers being targeted by RT-qPCR and SNaPshot. Both tools use genotypic markers for detecting PVY(NTN) strain groups. Future development, however, should be focused on identifying the genomic determinants of the tuber necrosis property. Until then, the RT-qPCR and SNaPshot methods remain the most powerful diagnostic tools for detecting the PVY subgroup isolates found in Europe.
Collapse
Affiliation(s)
- Matevž Rupar
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Karasev AV, Gray SM. Continuous and emerging challenges of Potato virus Y in potato. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:571-586. [PMID: 23915135 DOI: 10.1146/annurev-phyto-082712-102332] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Potato virus Y (PVY) is one of the oldest known plant viruses, and yet in the past 20 years it emerged in the United States as a relatively new and very serious problem in potato. The virus exists as a complex of strains that induce a wide variety of foliar and tuber symptoms in potato, leading to yield reduction and loss of tuber quality. PVY has displayed a distinct ability to evolve through accumulation of mutations and more rapidly through recombination between different strains, adapting to new potato cultivars across different environments. Factors behind PVY emergence as a serious potato threat are not clear at the moment, and here an attempt is made to analyze various properties of the virus and its interactions with potato resistance genes and with aphid vectors to explain this recent PVY spread in potato production areas. Recent advances in PVY resistance identification and mapping of corresponding genes are described. An updated classification is proposed for PVY strains that takes into account the most current information on virus molecular genetics, serology, and host reactivity.
Collapse
Affiliation(s)
- Alexander V Karasev
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, Idaho 83844-2339, USA.
| | | |
Collapse
|
24
|
Faurez F, Baldwin T, Tribodet M, Jacquot E. Identification of new Potato virus Y (PVY) molecular determinants for the induction of vein necrosis in tobacco. MOLECULAR PLANT PATHOLOGY 2012; 13:948-59. [PMID: 22537230 PMCID: PMC6638754 DOI: 10.1111/j.1364-3703.2012.00803.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Two tobacco vein necrosis (TVN) determinants, the residues K(400) and E(419) , have been identified previously in the helper component-protease (HC-Pro) protein sequence of Potato virus Y (PVY). However, since their description, non-necrotic PVY isolates with both K(400) and E(419) necrotic determinants have been reported in the literature. This suggests the presence in the viral genome of other, as yet uncharacterized, TVN determinant(s). The identification of PVY(N) pathogenicity determinants was approached through the replacement of genomic regions of the necrotic PVY(N) -605 infectious clone by corresponding sequences from the non-necrotic PVY(O) -139 isolate. Series of PVY(N/O) chimeras and site-directed PVY mutants were constructed to test the involvement of different parts of the PVY genome (from nucleotide 421 to nucleotide 9629) in the induction of TVN symptoms. The analysis of both the genomic characteristics and biological properties of these mutants made it possible to highlight the involvement, in addition to residues K(400) and E(419), of the residue N(339) of the HC-Pro protein and two regions in the cytoplasmic inclusion (CI) protein to nuclear inclusion protein a-protease (NIa-Pro) sequence (nucleotides 5496-5932 and 6233-6444) in the induction of vein necrosis in tobacco infected by PVY isolates.
Collapse
Affiliation(s)
- Florence Faurez
- INRA-Agrocampus Ouest-Université Rennes1, UMR1099 BiO3P Biology of Organisms and Populations Applied to Plant Protection, F-35653 Le Rheu, France
| | | | | | | |
Collapse
|
25
|
Kerlan C, Nikolaeva OV, Hu X, Meacham T, Gray SM, Karasev AV. Identification of the molecular make-up of the Potato virus Y strain PVY(Z): genetic typing of PVY(Z)-NTN. PHYTOPATHOLOGY 2011; 101:1052-60. [PMID: 21834725 DOI: 10.1094/phyto-11-10-0317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Potato virus Y (PVY) strains were originally defined by interactions with different resistance genes in standard potato cultivars. Five distinct strain groups are defined that cause local or systemic hypersensitive responses (HRs) in genetic background with a corresponding N gene: PVY(O), PVY(N), PVY(C), PVY(Z), and PVY(E). The nucleotide sequences of multiple isolates of PVY(O) and PVY(N) differ from each other by ≈8% along their genomes. Additionally, complete genome sequences of multiple recombinant isolates are composed of segments of parental PVY(O) and PVY(N) sequences. Here, we report that recombinant isolate PVY-L26 induces an HR in potato 'Maris Bard' carrying the putative Nz gene, and is not recognized by two other resistance genes, Nc and Ny(tbr). These genetic responses in potato, combined with the inability of PVY-L26 to induce vein necrosis in tobacco, clearly define it as an isolate from the PVY(Z) strain group and provide the first information on genome structure and sequence of PVY(Z). The genome of PVY-L26 displays typical features of European NTN-type isolates with three recombinant junctions (PVY(EU-NTN)), and the PVY-L26 is named PVY(Z)-NTN. Three typical PVY(NTN) isolates and two PVY(N) isolates, all inducing vein necrosis in tobacco, were compared with PVY-L26. One PVY(NTN) isolate elicited HR reactions in Maris Bard, similar to PVY-L26, while two induced a severe systemic HR-like reaction quite different from the quasi-symptomless reaction induced by two PVY(N) isolates. 'Yukon Gold' potato from North America produced HR against several PVY(NTN) isolates, including PVY-L26, but only late and limited systemic necrosis against one PVY(N) isolate. Consequently, according to symptoms in potato indicators, both PVY(Z) and PVY(NTN) isolates appeared biologically very close and clearly distinct from PVY(O) and PVY(N) strain groups.
