1
|
Hardy S, Chhan CB, Davis AR, McGuire AT. Viral Entry. Curr Top Microbiol Immunol 2025. [PMID: 40366394 DOI: 10.1007/82_2025_300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Epstein-Barr virus chiefly infects B cells and epithelial cells but is capable of infecting other cell types in the human host. Host cell entry is a complex process mediated by several viral glycoproteins that define tropism and mediate membrane fusion. This chapter will review what is known about the function of viral glycoproteins in the entry process, explore the nature of interactions between viral glycoproteins and host cell receptors, and highlight gaps in knowledge about the entry process that remain to be filled.
Collapse
Affiliation(s)
- Samantha Hardy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Crystal B Chhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Amelia R Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Sausen DG, Basith A, Muqeemuddin S. EBV and Lymphomagenesis. Cancers (Basel) 2023; 15:cancers15072133. [PMID: 37046794 PMCID: PMC10093459 DOI: 10.3390/cancers15072133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only does it infect approximately 90% of the world’s population, but it is also associated with numerous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric cancer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment for these disease states is ever evolving, much work remains to more fully elucidate the relationship between EBV, its associated disease states, and their treatments. This paper begins with an overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to select hematologic malignancies with a focus on the contribution of latent proteins as well as their associated management.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayeman Basith
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
3
|
Dowell AC, Haigh TA, Ryan GB, Turner JE, Long HM, Taylor GS. Cytotoxic CD4+ T-cells specific for EBV capsid antigen BORF1 are maintained in long-term latently infected healthy donors. PLoS Pathog 2021; 17:e1010137. [PMID: 34882759 PMCID: PMC8691624 DOI: 10.1371/journal.ppat.1010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/21/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development. Epstein-Barr virus is a widespread herpesvirus carried by most individuals. Whilst infection is usually asymptomatic, development of a prophylactic vaccine against EBV is desirable because of the virus’s association with infectious mononucleosis in primary infection and several cancers and autoimmune diseases during long-term virus carriage. Identifying T-cell responses that can recognise newly infected B-cells at very early stages of infection may provide novel targets for T-cell vaccination. Here we characterise T-cell responses against three virus proteins, BcLF1, BDLF1 and BORF1 that, as structural proteins of the virus particle, are delivered into the cell by the infecting virus. We find that all three proteins are recognised by T-cells from infected individuals. Moreover, isolated structural antigen-specific CD4+ T-cells rapidly recognise newly infected B-cells and prevent their outgrowth in vitro. As reported for CD4+ T-cells against other EBV proteins, structural antigen-specific CD4+ T-cells induced by primary EBV infection have cytotoxic function. However, we also demonstrate that, unusually, this cytotoxic function is retained in memory T-cells present in long-term infected individuals. Structural antigens may therefore represent useful targets for prophylactic EBV vaccine development to induce CD4+ T-cells able to rapidly eliminate virus-infected cells.
Collapse
Affiliation(s)
- Alexander C. Dowell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gordon B. Ryan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Farina A, Rosato E, York M, Gewurz BE, Trojanowska M, Farina GA. Innate Immune Modulation Induced by EBV Lytic Infection Promotes Endothelial Cell Inflammation and Vascular Injury in Scleroderma. Front Immunol 2021; 12:651013. [PMID: 33953718 PMCID: PMC8089375 DOI: 10.3389/fimmu.2021.651013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Microvascular injury is considered an initial event in the pathogenesis of scleroderma and endothelial cells are suspected of being the target of the autoimmune process seen in the disease. EBV has long been proposed as a trigger for autoimmune diseases, including scleroderma. Nevertheless, its contribution to the pathogenic process remains poorly understood. In this study, we report that EBV lytic antigens are detected in scleroderma dermal vessels, suggesting that endothelial cells might represent a target for EBV infection in scleroderma skin. We show that EBV DNA load is remarkably increased in peripheral blood, plasma and circulating monocytes from scleroderma patients compared to healthy EBV carriers, and that monocytes represent the prominent subsets of EBV-infected cells in scleroderma. Given that monocytes have the capacity to adhere to the endothelium, we then investigated whether monocyte-associated EBV could infect primary human endothelial cells. We demonstrated that endothelial cells are infectable by EBV, using human monocytes bound to recombinant EBV as a shuttle, even though cell-free virus failed to infect them. We show that EBV induces activation of TLR9 innate immune response and markers of vascular injury in infected endothelial cells and that up-regulation is associated with the expression of EBV lytic genes in infected cells. EBV innate immune modulation suggests a novel mechanism mediating inflammation, by which EBV triggers endothelial cell and vascular injury in scleroderma. In addition, our data point to up-regulation of EBV DNA loads as potential biomarker in developing vasculopathy in scleroderma. These findings provide the framework for the development of novel therapeutic interventions to shift the scleroderma treatment paradigm towards antiviral therapies.
Collapse
Affiliation(s)
- Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Michael York
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program in Virology, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Maria Trojanowska
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
5
|
Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell 2021; 184:643-654.e13. [PMID: 33482082 DOI: 10.1016/j.cell.2020.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/17/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.
Collapse
|
6
|
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV's discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.
Collapse
|
7
|
Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc Natl Acad Sci U S A 2020; 117:14421-14432. [PMID: 32522871 DOI: 10.1073/pnas.1921139117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.
Collapse
|
8
|
Spontaneous lymphoblastoid cell lines from patients with Epstein-Barr virus infection show highly variable proliferation characteristics that correlate with the expression levels of viral microRNAs. PLoS One 2019; 14:e0222847. [PMID: 31568538 PMCID: PMC6768455 DOI: 10.1371/journal.pone.0222847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022] Open
Abstract
The Epstein-Barr virus (EBV) induces B-cell proliferation with high efficiency through expression of latent proteins and microRNAs. This process takes place in vivo soon after infection, presumably to expand the virus reservoir, but can also induce pathologies, e.g. an infectious mononucleosis (IM) syndrome after primary infection or a B-cell lymphoproliferation in immunosuppressed individuals. In this paper, we investigated the growth characteristics of EBV-infected B-cells isolated from transplant recipients or patients with IM. We found that these cells grew and withstood apoptosis at highly variable rates, suggesting that the expansion rate of the infected B-cells widely varies between individuals, thereby influencing the size of the B-cell reservoir and the ability to form tumors in infected individuals. All viruses investigated were type 1 and genetically close to western strains. EBV-infected B-cells expressed the transforming EBV latent genes and microRNAs (miRNAs) at variable levels. We found that the B-cell growth rates positively correlated with the BHRF1 miRNA levels. Comparative studies showed that infected B-cells derived from transplant recipients with iEBVL on average expressed higher levels of EBV miR-BHRF1 miRNAs and grew more rapidly than B-cells from IM patients, suggesting infection by more transforming viruses. Altogether, these findings suggest that EBV infection has a highly variable impact on the B-cell compartment that probably reflects the genetic diversity of both the virus and the host. It also demonstrates the unexpected finding that B-cells from different individuals can grow at different speed under the influence of the same virus infection.