Collapse
Affiliation(s)
- Camille Kerlan
- Department of PSES, University of Idaho, Moscow, ID, USA
| | | | | | | | | | | |
Collapse
|
26
|
Moury B, Caromel B, Johansen E, Simon V, Chauvin L, Jacquot E, Kerlan C, Lefebvre V. The helper component proteinase cistron of Potato virus Y induces hypersensitivity and resistance in Potato genotypes carrying dominant resistance genes on chromosome IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:787-797. [PMID: 21405985 DOI: 10.1094/mpmi-10-10-0246] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Nc(tbr) and Ny(tbr) genes in Solanum tuberosum determine hypersensitive reactions, characterized by necrotic reactions and restriction of the virus systemic movement, toward isolates belonging to clade C and clade O of Potato virus Y (PVY), respectively. We describe a new resistance from S. sparsipilum which possesses the same phenotype and specificity as Nc(tbr) and is controlled by a dominant gene designated Nc(spl). Nc(spl) maps on potato chromosome IV close or allelic to Ny(tbr). The helper component proteinase (HC-Pro) cistron of PVY was shown to control necrotic reactions and resistance elicitation in plants carrying Nc(spl), Nc(tbr), and Ny(tbr). However, inductions of necrosis and of resistance to the systemic virus movement in plants carrying Nc(spl) reside in different regions of the HC-Pro cistron. Also, genomic determinants outside the HC-Pro cistron are involved in the systemic movement of PVY after induction of necroses on inoculated leaves of plants carrying Ny(tbr). These results suggest that the Ny(tbr) resistance may have been involved in the recent emergence of PVY isolates with a recombination breakpoint near the junction of HC-Pro and P3 cistrons in potato crops. Therefore, this emergence could constitute one of the rare examples of resistance breakdown by a virus which was caused by recombination instead of by successive accumulation of nucleotide substitutions.
Collapse
Affiliation(s)
- Benoît Moury
- INRA, UR407 Pathologie Vegetale, Montfavet, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hu X, Nie X, He C, Xiong X. Differential pathogenicity of two different recombinant PVY(NTN) isolates in Physalis floridana is likely determined by the coat protein gene. Virol J 2011; 8:207. [PMID: 21548970 PMCID: PMC3112444 DOI: 10.1186/1743-422x-8-207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/07/2011] [Indexed: 11/10/2022] Open
Abstract
A previous study has identified two types of recombinant variants of Potato virus Y strain NTN (PVY(NTN)) in China and sequenced the complete genome of the variant PVY(NTN)-HN2. In this study, the complete genome of isolate PVY(NTN)-HN1 was fully sequenced and analyzed. The most striking difference between the two variants was the location of recombinant joint three (RJ3). In PVY(NTN)-HN1, like other typical European-PVY(NTN) isolates such as PVY(NTN)-Hun, the RJ3 was located at nucleotide (nt) 9183, namely the 3' proximal end of the CP gene (nt. 8571-9371), thus leading to most (the first 613 nucleotides from the 5' proximal end) of the CP gene (801 bp) with a PVYN origin and PVYN-serotype; whereas in contrast, the RJ3 in PVY(NTN)-HN2 was located at nt 8572, consequently leading to a CP gene of PVYO origin and PVYO-serotype. The varied genome composition among PVY(O), PVY(N), PVY(N:O), PVY(NTN_-HN1 and PVY(NTN)-HN2 made them useful for the investigation of possible roles of gene segment(s) in symptom formation on host plants. When Physalis floridana plants were infected with different PVY isolates, two types of symptoms were induced. PVY(N) and PVY(NTN)-HN1 induced mild symptoms (mainly mild mottling) whereas PVY(O), PVY(N:O) and PVY(NTN)-HN2 induced serve symptoms including leaf and stem necrosis, leaf-drop and stunting. These results, together with a previous study using artificial PVY chimeras, demonstrate that the CP gene, especially the 5' proximal segment (nt 8572-9183), and/or CP likely determine the pathogenicity of PVY in P. floridana.
Collapse
Affiliation(s)
- Xinxi Hu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xianzhou Nie
- Potato Research Centre, Agriculture and Agri-Food Canada, P.O. Box 20280, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Changzheng He
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
28
|
Tian YP, Liu JL, Zhang CL, Liu YY, Wang B, Li XD, Guo ZK, Valkonen JPT. Genetic diversity of Potato virus Y infecting tobacco crops in China. PHYTOPATHOLOGY 2011; 101:377-87. [PMID: 20977310 DOI: 10.1094/phyto-02-10-0055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genetic variability of Potato virus Y (PVY) isolates infecting potato has been characterized but little is known about genetic diversity of PVY isolates infecting tobacco crops. In this study, PVY isolates were collected from major tobacco-growing areas in China and single-lesion isolates were produced by serial inoculation on Chenopodium amaranticolor. Most isolates (88%) caused systemic veinal necrosis symptoms in tobacco. Of these, 16 isolates contained a PVY(O)-like coat protein (CP) and PVY(N)-like helper component proteinase (HC-pro) and, in this respect, were similar to the PVY(N-Wi), PVY(N:O), and PVY-HN2 isolates characterized from potato in Europe, the United States, and China, respectively; two isolates contained a PVY(O)-like HC-pro and a PVY(N)-like CP; another two isolates had recombination junctions in the CP-encoding region. Both the HC-pro and CP of PVY were under negative selection as a whole; however, seven amino acids in HC-pro and six amino acids in CP were under positive selection. Selection pressures differed between the subpopulations of PVY distinguished by phylogenetic analysis of HC-pro and CP sequences. When PVY isolates from potato were included, no host-specific clustering of the PVY isolates was observed in phylogenetic and nucleotide diversity analyses, suggesting frequent spread of PVY isolates between potato and tobacco crops in the field.
Collapse
Affiliation(s)
- Y P Tian
- Department of Plant Pathology, Shandong Agricultural University, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yin GH, Sun ZN, Song YZ, An HL, Zhu CX, Wen FJ. Bacterially expressed double-stranded RNAs against hot-spot sequences of tobacco mosaic virus or potato virus Y genome have different ability to protect tobacco from viral infection. Appl Biochem Biotechnol 2010; 162:1901-14. [PMID: 20437276 DOI: 10.1007/s12010-010-8968-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 04/11/2010] [Indexed: 11/29/2022]
Abstract
Posttranscriptional gene silencing, also known as RNA interference, involves degradation of homologous mRNA sequences in organisms. In plants, posttranscriptional gene silencing is part of a defense mechanism against virus infection, and double-stranded RNA is the pivotal factor that induces gene silencing. In this paper, we got seven hairpin RNAs (hpRNAs) constructs against different hot-spot sequences of Tobacco mosaic virus (TMV) or Potato virus Y (PVY) genome. After expression in Escherichia coli HT115, we extracted the seven hpRNAs for the test in tobacco against TMV or PVY infection. The data suggest that different hpRNAs against different hot-spot sequences of TMV or PVY genome had different ability to protect tobacco plants from viral infection. The resistance to TMV conferred by the hpRNA against the TMV movement protein was stronger than other TMV hpRNAs; the resistance to PVY conferred by the hpRNA against the PVY nuclear inclusion b was better than that induced by any other PVY hpRNAs. Northern blotting of siRNA showed that the resistance was indeed an RNA-mediated virus resistance.
Collapse
Affiliation(s)
- Guo-Hua Yin
- Shandong Agricultural University, Tai'an, China
| | | | | | | | | | | |
Collapse
|
30
|
Rolland M, Delaunay A, Baldwin TK, Kerlan C, Jacquot E. Complementations and exclusions between mutated versions of a potato virus Y genotype during mixed infections of Nicotiana hosts. Virus Res 2010; 153:197-204. [PMID: 20708049 DOI: 10.1016/j.virusres.2010.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/07/2010] [Accepted: 08/03/2010] [Indexed: 11/23/2022]
Abstract
Understanding the processes that have led to the recent prevalence of necrotic genotypes in PVY populations is an important challenge for research programs studying this virus. Non-necrotic PVY(O)-139, necrotic PVY(N)-605 and point mutated versions of PVY(N)-605 (PVY(KRED), PVY(KR) and PVY(ED)), were used in mixtures to inoculate two Nicotiana hosts which express (N. tabacum cv. Xanthi) or not (N. clevelandii) necrosis symptoms in response to infection by PVY(N) group members. The comparison during serial passage experiments of proportions of PVY genotypes produced in mixed infected plants with those of the inocula was used to describe: (i) complementation between PVY(KR) and PVY(N) and between PVY(KRED) and PVY(O) genotypes; (ii) exclusion of the PVY(KRED) genotype, previously described as fitter, during mixed infections in the presence of one of the less fit PVY(N), PVY(ED) and PVY(KR) genotypes and (iii) the prevalence of the non-necrotic PVY(KR) genotype in the presence of PVY(N) parental sequence. These results indicate that the role of both A/G(2213) and A/C(2271) nucleotides in the fitness of PVY genotypes depends on other genetic information in the viral genome that has not yet been identified. Moreover, the collected data indicate that mutation of the nucleotide 2213 in the PVY(N)-605 sequence could lead to the prevalence, both in N. tabacum cv. Xanthi and in N. clevelandii, of the non-necrotic PVY(KR) genotype.