Collapse
|
9
|
Stanland LJ, Luftig MA. Molecular features and translational outlook for Epstein-Barr virus-associated gastric cancer. Future Virol 2018; 13:803-818. [PMID: 34367314 PMCID: PMC8345226 DOI: 10.2217/fvl-2018-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr Virus (EBV) was the first discovered human tumor virus and is the etiological agent of B cell lymphomas and also epithelial cancers. Indeed, nearly 10% of gastric cancers worldwide are EBV-positive and display unique molecular, epigenetic, and clinicopathological features. EBV-positive gastric cancers display the highest rate of host genome methylation of all tumor types studied and harbor recurrent mutations activating PI3Kα, silencing ARID1A, and amplifying PD-L1. While EBV infection of B cells can be studied efficiently, de novo epithelial cell infection is much more difficult. We propose that new culture models including 3D-based gastric organoids and xenografts can bring new insight into EBV-induced gastric carcinogenesis and will lead to improved precision medicine-based therapies for patients with EBV-positive gastric cancer.
Collapse
Affiliation(s)
- Lyla J. Stanland
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
10
|
Dheekollu J, Malecka K, Wiedmer A, Delecluse HJ, Chiang AKS, Altieri DC, Messick TE, Lieberman PM. Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency. Oncotarget 2018; 8:7248-7264. [PMID: 28077791 PMCID: PMC5352318 DOI: 10.18632/oncotarget.14540] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.
Collapse
Affiliation(s)
| | | | | | | | - Alan K S Chiang
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
11
|
Costa NR, Gil da Costa RM, Medeiros R. A viral map of gastrointestinal cancers. Life Sci 2018; 199:188-200. [PMID: 29476768 DOI: 10.1016/j.lfs.2018.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Cancers of the gastrointestinal tract (GIT) are expected to account for approximately 20% of all cancers in 2017. Apart from their high incidence, GIT cancers show high mortality rates, placing these malignancies among the most prominent public health issues of our time. Cancers of the GIT are the result of a complex interplay between host genetic factors and environmental factors and frequently arise in the context of a continued active inflammatory response. Several tumor viruses are able to elicit such chronic inflammatory responses. In fact, several viruses have an impact on GIT tumor initiation and progression, as well as on patients' response to therapy and prognosis, through direct and indirect mechanisms. In this review, we have gathered information on different viruses' rates of infection, viral-driven specific carcinogenesis mechanisms and viral-related impact on the prognosis of cancers of the GIT (specifically in organs that have an interface with the environment - esophagus, stomach, intestines and anus). Overall, while some viral infections show a strong causal relation with specific gastrointestinal cancers, these represent a relatively small fraction of GIT malignancies. Other types of cancer, like Esophageal Squamous Cell Carcinoma, require further studies to confirm the carcinogenic role of some viral agents.
Collapse
Affiliation(s)
- Natália R Costa
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Porto, Portugal; LEPABE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal; Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Porto, Portugal
| |
Collapse
|
12
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
13
|
Shumilov A, Tsai MH, Schlosser YT, Kratz AS, Bernhardt K, Fink S, Mizani T, Lin X, Jauch A, Mautner J, Kopp-Schneider A, Feederle R, Hoffmann I, Delecluse HJ. Epstein-Barr virus particles induce centrosome amplification and chromosomal instability. Nat Commun 2017; 8:14257. [PMID: 28186092 PMCID: PMC5309802 DOI: 10.1038/ncomms14257] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/13/2016] [Indexed: 12/03/2022] Open
Abstract
Infections with Epstein–Barr virus (EBV) are associated with cancer development, and EBV lytic replication (the process that generates virus progeny) is a strong risk factor for some cancer types. Here we report that EBV infection of B-lymphocytes (in vitro and in a mouse model) leads to an increased rate of centrosome amplification, associated with chromosomal instability. This effect can be reproduced with virus-like particles devoid of EBV DNA, but not with defective virus-like particles that cannot infect host cells. Viral protein BNRF1 induces centrosome amplification, and BNRF1-deficient viruses largely lose this property. These findings identify a new mechanism by which EBV particles can induce chromosomal instability without establishing a chronic infection, thereby conferring a risk for development of tumours that do not necessarily carry the viral genome. Infection with Epstein–Barr virus (EBV) is associated with increased risk of cancer development. Here the authors show that EBV particles, and more specifically the viral protein BNRF1, induce centrosome amplification and chromosomal instability in host cells in the absence of chronic infection.
Collapse
Affiliation(s)
- Anatoliy Shumilov
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ming-Han Tsai
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Yvonne T Schlosser
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Anne-Sophie Kratz
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Katharina Bernhardt
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Susanne Fink
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Tuba Mizani
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Xiaochen Lin
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Josef Mautner
- Helmholtz Zentrum München, Research Unit Gene Vectors, 81377 Munich, Germany.,Children's Hospital Technische Universität München, 80804 Munich, Germany.,German Center for Infection Research (DZIF), 81377 Munich, Germany
| | | | - Regina Feederle
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Core Facility Monoclonal Antibodies, 81377 Munich, Germany
| | - Ingrid Hoffmann
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| |
Collapse
|
14
|
High Epstein-Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis. J Virol 2016; 91:JVI.01562-16. [PMID: 27733645 DOI: 10.1128/jvi.01562-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/29/2016] [Indexed: 01/02/2023] Open
Abstract
The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development.
Collapse
|
15
|
Brooks JM, Long HM, Tierney RJ, Shannon-Lowe C, Leese AM, Fitzpatrick M, Taylor GS, Rickinson AB. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination. PLoS Pathog 2016; 12:e1005549. [PMID: 27096949 PMCID: PMC4838210 DOI: 10.1371/journal.ppat.1005549] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.