Collapse
Affiliation(s)
- Mathieu Rolland
- INRA-Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations Applied to Plant Protection), F-35653 Le Rheu, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
Plant viruses have evolved a wide array of strategies to ensure efficient transfer from one host to the next. Any organism feeding on infected plants and traveling between plants can potentially act as a virus transport device. Such organisms, designated vectors, are found among parasitic fungi, root nematodes and plant-feeding arthropods, particularly insects. Due to their extremely specialized feeding behavior - exploring and sampling all plant tissues, from the epidermis to the phloem and xylem - aphids are by far the most important vectors, transmitting nearly 30% of all plant virus species described to date. Several different interaction patterns have evolved between viruses and aphid vectors and, over the past century, a tremendous number of studies have provided details of the underlying mechanisms. This article presents an overview of the different types of virus-aphid relationships, state-of-the-art knowledge of the molecular processes underlying these interactions, and the remaining black boxes waiting to be opened in the near future.
Collapse
|
32
|
Moury B. A new lineage sheds light on the evolutionary history of Potato virus Y. MOLECULAR PLANT PATHOLOGY 2010; 11:161-8. [PMID: 20078785 PMCID: PMC6640215 DOI: 10.1111/j.1364-3703.2009.00573.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato virus Y (PVY) is one of the rare plant viruses for which some biological traits (host range and symptomatology) are highly correlated with phylogeny, allowing the reconstruction of the evolutionary history of these traits. In this article, a new lineage of PVY isolates from Chile is described, showing unique genomic and biological properties. This lineage was found to be the sister group of all other PVY isolates and helped in the reconstruction of the ancestral traits and evolutionary history of PVY, suggesting that veinal necrosis in tobacco is an ancestral state and that adaptation to pepper (Capsicum spp.) and potato (Solanum tuberosum) has been modified several times during PVY history.
Collapse
Affiliation(s)
- Benoit Moury
- INRA, UR407 Pathologie Végétale, F-84143 Montfavet, France.
| |
Collapse
|
33
|
Mochizuki T, Hirai K, Kanda A, Ohnishi J, Ohki T, Tsuda S. Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology 2009; 390:239-49. [PMID: 19501870 DOI: 10.1016/j.virol.2009.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/21/2009] [Accepted: 05/10/2009] [Indexed: 01/10/2023]
Abstract
The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.
Collapse
|
34
|
Hu X, Meacham T, Ewing L, Gray SM, Karasev AV. A novel recombinant strain of Potato virus Y suggests a new viral genetic determinant of vein necrosis in tobacco. Virus Res 2009; 143:68-76. [PMID: 19463723 DOI: 10.1016/j.virusres.2009.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 11/21/2022]
Abstract
A novel Potato virus Y (PVY) isolate, L26, recovered from a Frontier potato line was initially typed as a PVY(NTN) strain using multiplex RT-PCR and serological assays. However, L26 induced mosaic and mild vein clearing symptoms in tobacco rather than vein necrosis characteristic of the PVY (NTN) strain. The whole genome sequence was determined for L26 and two other PVY(NTN) isolates, HR1 and N4, from Idaho that did induce vein necrosis in tobacco. The sequence of all three isolates was similar to typical European PVY(NTN) isolates that contain three recombination junctions in their genome. The sequence of the L26 genome was nearly identical to the genomes HR1, N4, and to a previously characterized PVY(NTN) isolate, 423-3, differing by only five nucleotides in the entire ca. 9.7-kb genome, only one resulting in a corresponding amino acid change, D-205 to G-205 in the central region of HC-Pro. Two "signature" amino acid residues, thought involved in induction of the vein necrosis syndrome in tobacco, K-400 and E-419, were present in the C-terminal region of HC-Pro of all three isolates. Multiple alignment of the whole genome sequences of L26 and other PVY(NTN) isolates whose phenotype in tobacco has been reported, suggests that a single nucleotide change (A-1,627 to G-1,627) resulting in the single amino acid change (D-205 to G-205) in the HC-Pro cistron of L26 correlates with the loss of the vein necrosis phenotype in tobacco. Secondary structure modeling of the HC-Pro protein predicts the G-205 residue, and the previously identified residues K-400 and E-419, would all be located on the exposed surface of the protein. Taken together, these data suggest that the vein necrosis genetic determinant of PVY in tobacco is complex and includes other element(s), in addition to the C-terminal fragment of HC-Pro.
Collapse
Affiliation(s)
- Xiaojun Hu
- University of Idaho, Department of PSES, Moscow, ID 83844, United States
| | | | | | | | | |
Collapse
|
35
|
Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:166-75. [PMID: 19132869 DOI: 10.1094/mpmi-22-2-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination.
Collapse
Affiliation(s)
- Go Atsumi
- Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
36
|
Rolland M, Kerlan C, Jacquot E. The acquisition of molecular determinants involved in potato virus Y necrosis capacity leads to fitness reduction in tobacco plants. J Gen Virol 2009; 90:244-52. [PMID: 19088295 DOI: 10.1099/vir.0.005140-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prevalence of necrotic potato virus Y (PVY) in natural populations could reflect increased fitness of necrotic isolates. In this paper, the effects of the acquisition of molecular determinants (A/G(2213) and A/C(2271)) involved in necrosis capacity on both the number of progeny produced and the competitiveness of PVY were characterized. The relationship between necrosis and fitness was tested using (i) Nicotiana tabacum cv. Xanthi and Nicotiana clevelandii, (ii) necrotic PVY(N)-605 and non-necrotic PVY(O)-139 isolates, (iii) single-mutated (PVY(KR) and PVY(ED)) and double-mutated (PVY(KRED)) versions of PVY(N)-605 and (iv) three quantitative PCR assays specific for nt A(2213), G(2213) and A(2271) of the PVY genome. The data demonstrated effects of both the genetic background and nt 2213 and 2271 on the fitness of PVY. Quantification of PVY RNA in singly infected plants revealed that both the PVY(N)-605 genetic background and the acquisition of necrotic capacity resulted in a decrease in the number of progeny produced. Competition experiments revealed that the genetic background of PVY(N) had a positive impact on competitiveness. In contrast, nucleotides involved in necrotic properties were associated with decreased fitness. Finally, in the host that did not respond to infection with necrosis, the benefit associated with the PVY(N)-605 genetic background was higher than the cost associated with the acquisition of molecular determinants involved in necrosis capacity. The opposite result was obtained in the host responding to the infection with necrosis. These results indicate that the emergence of necrotic isolates from a non-necrotic population is unlikely in tobacco.
Collapse
Affiliation(s)
- Mathieu Rolland
- INRA-Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations applied to Plant Protection), F-35653 Le Rheu, France
| | | | | |
Collapse
|
37
|
Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen YT, Li HF, Fan ZF. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J Gen Virol 2008; 89:2046-2054. [PMID: 18632977 DOI: 10.1099/vir.0.2008/001271-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symptom development of a plant viral disease is a result of molecular interactions between the virus and its host plant; thus, the elucidation of specific interactions is a prerequisite to reveal the mechanism of viral pathogenesis. Here, we show that the chloroplast precursor of ferredoxin-5 (Fd V) from maize (Zea mays) interacts with the multifunctional HC-Pro protein of sugar cane mosaic virus (SCMV) in yeast, Nicotiana benthamiana cells and maize protoplasts. Our results demonstrate that the transit peptide rather than the mature protein of Fd V precursor could interact with both N-terminal (residues 1-100) and C-terminal (residues 301-460) fragments, but not the middle part (residues 101-300), of HC-Pro. In addition, SCMV HC-Pro interacted only with Fd V, and not with the other two photosynthetic ferredoxin isoproteins (Fd I and Fd II) from maize plants. SCMV infection significantly downregulated the level of Fd V mRNA in maize plants; however, no obvious changes were observed in levels of Fd I and Fd II mRNA. These results suggest that SCMV HC-Pro interacts specifically with maize Fd V and that this interaction may disturb the post-translational import of Fd V into maize bundle-sheath cell chloroplasts, which could lead to the perturbation of chloroplast structure and function.
Collapse
Affiliation(s)
- Yu-Qin Cheng
- Department of Pomology, China Agricultural University, Beijing 100094, PR China
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Zhong-Mei Liu
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Jian Xu
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, PR China
| | - Tao Zhou
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Meng Wang
- Department of Pomology, China Agricultural University, Beijing 100094, PR China
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Yu-Ting Chen
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Huai-Fang Li
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Zai-Feng Fan
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| |
Collapse
|
38
|
German-Retana S, Walter J, Le Gall O. Lettuce mosaic virus: from pathogen diversity to host interactors. MOLECULAR PLANT PATHOLOGY 2008; 9:127-36. [PMID: 18705846 PMCID: PMC6640324 DOI: 10.1111/j.1364-3703.2007.00451.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
TAXONOMY Lettuce mosaic virus (LMV) belongs to the genus Potyvirus (type species Potato virus Y) in the family Potyviridae. PHYSICAL PROPERTIES The virion is filamentous, flexuous with a length of 750 nm and a width of 15 nm. The particles are made of a genomic RNA of 10 080 nucleotides, covalently linked to a viral-encoded protein (the VPg) at the 5' end and with a 3' poly A tail, and encapsidated in a single type of capsid protein. The molecular weight of the capsid protein subunit has been estimated electrophoretically to be 34 kDa and estimated from the amino acid sequence to be 31 kDa. GENOME ORGANIZATION The genome is expressed as a polyprotein of 3255 amino-acid residues, processed by three virus-specific proteinases into ten mature proteins. HOSTS LMV has a worldwide distribution and a relatively broad host range among several families. Weeds and ornamentals can act as local reservoirs for lettuce crops. In particular, many species within the family Asteraceae are susceptible to LMV, including cultivated and ornamental species such as common (Lactuca sativa), prickly (L. serriola) or wild (L. virosa) lettuce, endive/escarole (Cichorium endiva), safflower (Carthamus tinctorius), starthistle (Centaurea solstitialis), Cape daisy (Osteospermum spp.) and gazania (Gazania rigens). In addition, several species within the families Brassicaceae, Cucurbitaceae, Fabaceae, Solanaceae and Chenopodiaceae are natural or experimental hosts of LMV. Genetic control of resistance to LMV: The only resistance genes currently used to protect lettuce crops worldwide are the recessive genes mo1(1) and mo1(2) corresponding to mutant alleles of the gene encoding the translation initiation factor eIF4E in lettuce. It is believed that at least one intact copy of eIF4E must be present to ensure virus accumulation. TRANSMISSION LMV is transmitted in a non-persistent manner by a high number of aphid species. Myzus persicae and Macrosiphum euphorbiae are particularly active in disseminating this virus in the fields. LMV is also seedborne in lettuce. The effectiveness of LMV transmission depends on the cultivar and the age of the seed carrier at the inoculation time. SYMPTOMS The characteristic symptoms on susceptible lettuce cultivars are dwarfism, mosaic, distortion and yellowing of the leaves with sometimes a much reduced heart of lettuce (failure to form heads). The differences in virus strains, cultivars and the physiological stage of the host at the moment of the attack cause different symptom severity: from a very slight discoloration of the veins to severe necrosis leading to the death of the plant.