Collapse
Affiliation(s)
- Jill M. Brooks
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rose J. Tierney
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alison M. Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht University, Utrecht, The Netherlands
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alan B. Rickinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Klaus JP, Botten J. Highly Sensitive Assay for Measurement of Arenavirus-cell Attachment. J Vis Exp 2016:e53682. [PMID: 26966937 DOI: 10.3791/53682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Arenaviruses are a family of enveloped RNA viruses that cause severe human disease. The first step in the arenavirus life cycle is attachment of viral particles to host cells. While virus-cell attachment can be measured through the use of virions labeled with biotin, radioactive isotopes, or fluorescent dyes, these approaches typically require high multiplicities of infection (MOI) to enable detection of bound virus. We describe a quantitative (q)RT-PCR-based assay that measures Junin virus strain Candid 1 attachment via quantitation of virion-packaged viral genomic RNA. This assay has several advantages including its extreme sensitivity and ability to measure attachment over a large dynamic range of MOIs without the need to purify or label input virus. Importantly, this approach can be easily tailored for use with other viruses through the use of virus-specific qRT-PCR reagents. Further, this assay can be modified to permit measurement of particle endocytosis and genome uncoating. In conclusion, we describe a simple, yet robust assay for highly sensitive measurement of arenavirus-cell attachment.
Collapse
Affiliation(s)
- Joseph P Klaus
- Department of Medicine, Division of Immunobiology, University of Vermont
| | - Jason Botten
- Department of Medicine, Division of Immunobiology, University of Vermont; Department of Microbiology & Molecular Genetics, University of Vermont;
| |
Collapse
|
17
|
Metabolic stress is a barrier to Epstein-Barr virus-mediated B-cell immortalization. Proc Natl Acad Sci U S A 2016; 113:E782-90. [PMID: 26802124 DOI: 10.1073/pnas.1517141113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus that has been causally linked to the development of B-cell and epithelial malignancies. Early after infection, EBV induces a transient period of hyperproliferation that is suppressed by the activation of the DNA damage response and a G1/S-phase growth arrest. This growth arrest prevents long-term outgrowth of the majority of infected cells. We developed a method to isolate and characterize infected cells that arrest after this early burst of proliferation and integrated gene expression and metabolic profiling to gain a better understanding of the pathways that attenuate immortalization. We found that the arrested cells have a reduced level of mitochondrial respiration and a decrease in the expression of genes involved in the TCA cycle and oxidative phosphorylation. Indeed, the growth arrest in early infected cells could be rescued by supplementing the TCA cycle. Arrested cells were characterized by an increase in the expression of p53 pathway gene targets, including sestrins leading to activation of AMPK, a reduction in mTOR signaling, and, consequently, elevated autophagy that was important for cell survival. Autophagy was also critical to maintain early hyperproliferation during metabolic stress. Finally, in assessing the metabolic changes from early infection to long-term outgrowth, we found concomitant increases in glucose import and surface glucose transporter 1 (GLUT1) levels, leading to elevated glycolysis, oxidative phosphorylation, and suppression of basal autophagy. Our study demonstrates that oncogene-induced senescence triggered by a combination of metabolic and genotoxic stress acts as an intrinsic barrier to EBV-mediated transformation.
Collapse
|
18
|
Bernhardt K, Haar J, Tsai MH, Poirey R, Feederle R, Delecluse HJ. A Viral microRNA Cluster Regulates the Expression of PTEN, p27 and of a bcl-2 Homolog. PLoS Pathog 2016; 12:e1005405. [PMID: 26800049 PMCID: PMC4723338 DOI: 10.1371/journal.ppat.1005405] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects and transforms B-lymphocytes with high efficiency. This process requires expression of the viral latent proteins and of the 3 miR-BHRF1 microRNAs. Here we show that B-cells infected by a virus that lacks these non-coding RNAs (Δ123) grew more slowly between day 5 and day 20, relative to wild type controls. This effect could be ascribed to a reduced S phase entry combined with a moderately increased apoptosis rate. Whilst the first phenotypic trait was consistent with an enhanced PTEN expression in B-cells infected with Δ123, the second could be explained by very low BHRF1 protein and RNA levels in the same cells. Indeed, B-cells infected either by a recombinant virus that lacks the BHRF1 protein, a viral bcl-2 homolog, or by Δ123 underwent a similar degree of apoptosis, whereas knockouts of both BHRF1 microRNAs and protein proved transformation-incompetent. We find that that the miR-BHRF1-3 seed regions, and to a lesser extent those of miR-BHRF1-2 mediate these stimulatory effects. After this critical period, B-cells infected with the Δ123 mutant recovered a normal growth rate and became more resistant to provoked apoptosis. This resulted from an enhanced BHRF1 protein expression relative to cells infected with wild type viruses and correlated with decreased p27 expression, two pro-oncogenic events. The upregulation of BHRF1 can be explained by the observation that large BHRF1 mRNAs are the source of BHRF1 protein but are destroyed following BHRF1 microRNA processing, in particular of miR-BHRF1-2. The BHRF1 microRNAs are unlikely to directly target p27 but their absence may facilitate the selection of B-cells that express low levels of this protein. Thus, the BHRF1 microRNAs allowed a time-restricted expression of the BHRF1 protein to innocuously expand the virus B-cell reservoir during the first weeks post-infection without increasing long-term immune pressure.
Collapse
Affiliation(s)
- Katharina Bernhardt
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Janina Haar
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Ming-Han Tsai
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Remy Poirey
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Regina Feederle
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Heidelberg, Germany
- Inserm unit U1074, Heidelberg, Germany
| |
Collapse
|
19
|
Haar J, Contrant M, Bernhardt K, Feederle R, Diederichs S, Pfeffer S, Delecluse HJ. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic Acids Res 2015; 44:1326-41. [PMID: 26635399 PMCID: PMC4756819 DOI: 10.1093/nar/gkv1330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/13/2015] [Indexed: 02/02/2023] Open
Abstract
The Epstein-Barr virus (EBV) transforms B cells by expressing latent proteins and the BHRF1 microRNA cluster. MiR-BHRF1–3, its most transforming member, belongs to the recently identified group of weakly expressed microRNAs. We show here that miR-BHRF1–3 displays an unusually low propensity to form a stem–loop structure, an effect potentiated by miR-BHRF1–3's proximity to the BHRF1 polyA site. Cloning miR-BHRF1–2 or a cellular microRNA, but not a ribozyme, 5′ of miR-BHRF1–3 markedly enhanced its expression. However, a virus carrying mutated miR-BHRF1–2 seed regions expressed miR-BHRF1–3 at normal levels and was fully transforming. Therefore, miR-BHRF1–2's role during transformation is independent of its seed regions, revealing a new microRNA function. Increasing the distance between miR-BHRF1–2 and miR-BHRF1–3 in EBV enhanced miR-BHRF1–3's expression but decreased its transforming potential. Thus, the expression of some microRNAs must be restricted to a narrow range, as achieved by placing miR-BHRF1–3 under the control of miR-BHRF1–2.