Collapse
Affiliation(s)
- Sylvie German-Retana
- UMR1090 Génomique Diversité Pouvoir Pathogène, INRA Université de Bordeaux 2, F-33883 Villenave D'Ornon, France.
| | | | | |
Collapse
|
39
|
Yambao MLM, Yagihashi H, Sekiguchi H, Sekiguchi T, Sasaki T, Sato M, Atsumi G, Tacahashi Y, Nakahara KS, Uyeda I. Point mutations in helper component protease of clover yellow vein virus are associated with the attenuation of RNA-silencing suppression activity and symptom expression in broad bean. Arch Virol 2007; 153:105-15. [PMID: 17955160 DOI: 10.1007/s00705-007-1073-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 09/10/2007] [Indexed: 11/28/2022]
Abstract
Helper component protease (HC-Pro) is a potyvirus-encoded multifunctional protein and a major determinant of symptom expression in a susceptible plant. Here, we show the involvement of clover yellow vein virus (ClYVV) HC-Pro in necrotic symptom expression in broad bean (Vicia faba cv. Wase). In this host, lethal necrosis was induced by ClYVV no. 30, from which a spontaneous, mosaic-inducing mutant (MM) was obtained. Mapping with chimeric viruses between ClYVV no. 30 and MM attributed the symptom attenuation to two mutations at the HC-Pro positions 27 (threonine to isoleucine) and 193 (aspartic acid to tyrosine). Although neither mutant with the single amino acid substitution at position 27 or 193 (ClYVV/T27I or D193Y) induced the lethal necrosis, ClYVV/T27I still retained the ability to induce necrotic symptoms, but ClYVV/D193Y scarcely did so. The virus accumulation of ClYVV/D193Y was also lower than that of ClYVV no. 30. The mutations, T27I and D193Y, are located in a putative zinc finger domain and in one (N-terminal) of the two RNA binding domains, respectively, of HC-Pro. RNA-silencing suppression (RSS) activity of P1/HC-Pro in Nicotiana benthamiana was weakened by both mutations. Our results suggest a correlation between viral virulence and RSS function and the importance of the two domains in HC-Pro.
Collapse
Affiliation(s)
- M L M Yambao
- Pathogen Plant Interactions Group, Plant Breeding Science, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Singh RP, Valkonen JPT, Gray SM, Boonham N, Jones RAC, Kerlan C, Schubert J. Discussion paper: The naming of Potato virus Y strains infecting potato. Arch Virol 2007; 153:1-13. [PMID: 17943395 DOI: 10.1007/s00705-007-1059-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 08/27/2007] [Indexed: 11/30/2022]
Abstract
Potato virus Y (PVY) strain groups are based on host response and resistance gene interactions. The strain groups PVY(O), PVY(C) and PVY(N) are well established for the isolates infecting potato in the field. A switch in the emphasis from host response to nucleotide sequence differences in the virus genomes, detection of isolates recombining sequences of different strains, and the need to recognize isolates that cause necrotic symptoms in potato tubers have led to the assignment of new acronyms, especially to isolates of the PVY(N) strain group. This discussion paper proposes that any newly found isolates should be described within the context of the original strain groups based on the original methods of distinguishing strains (i.e., tobacco and potato assays involving use of 'differential' potato cultivars). Additionally, sequence characterization of the complete genomes of isolates is highly recommended. However, it is acceptable to amend the names of PVY isolates with additional, specific codes to show that the isolate differs at the molecular, serological or phenotypic level from the typical strains within a strain group. The new isolates should preferably not be named using geographical, cultivar, or place-association designations. Since many new variants of PVY are being discovered, any new static classification system will be meaningless for the time being. A more systematic investigation and characterization of PVY from potato at the biological and molecular levels should eventually result in a biologically meaningful genetic strain concept.
Collapse
Affiliation(s)
- R P Singh
- Potato Research Centre, Agriculture and Agri-Food Canada, New Brunswick, Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rolland M, Glais L, Kerlan C, Jacquot E. A multiple single nucleotide polymorphisms interrogation assay for reliable Potato virus Y group and variant characterization. J Virol Methods 2007; 147:108-17. [PMID: 17931711 DOI: 10.1016/j.jviromet.2007.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/06/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
The complex Potato virus Y classification, including groups (PVYN and PVYO) and variants (PVYNTN and PVYN-W), is based mainly on biological properties of isolates. Published PVY detection tools targeting markers not associated with biological properties could fail to assign correctly isolates in the current classification. To improve PVY detection tools, a single nucleotide polymorphism (SNaPshot) detection assay was developed. The technique was adapted to target the T/C9259, A/C2271, G/C8573 and A/G2213 PVY polymorphic nucleotides. The "TAGA", "CCCG", "CACA" and "CAGA" four-digit codes associated with tested samples allowed identification of PVYN, PVYO, PVYN-W and PVYNTN isolates, respectively. The PVY SNaPshot procedure is efficient and reliable for PVY detection and characterization in samples containing as few as 10(2) viral RNA copies. Moreover, PVY group assignment is possible for fractions containing only 10 copies of a PVY RNA genome. Finally, the SNaPshot assay allows PVY(N)/PVYO dual characterization for mixed samples containing PVYN/PVYO quantity ratios in the range of 0.1-10. This innovative SNaPshot tool improved clearly PVY diagnostic assays described previously by targeting simultaneously major functional markers and sequence unlinked to biological properties used separately in PVY detection tools available currently.
Collapse
Affiliation(s)
- Mathieu Rolland
- INRA, Agrocampus Rennes, UMR1099 BiO3P (Biology of Organisms and Populations Applied to Plant Protection), F-35653 Le Rheu, France
| | | | | | | |
Collapse
|
42
|
Chikh Ali M, Maoka T, Natsuaki KT. A point mutation changes the serotype of a potato virus Y isolate; genomic determination of the serotype of PVY strains. Virus Genes 2007; 35:359-67. [PMID: 17564823 DOI: 10.1007/s11262-007-0115-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/07/2007] [Indexed: 11/24/2022]
Abstract
A Syrian isolate of Potato virus Y (PVY), named PVY-12, reacted to two monoclonal antibodies that are specific to PVY(O,C) and PVY(N) strains, although its coat protein (CP) belongs to the PVY(N) strain. Analysis of the CP of PVY-12 revealed that a point mutation in its N terminus switched it from PVY(N)-like to PVY(O)-like at this position. This mutation changed the second nucleotide of the codon that encodes the 29th amino acid of the CP of PVY-12 from A to G, which resulted in one amino acid substitution from Glu(29 )to Gly(29). The role of Gly(29) in the binding of PVY-12 to PVY(O,C)-specific monoclonal antibody was confirmed by gene expression in Escherichia coli. The N terminus of the CP gene of PVY-12 and another PVY isolate of the N serotype with identical CP to PVY-12 except for one amino acid substitution from Gly(29 )to Glu(29) was cloned and expressed in E. coli using a pUC18 vector. Resulting antigens showed similar reactivity to the relevant antibodies as same as the native CPs of these two isolates. Further analysis of the CP of PVY isolates showed that Gly(29) was conserved in the CP of PVY(O), PVY(C), PVY(N)W, and non-potato isolates of PVY while Gln(17) and Glu(31 )were conserved in the CP of PVY(N/NTN). Therefore, these amino acids are characteristic of the CP for these strain groups and subgroups in agreement with the serotype and phylogenetic relationships previously determined.
Collapse
Affiliation(s)
- Mohamad Chikh Ali
- Department of International Agricultural Development, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | |
Collapse
|
43
|
Bukovinszki A, Götz R, Johansen E, Maiss E, Balázs E. The role of the coat protein region in symptom formation on Physalis floridana varies between PVY strains. Virus Res 2007; 127:122-5. [PMID: 17482305 DOI: 10.1016/j.virusres.2007.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
The Potato virus Y (PVY) cDNA full-length clone created by Jakab et al. [Jakab, G., Droz, E., Brigneti, G., Baulcombe, D., Malnoë, P., 1997. Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. J. Gen. Virol. 78, 3141-3145] was stabilized by inserting three introns into putatively toxic genes. Using this clone, hybrid viruses were constructed by in vitro recombination. The PVY-N/NTN and PVY-N/O chimeras carried the 3' end of NIb, the whole CP and 3'UTR region of PVY(NTN) and PVY(O), respectively, in a PVY(N) genetic background. The clones proved to be stable after several passages by re-sequencing the exchanged region. Both hybrid viruses showed reduced infectivity in particle bombardment experiments, but they were suitable for further mechanical plant inoculation. In five of the six host plant species, inoculated with the two chimeras and three parental strains, the chimeras produced similar symptoms to those of PVY(N). By contrast, Physalis floridana reacted with different pattern of symptoms. In this species, the symptoms caused by the N/O hybrid were similar to those of the 3'NIb-CP-donating PVY(O) strain, and not to those of the background (PVY(N)). The results suggest that symptom determinants may be different even between strains of the same virus species in a particular host.