Collapse
Affiliation(s)
- Janina Haar
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany Inserm unit U1074, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Maud Contrant
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Katharina Bernhardt
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany Inserm unit U1074, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Regina Feederle
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany Inserm unit U1074, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Clinic for Thoracic Surgery, University Hospital Freiburg, Breisacher Str. 86b, 79110 Freiburg, Germany Division of RNA Biology & Cancer, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany & Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany Inserm unit U1074, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Moroncini G, Grieco A, Nacci G, Paolini C, Tonnini C, Pozniak KN, Cuccioloni M, Mozzicafreddo M, Svegliati S, Angeletti M, Kazlauskas A, Avvedimento EV, Funaro A, Gabrielli A. Epitope Specificity Determines Pathogenicity and Detectability of Anti-Platelet-Derived Growth Factor Receptor α Autoantibodies in Systemic Sclerosis. Arthritis Rheumatol 2015; 67:1891-903. [DOI: 10.1002/art.39125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Gianluca Moroncini
- Università Politecnica delle Marche and Ospedali Riuniti Ancona; Ancona Italy
| | - Antonella Grieco
- Università Politecnica delle Marche and Ospedali Riuniti Ancona; Ancona Italy
| | | | - Chiara Paolini
- Università Politecnica delle Marche and Ospedali Riuniti Ancona; Ancona Italy
| | - Cecilia Tonnini
- Università Politecnica delle Marche and Ospedali Riuniti Ancona; Ancona Italy
| | | | | | | | - Silvia Svegliati
- Università Politecnica delle Marche and Ospedali Riuniti Ancona; Ancona Italy
| | | | - Andrius Kazlauskas
- Schepens Eye Research Institute and Harvard Medical School; Boston Massachusetts
| | | | | | - Armando Gabrielli
- Università Politecnica delle Marche and Ospedali Riuniti Ancona; Ancona Italy
| |
Collapse
|
21
|
Tierney RJ, Nagra J, Rowe M, Bell AI, Rickinson AB. The Epstein-Barr virus BamHI C promoter is not essential for B cell immortalization in vitro, but it greatly enhances B cell growth transformation. J Virol 2015; 89:2483-93. [PMID: 25540367 PMCID: PMC4325715 DOI: 10.1128/jvi.03300-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) infection of B cells leads to the sequential activation of two viral promoters, Wp and Cp, resulting in the expression of six EBV nuclear antigens (EBNAs) and the viral Bcl2 homologue BHRF1. The viral transactivator EBNA2 is required for this switch from Wp to Cp usage during the initial stages of infection. EBNA2-dependent Cp transcription is mediated by the EBNA2 response element (E2RE), a region that contains at least two binding sites for cellular factors; one of these sites, CBF1, interacts with RBP-JK, which then recruits EBNA2 to the transcription initiation complex. Here we demonstrate that the B cell-specific transcription factor BSAP/Pax5 binds to a second site, CBF2, in the E2RE. Deletion of the E2RE in the context of a recombinant virus greatly diminished levels of Cp-initiated transcripts during the initial stages of infection but did not affect the levels of Wp-initiated transcripts or EBNA mRNAs. Consistent with this finding, viruses deleted for the E2RE were not markedly impaired in their ability to induce B cell transformation in vitro. In contrast, a larger deletion of the entire Cp region did reduce EBNA mRNA levels early after infection and subsequently almost completely ablated lymphoblastoid cell line (LCL) outgrowth. Notably, however, rare LCLs could be established following infection with Cp-deleted viruses, and these were indistinguishable from wild-type-derived LCLs in terms of steady-state EBV gene transcription. These data indicate that, unlike Wp, Cp is dispensable for the virus' growth-transforming activity. IMPORTANCE Epstein-Barr virus (EBV), a B lymphotropic herpesvirus etiologically linked to several B cell malignancies, efficiently induces B cell proliferation leading to the outgrowth of lymphoblastoid cell lines (LCLs). The initial stages of this growth-transforming infection are characterized by the sequential activation of two viral promoters, Wp and Cp, both of which appear to be preferentially active in target B cells. In this work, we have investigated the importance of Cp activity in initiating B cell proliferation and maintaining LCL growth. Using recombinant viruses, we demonstrate that while Cp is not essential for LCL outgrowth in vitro, it enhances transformation efficiency by >100-fold. We also show that Cp, like Wp, interacts with the B cell-specific activator protein BSAP/Pax5. We suggest that EBV has evolved this two-promoter system to ensure efficient colonization of the host B cell system in vivo.
Collapse
Affiliation(s)
- Rosemary J Tierney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jasdeep Nagra
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B Rickinson
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
The EBNA3 Family: Two Oncoproteins and a Tumour Suppressor that Are Central to the Biology of EBV in B Cells. Curr Top Microbiol Immunol 2015; 391:61-117. [PMID: 26428372 DOI: 10.1007/978-3-319-22834-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus nuclear antigens EBNA3A , EBNA3B and EBNA3C are a family of three large latency-associated proteins expressed in B cells induced to proliferate by the virus. Together with the other nuclear antigens (EBNA-LP, EBNA2 and EBNA1), they are expressed from a polycistronic transcription unit that is probably unique to B cells. However, compared with the other EBNAs, hitherto the EBNA3 proteins were relatively neglected and their roles in EBV biology rather poorly understood. In recent years, powerful new technologies have been used to show that these proteins are central to the latency of EBV in B cells, playing major roles in reprogramming the expression of host genes affecting cell proliferation, survival, differentiation and immune surveillance. This indicates that the EBNA3s are critical in EBV persistence in the B cell system and in modulating B cell lymphomagenesis. EBNA3A and EBNA3C are necessary for the efficient proliferation of EBV-infected B cells because they target important tumour suppressor pathways--so operationally they are considered oncoproteins. In contrast, it is emerging that EBNA3B restrains the oncogenic capacity of EBV, so it can be considered a tumour suppressor--to our knowledge the first to be described in a tumour virus. Here, we provide a general overview of the EBNA3 genes and proteins. In particular, we describe recent research that has highlighted the complexity of their functional interactions with each other, with specific sites on the human genome and with the molecular machinery that controls transcription and epigenetic states of diverse host genes.
Collapse
|
23
|
Abstract
Ever since the discovery of Epstein-Barr virus (EBV) more than 50 years ago, this virus has been studied for its capacity to readily establish a latent infection, which is the prominent hallmark of this member of the herpesvirus family. EBV has become an important model for many aspects of herpesviral latency, but the molecular steps and mechanisms that lead to and promote viral latency have only emerged recently. It now appears that the virus exploits diverse facets of epigenetic gene regulation in the cellular host to establish a latent infection. Most viral genes are transcriptionally repressed, and viral chromatin is densely compacted during EBV's latent phase, but latent infection is not a dead end. In order to escape from this phase, epigenetic silencing must be reverted efficiently and quickly. It appears that EBV has perfected a clever strategy to overcome transcriptional repression of its many lytic genes to initiate virus de novo synthesis within a few hours after induction of its lytic cycle. This review tries to summarize the known molecular mechanisms, the current models, concepts, and ideas underlying this viral strategy. This review also attempts to identify and address gaps in our current understanding of EBV's epigenetic mechanisms within the infected cellular host.
Collapse
Affiliation(s)
- Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, 81377, Munich, Germany.
| |
Collapse
|
24
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
25
|
Abstract
Epstein-Barr virus primarily, though not exclusively, infects B cells and epithelial cells. Many of the virus and cell proteins that are involved in entry into these two cell types in vitro have been identified, and their roles in attachment and fusion are being explored. This chapter discusses what is known about entry at the cellular level in vitro and describes what little is known about the process in vivo. It highlights some of the questions that still need to be addressed and considers some models that need further testing.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Ru Jiang
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.,Department of Clinical Teaching and Training, Tianjin University of Traditional Chinese Medicine, 312 West Anshan Road, 300193, Nankai District, Tianjin, China
| | - Lindsey M Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
26
|
Tierney RJ, Shannon-Lowe CD, Fitzsimmons L, Bell AI, Rowe M. Unexpected patterns of Epstein-Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA. Virology 2015; 474:117-30. [PMID: 25463610 PMCID: PMC4266535 DOI: 10.1016/j.virol.2014.10.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 11/25/2022]
Abstract
We have validated a flexible, high-throughput and relatively inexpensive RT-QPCR array platform for absolute quantification of Epstein-Barr virus transcripts in different latent and lytic infection states. Several novel observations are reported. First, during infection of normal B cells, Wp-initiated latent gene transcripts remain far more abundant following activation of the Cp promoter than was hitherto suspected. Second, EBNA1 transcript levels are remarkably low in all forms of latency, typically ranging from 1 to 10 transcripts per cell. EBNA3A, -3B and -3C transcripts are likewise very low in Latency III, typically at levels similar to or less than EBNA1 transcripts. Thirdly, a subset of lytic gene transcripts is detectable in Burkitt lymphoma lines at low levels, including: BILF1, which has oncogenic properties, and the poorly characterized LF1, LF2 and LF3 genes. Analysis of seven African BL biopsies confirmed this transcription profile but additionally revealed significant expression of LMP2 transcripts.
Collapse
MESH Headings
- B-Lymphocytes/virology
- Burkitt Lymphoma/virology
- Cell Line, Tumor
- Epstein-Barr Virus Nuclear Antigens/genetics
- Gene Expression Regulation, Viral
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Humans
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Receptors, G-Protein-Coupled/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription, Genetic
- Viral Proteins/genetics
- Virion/genetics
- Virus Latency/genetics
Collapse
Affiliation(s)
- Rosemary J Tierney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Claire D Shannon-Lowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Leah Fitzsimmons
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew I Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
27
|
Chesnokova LS, Hutt-Fletcher LM. Epstein-Barr virus infection mechanisms. CHINESE JOURNAL OF CANCER 2014; 33:545-8. [PMID: 25322867 PMCID: PMC4244317 DOI: 10.5732/cjc.014.10168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infection occurs by distinct mechanisms across different cell types. EBV infection of B cells in vitro minimally requires 5 viral glycoproteins and 2 cellular proteins. By contrast, infection of epithelial cells requires a minimum of 3 viral glycoproteins, which are capable of interacting with one or more of 3 different cellular proteins. The full complement of proteins involved in entry into all cell types capable of being infected in vivo is unknown. This review discusses the events that occur when the virus is delivered into the cytoplasm of a cell, the players known to be involved in these events, and the ways in which these players are thought to function.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130,
| | | |
Collapse
|
28
|
Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D'Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 2014; 88:5001-5013. [PMID: 24554662 PMCID: PMC3993823 DOI: 10.1128/jvi.03642-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor β1 (TGF-β1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.
Collapse
Affiliation(s)
- Eva M. Campion
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad T. Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Susan Phelan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad M. Smith
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Brendan N. D'Souza
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Rosemary J. Tierney
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul A. Cahill
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- Vascular Biology Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
29
|
Abstract
Epstein-Barr virus (EBV) is a herpes virus which in vitro efficiently immortalizes nearly all human B lymphocytes. The lymphoblastoid diploid cell lines (LCL's) thus generated preserve the characteristics of the cells initially infected by the virus: the cells produce and secrete immunoglobulins and also express these molecules on their surface. A selection of specific antibody-producing cells (i.e., antigen-committed cells) before EBV-infection or when LCL's have already been established, enables isolation of monoclonal cell lines that secrete specific antibodies. If selection of antigen-committed cells is not feasible, secretion of specific antibodies by cloned LCL's in limiting dilution cultures enables isolation of the desired cell lines. The method allows the production of human IgM, IgG, IgA, and IgE monoclonal antibodies from any individual. Monoclonal antibodies produced by the EBV method resemble the antibody repertoire of the donor of the lymphocytes. Human monoclonal antibodies are promising reagents for passive immunization.
Collapse
Affiliation(s)
- Michael Steinitz
- The Department of Pathology, The Lautenberg Center for General and Tumor Immunology, Jerusalem, Israel
| |
Collapse
|
30
|
Smith N, Tierney R, Wei W, Vockerodt M, Murray PG, Woodman CB, Rowe M. Induction of interferon-stimulated genes on the IL-4 response axis by Epstein-Barr virus infected human b cells; relevance to cellular transformation. PLoS One 2013; 8:e64868. [PMID: 23724103 PMCID: PMC3664578 DOI: 10.1371/journal.pone.0064868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that is associated with the pathogenesis of several human lymphoid malignancies, including Hodgkin's lymphoma. Infection of normal resting B cells with EBV results in activation to lymphoblasts that are phenotypically similar to those generated by physiological stimulation with CD40L plus IL-4. One important difference is that infection leads to the establishment of permanently growing lymphoblastoid cell lines, whereas CD40L/IL-4 blasts have finite proliferation lifespans. To identify early events which might later determine why EBV infected blasts go on to establish transformed cell lines, we performed global transcriptome analyses on resting B cells and on EBV and CD40L/IL-4 blasts after 7 days culture. As anticipated there was considerable overlap in the transcriptomes of the two types of lymphoblasts when compared to the original resting B cells, reflecting common changes associated with lymphocyte activation and proliferation. Of interest to us was a subset of 255 genes that were differentially expressed between EBV and CD40L/IL-4 blasts. Genes which were more highly expressed in EBV blasts were substantially and significantly enriched for a set of interferon-stimulated genes which on further in silico analyses were found to be repressed by IL-4 in other cell contexts and to be up-regulated in micro-dissected malignant cells from Hodgkin's lymphoma biopsies when compared to their normal germinal center cell counterparts. We hypothesized that EBV and IL-4 were targeting and discordantly regulating a common set of genes. This was supported experimentally in our B cell model where IL-4 stimulation partially reversed transcriptional changes which follow EBV infection and it impaired the efficiency of EBV-induced B cell transformation. Taken together, these data suggest that the discordant regulation of interferon and IL-4 pathway genes by EBV that occurs early following infection of B cells has relevance to the development or maintenance of an EBV-associated malignancy.