Collapse
|
44
|
Schubert J, Fomitcheva V, Sztangret-Wiśniewska J. Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. J Virol Methods 2007; 140:66-74. [PMID: 17182113 DOI: 10.1016/j.jviromet.2006.10.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/18/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Potato virus Y (PVY) is one of the most important viruses of potato world-wide, several strain groups are recognized. In the past two decades, novel PVY variants have appeared causing necrotic symptoms on potato tubers. Implicated are two groups of recombinant strains: PVY(N)W and PVY(NTN), and NA-PVY(NTN). While the first two are recombinants between PVY-N- and O-strains the latter is a recombinant between an N-strain and an unknown PVY strain or other Potyvirus. Available biological and molecular data on PVY suggest that classification of PVY strains has to be revised. Some drawbacks have been found with recently published primers used in RT-PCR based differentiation of PVY strains as some defined isolates could not be identified correctly. Consequently we developed new primers using both recently available sequences and newly generated complete sequences of PVY strains. The reliability of these newly developed primers and procedures was successfully demonstrated on nearly 100 biologically and serologically characterised PVY isolates.
Collapse
Affiliation(s)
- Jörg Schubert
- Institute of Resistance Research and Pathogen Diagnostics, Federal Centre for Breeding Research on Cultivated Plants, Theodor-Roemer Weg 4, 06449 Aschersleben, Germany.
| | | | | |
Collapse
|
45
|
Balme-Sinibaldi V, Tribodet M, Croizat F, Lefeuvre P, Kerlan C, Jacquot E. Improvement of Potato virus Y (PVY) detection and quantitation using PVY(N)- and PVY(O)-specific real-time RT-PCR assays. J Virol Methods 2006; 134:261-6. [PMID: 16513184 DOI: 10.1016/j.jviromet.2006.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 01/18/2006] [Accepted: 01/23/2006] [Indexed: 11/21/2022]
Abstract
A Potato virus Y (PVY) single nucleotide polymorphism (A/G(2213)), recently identified as a molecular determinant of the tobacco leaf necrosis symptom induced by PVY(N) isolates, has been used as a target to develop two PVY group-specific (PVY(N) and PVY(O)) fluorescent (TaqMan-based) real-time RT-PCR assays. These procedures allow detection, characterisation, and quantitation of a wide range of PVY isolates in samples containing 10(3)-10(8) viral transcripts. Moreover, the high specificity of these two new assays make the simultaneous detection and the reliable quantitation of PVY(N) and PVY(O) isolates in mixed solutions, regardless of the Y(N)/Y(O) ratio, feasible. The high sensitivity (threshold of 10(3) copies per reaction) and the PVY group specificity of these two new PVY detection tools clearly improve previously published PVY detection tests and offer new opportunities for PVY research programs.
Collapse
Affiliation(s)
- Valérie Balme-Sinibaldi
- INRA/ENSA, Unité Mixte de Recherche Biologie des Organismes et des Populations Appliquée à la Protection des Plantes (BiO3P), Domaine de la Motte B.P. 35327, F-35653 Le Rheu Cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Lorenzen JH, Meacham T, Berger PH, Shiel PJ, Crosslin JM, Hamm PB, Kopp H. Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Arch Virol 2006; 151:1055-74. [PMID: 16463126 DOI: 10.1007/s00705-005-0707-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Potato virus Y (PVY) is a serious potato pathogen that affects potato seed and commercial production crops. In recent decades, novel PVY strains have been described that cause necrotic symptoms on tobacco foliage and/or potato tubers. The major PVY strains that affect potato include PVY(O) and PVY(N), which have distinct serotypes that can be differentiated by immunoassay. Other economically important strain variants are derived from recombination events, including variants that cause tuber necrotic symptoms (PVY(NTN)) and PVY(O) serotypes that cause tobacco veinal necrosis (PVY(N)-W, PVY(N:O)). Although the PVY(NTN) and PVY(N)-W variants were first reported in Europe, apparently similar strains have been appearing in North America. Confirmation of the existence of these recombinant strains in North America is important, as is whether they spread from a common source or were derived by independent recombination. Whole genome sequencing can be used to positively identify strain variants and begin to address the issue of origins. Symptomology, serology, RT-PCR, and partial sequencing of the coat protein region were used to identify isolates of the PVY(NTN), PVY(N), PVY(NA-N), and PVY(N:O) for whole-genome sequencing. Sequencing confirmed the presence of PVY(NTN) and PVY(N) isolates that were >99% identical to European sequences deposited in GenBank in the 1990's. Sequences of the PVY(NA-N) and PVY(N:O) types were 99.0% and 99.5% identical to known sequences, respectively. There was no indication that recombinant strains PVY(NTN) or PVY(N:O) had different parental origins than recombinant strains previously sequenced. This is the first confirmation by whole-genome sequencing that "European"-type strain variants of PVY(N) and PVY(NTN) are present in North America, and the first reported full-length sequence of a tuber necrotic isolate of PVY(N:O).
Collapse
Affiliation(s)
- J H Lorenzen
- PSES Department, University of Idaho, Moscow, Idaho 83844, USA.
| | | | | | | | | | | | | |
Collapse
|