Collapse
Affiliation(s)
- Nikki Smith
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Rosemary Tierney
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Martina Vockerodt
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Ciaran B. Woodman
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| |
Collapse
|
31
|
Hernando H, Shannon-Lowe C, Islam AB, Al-Shahrour F, Rodríguez-Ubreva J, Rodríguez-Cortez VC, Javierre BM, Mangas C, Fernández AF, Parra M, Delecluse HJ, Esteller M, López-Granados E, Fraga MF, López-Bigas N, Ballestar E. The B cell transcription program mediates hypomethylation and overexpression of key genes in Epstein-Barr virus-associated proliferative conversion. Genome Biol 2013; 14:R3. [PMID: 23320978 PMCID: PMC3663113 DOI: 10.1186/gb-2013-14-1-r3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection is a well characterized etiopathogenic factor for a variety of immune-related conditions, including lymphomas, lymphoproliferative disorders and autoimmune diseases. EBV-mediated transformation of resting B cells to proliferating lymphoblastoid cells occurs in early stages of infection and is an excellent model for investigating the mechanisms associated with acquisition of unlimited growth. RESULTS We investigated the effects of experimental EBV infection of B cells on DNA methylation profiles by using high-throughput analysis. Remarkably, we observed hypomethylation of around 250 genes, but no hypermethylation. Hypomethylation did not occur at repetitive sequences, consistent with the absence of genomic instability in lymphoproliferative cells. Changes in methylation only occurred after cell divisions started, without the participation of the active demethylation machinery, and were concomitant with acquisition by B cells of the ability to proliferate. Gene Ontology analysis, expression profiling, and high-throughput analysis of the presence of transcription factor binding motifs and occupancy revealed that most genes undergoing hypomethylation are active and display the presence of NF-κB p65 and other B cell-specific transcription factors. Promoter hypomethylation was associated with upregulation of genes relevant for the phenotype of proliferating lymphoblasts. Interestingly, pharmacologically induced demethylation increased the efficiency of transformation of resting B cells to lymphoblastoid cells, consistent with productive cooperation between hypomethylation and lymphocyte proliferation. CONCLUSIONS Our data provide novel clues on the role of the B cell transcription program leading to DNA methylation changes, which we find to be key to the EBV-associated conversion of resting B cells to proliferating lymphoblasts.
Collapse
|
32
|
Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation. J Virol 2012; 86:11096-106. [PMID: 22855490 DOI: 10.1128/jvi.01069-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.
Collapse
|
33
|
Epstein-Barr virus infection of naïve B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog 2012; 8:e1002697. [PMID: 22589726 PMCID: PMC3349760 DOI: 10.1371/journal.ppat.1002697] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), a lymphomagenic human herpesvirus, colonises the host through polyclonal B cell-growth-transforming infections yet establishes persistence only in IgD+ CD27+ non-switched memory (NSM) and IgD− CD27+ switched memory (SM) B cells, not in IgD+ CD27− naïve (N) cells. How this selectivity is achieved remains poorly understood. Here we show that purified N, NSM and SM cell preparations are equally transformable in vitro to lymphoblastoid cells lines (LCLs) that, despite upregulating the activation-induced cytidine deaminase (AID) enzyme necessary for Ig isotype switching and Ig gene hypermutation, still retain the surface Ig phenotype of their parental cells. However, both N- and NSM-derived lines remain inducible to Ig isotype switching by surrogate T cell signals. More importantly, IgH gene analysis of N cell infections revealed two features quite distinct from parallel mitogen-activated cultures. Firstly, following 4 weeks of EBV-driven polyclonal proliferation, individual clonotypes then become increasingly dominant; secondly, in around 35% cases these clonotypes carry Ig gene mutations which both resemble AID products and, when analysed in prospectively-harvested cultures, appear to have arisen by sequence diversification in vitro. Thus EBV infection per se can drive at least some naïve B cells to acquire Ig memory genotypes; furthermore, such cells are often favoured during an LCL's evolution to monoclonality. Extrapolating to viral infections in vivo, these findings could help to explain how EBV-infected cells become restricted to memory B cell subsets and why EBV-driven lymphoproliferative lesions, in primary infection and/or immunocompromised settings, so frequently involve clones with memory genotypes. Epstein-Barr virus (EBV), a growth-transforming virus linked to several B cell lymphomas in man, is usually carried as an asymptomatic latent infection in B lymphocytes. Such virus carriage selectively involves memory, but not naive, B cells. How this selectivity is achieved is poorly understood since we find that naive and memory cell types are equally susceptible to infection and growth transformation to lymphoblastoid cell lines in vitro. Here we ask if EBV-transformation of purified naïve B cells can induce key features of memory cells, namely immunoglobulin (Ig) class switching and Ig gene mutation. We find that EBV does not induce Ig class switching (though the infected cells remain responsive to exogenous switch signals) but can induce Ig gene mutation. Thus, within 4 weeks of infecting naive B cell preparations, one can often detect cells carrying Ig mutations which appear to have arisen by somatic hypermutation in vitro. Furthermore, in many cases such cells become dominant during clonal evolution of the emergent EBV-transformed cell line. Overall these findings suggest a possible explanation as to why EBV is selectively found in memory B cell populations in vivo and why EBV-positive lymphoproliferative lesions/lymphomas so frequently involve clones with mutated Ig genotypes.
Collapse
|
34
|
Epstein-Barr virus BamHI W repeat number limits EBNA2/EBNA-LP coexpression in newly infected B cells and the efficiency of B-cell transformation: a rationale for the multiple W repeats in wild-type virus strains. J Virol 2011; 85:12362-75. [PMID: 21957300 DOI: 10.1128/jvi.06059-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The genome of Epstein-Barr virus (EBV), a gammaherpesvirus with potent B-cell growth-transforming ability, contains multiple copies of a 3-kb BamHI W repeat sequence; each repeat carries (i) a promoter (Wp) that initiates transformation by driving EBNA-LP and EBNA2 expression and (ii) the W1W2 exons encoding the functionally active repeat domain of EBNA-LP. The W repeat copy number of a virus therefore influences two potential determinants of its transforming ability: the number of available Wp copies and the maximum size of the encoded EBNA-LP. Here, using recombinant EBVs, we show that optimal B-cell transformation requires a minimum of 5 W repeats (5W); the levels of transforming ability fall progressively with viruses carrying 4, 3, and 2 W repeats, as do the levels of Wp-initiated transcripts expressed early postinfection (p.i.), while viruses with 1 copy of the wild-type W repeat (1W) and 0W are completely nontransforming. We therefore suggest that genetic analyses of EBV transforming function should ensure that wild-type and mutant strains have equal numbers (ideally at least 5) of W copies if the analysis is not to be compromised. Attempts to enhance the transforming function of low-W-copy-number viruses, via the activity of helper EBV strains or by gene repair, suggested that the critical defect is not related to EBNA-LP size but to the failure to achieve sufficiently strong coexpression of EBNA-LP and EBNA2 early postinfection. We further show by the results of ex vivo assays that EBV strains in the blood of infected individuals typically have a mean of 5 to 8 W copies, consistent with the view that evolution has selected for viruses with an optimal transforming function.
Collapse
|
35
|
Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG, Woodman CB. Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin's lymphoma. J Virol 2011; 85:9568-77. [PMID: 21752916 PMCID: PMC3165764 DOI: 10.1128/jvi.00468-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/22/2011] [Indexed: 12/29/2022] Open
Abstract
Although Epstein-Barr virus (EBV) usually establishes an asymptomatic lifelong infection, it is also implicated in the development of germinal center (GC) B-cell-derived malignancies, including Hodgkin's lymphoma (HL). Following primary infection, EBV remains latent in the memory B-cell population, where host-driven methylation of viral DNA contributes to the repression of viral gene expression. However, it is still unclear how EBV harnesses the cell's methylation machinery in B cells, how this contributes to viral persistence, and what impact this has on the methylation of cellular genes. We show that EBV infection of GC B cells is followed by upregulation of the DNA methyltransferase DNMT3A and downregulation of DNMT3B and DNMT1. We show that the EBV latent membrane protein 1 (LMP1) oncogene downregulates DNMT1 and that DNMT3A binds to the viral promoter Wp. Genome-wide promoter arrays performed with these cells showed that EBV-associated methylation changes in cellular genes were not randomly distributed across the genome but clustered at chromosomal locations, consistent with an instructive pattern of methylation, and were in part determined by promoter CpG content. Both DNMT3B and DNMT1 were downregulated and DNMT3A was upregulated in HL cell lines, recapitulating the pattern of expression observed following EBV infection of GC B cells. We also found, by using gene expression profiling, that genes differentially expressed following EBV infection of GC B cells were significantly enriched for those reported to be differentially expressed in HL. These observations suggest that EBV-infected GC B cells are a useful model for studying virus-associated changes contributing to the pathogenesis of HL.
Collapse
Affiliation(s)
- Sarah Leonard
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jennifer Anderton
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martina Vockerodt
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ciaran B. Woodman
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
36
|
Abstract
The human antibody response has special significance in the ongoing efforts to develop a protective HIV vaccine. The observation that a subset of HIV infected individuals, who do not develop AIDS, have a broadly neutralizing antibody response has drawn attention to deciphering the nature of this response. It is hoped that an understanding of these protective antibodies, developed over time in response to the ongoing accumulation of mutations in the infecting virus, will facilitate the development of a vaccine that can elicit a similar response. This strategy will be greatly aided by the identification of broadly neutralizing monoclonal HIV antibodies from infected individuals. Several methods have been utilized to isolate and characterize individual antibodies from the human repertoire and each of these methods has been applied to the generation of broadly neutralizing HIV antibodies, albeit with differing rates of success. This review describes several of these methods including human hybridoma; EBV transformation; non-immortalized B cell culture; clonal sorting; and combinatorial display. Key considerations used in the comparison of different methods includes: efficiency of interrogation of an individual's entire repertoire; assay formats that can be used to screen for antibodies of interest (i.e., binding versus biological assays); and the ability to recover native antibody heavy and light chain pairs.
Collapse
|
37
|
Long HM, Leese AM, Chagoury OL, Connerty SR, Quarcoopome J, Quinn LL, Shannon-Lowe C, Rickinson AB. Cytotoxic CD4+ T cell responses to EBV contrast with CD8 responses in breadth of lytic cycle antigen choice and in lytic cycle recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:92-101. [PMID: 21622860 PMCID: PMC3154640 DOI: 10.4049/jimmunol.1100590] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
EBV, a B lymphotropic herpesvirus, encodes two immediate early (IE)-, >30 early (E)-, and >30 late (L)-phase proteins during its replication (lytic) cycle. Despite this, lytic Ag-induced CD8 responses are strongly skewed toward IE and a few E proteins only, all expressed before HLA I presentation is blocked in lytically infected cells. For comparison, we examined CD4(+) T cell responses to eight IE, E, or L proteins, screening 14 virus-immune donors to overlapping peptide pools in IFN-γ ELISPOT assays, and established CD4(+) T cell clones against 12 defined epitopes for target-recognition assays. We found that the lytic Ag-specific CD4(+) T cell response differs radically from its CD8 counterpart in that it is widely distributed across IE, E, and L Ag targets, often with multiple reactivities detectable per donor and with IE, E, or L epitope responses being numerically dominant, and that all CD4(+) T cell clones, whether IE, E, or L epitope-specific, show strong recognition of EBV-transformed B cell lines, despite the lines containing only a small fraction of lytically infected cells. Efficient recognition occurs because lytic Ags are released into the culture and are acquired and processed by neighboring latently infected cells. These findings suggested that lytic Ag-specific CD4 responses are driven by a different route of Ag display than drives CD8 responses and that such CD4 effectors could be therapeutically useful against EBV-driven lymphoproliferative disease lesions, which contain similarly small fractions of EBV-transformed cells entering the lytic cycle.
Collapse
Affiliation(s)
- Heather M. Long
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison M. Leese
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Odette L. Chagoury
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Shawn R. Connerty
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jared Quarcoopome
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura L. Quinn
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Shannon-Lowe
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alan B. Rickinson
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
38
|
Shannon-Lowe C, Rowe M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog 2011; 7:e1001338. [PMID: 21573183 PMCID: PMC3088705 DOI: 10.1371/journal.ppat.1001338] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 04/06/2011] [Indexed: 12/13/2022] Open
Abstract
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b-negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Cancer Research UK Birmingham Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- Cancer Research UK Birmingham Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Duvall M, Bradley N, Fiorini RN. A novel platform to produce human monoclonal antibodies: The next generation of therapeutic human monoclonal antibodies discovery. MAbs 2011; 3:203-8. [PMID: 21285537 DOI: 10.4161/mabs.3.2.14774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A new technology has been developed that allows human antibodies to be quickly generated against virtually any antigen. Using a novel process, naïve human B cells are isolated from tonsil tissue and transformed with efficiency up to 85%, thus utilizing a large portion of the human VDJ/VJ repertoire. Through ex vivo stimulation, the B cells class switch and may undergo somatic hypermutation, thus producing a human "library" of different IgG antibodies that can then be screened against any antigen. Since diversity is generated ex vivo, sampling immunized or previously exposed individuals is not necessary. Cells producing the antibody of interest can be isolated through limiting dilution cloning and the human antibody from the cells can be tested for biological activity. No humanization is necessary because the antibodies are produced from human B cells. By eliminating immunization and humanization steps, and screening a broadly diverse library, this platform should reduce both the cost and time involved in producing therapeutic monoclonal antibody candidates.
Collapse
|
40
|
Megyola C, Ye J, Bhaduri-McIntosh S. Identification of a sub-population of B cells that proliferates after infection with Epstein-Barr virus. Virol J 2011; 8:84. [PMID: 21352549 PMCID: PMC3056814 DOI: 10.1186/1743-422x-8-84] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/25/2011] [Indexed: 01/12/2023] Open
Abstract
Background Epstein-Barr virus (EBV)-driven B cell proliferation is critical to its subsequent persistence in the host and is a key event in the development of EBV-associated B cell diseases. Thus, inquiry into early cellular events that precede EBV-driven proliferation of B cells is essential for understanding the processes that can lead to EBV-associated B cell diseases. Methods Infection with high titers of EBV of mixed, primary B cells in different stages of differentiation occurs during primary EBV infection and in the setting of T cell-immunocompromise that predisposes to development of EBV-lymphoproliferative diseases. Using an ex vivo system that recapitulates these conditions of infection, we correlated expression of selected B cell-surface markers and intracellular cytokines with expression of EBV latency genes and cell proliferation. Results We identified CD23, CD58, and IL6, as molecules expressed at early times after EBV-infection. EBV differentially infected B cells into two distinct sub-populations of latently infected CD23+ cells: one fraction, marked as CD23hiCD58+IL6- by day 3, subsequently proliferated; another fraction, marked as CD23loCD58+, expressed IL6, a B cell growth factor, but failed to proliferate. High levels of LMP1, a critical viral oncoprotein, were expressed in individual CD23hiCD58+ and CD23loCD58+ cells, demonstrating that reduced levels of LMP1 did not explain the lack of proliferation of CD23loCD58+ cells. Differentiation stage of B cells did not appear to govern this dichotomy in outcome either. Memory or naïve B cells did not exclusively give rise to either CD23hi or IL6-expressing cells; rather memory B cells gave rise to both sub-populations of cells. Conclusions B cells are differentially susceptible to EBV-mediated proliferation despite expression of viral gene products known to be critical for continuous B cell growth. Cellular events, in addition to viral gene expression, likely play a critical role in determining the outcome of EBV infection. By indentifying cells predicted to undergo EBV-mediated proliferation, our study provides new avenues of investigation into EBV pathogenesis.
Collapse
Affiliation(s)
- Cynthia Megyola
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
41
|
The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin's Lymphoma. Oncogene 2011; 30:2037-43. [PMID: 21242977 DOI: 10.1038/onc.2010.579] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is now evidence for both increased and decreased activity of the enzymes controlling the methylation of lysine 27 on histone 3 (H3K27) in cancer. One of these enzymes, KDM6B formally known as JMJD3, a histone demethylase, which removes the trimethyl mark from H3K27, is required for the lineage commitment and terminal differentiation of neural stem cells and of keratinocytes. Our results suggest that KDM6B may also have a role in antigen-driven B-cell differentiation. KDM6B expression increases in B-cell subsets with increasing stage of differentiation, and gene expression profiling shows that KDM6B transcriptional targets in germinal centre B (GC B) cells are significantly enriched for those differentially expressed during memory and plasma cell differentiation. Our results also suggest that aberrant expression of KDM6B may contribute to the pathogenesis of Hodgkin's Lymphoma (HL), an Epstein-Barr virus (EBV) associated malignancy. KDM6B is over-expressed in primary HL and induced by the EBV oncogene, latent membrane protein (LMP1) in GC B cells, the presumptive progenitors of HL. Consistent with these observations, we found that KDM6B transcriptional targets in GC B cells are enriched for genes differentially expressed in HL, and that KDM6B depletion can restore the tri-methylation of H3K27 on these genes.
Collapse
|
42
|
Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol 2010; 85:996-1010. [PMID: 21068248 DOI: 10.1128/jvi.01528-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) has been shown to encode at least 40 microRNAs (miRNAs), an important class of molecules that negatively regulate the expression of many genes through posttranscriptional mechanisms. Here, we have used real-time PCR assays to quantify the levels of EBV-encoded BHRF1 and BART miRNAs in latently infected cells and in cells induced into the lytic cycle. During latency, BHRF1 miRNAs were seen only in cells with detectable Cp- and/or Wp-initiated EBNA transcripts, while the BART miRNAs were expressed in all forms of latent infection. Surprisingly, levels of different BART miRNAs were found to vary up to 50-fold within a cell line. However, this variation could not be explained by differential miRNA turnover, as all EBV miRNAs appeared to be remarkably stable. Following entry into the virus lytic cycle, miR-BHRF1-2 and -1-3 were rapidly induced, coincident with the onset of lytic BHRF1 transcripts, while miR-BHRF1-1 expression was delayed until 48 h and correlated with the appearance of Cp/Wp-initiated EBNA transcripts. In contrast, levels of BART miRNAs were relatively unchanged during virus replication, despite dramatic increases in BART transcription. Finally, we show that BHRF1 and BART miRNAs were delayed relative to the induction of BHRF1 and BART transcripts in freshly infected primary B cell cultures. In summary, our data show that changes in BHRF1 and BART transcription are not necessarily reflected in altered miRNA levels, suggesting that miRNA maturation is a key step in regulating steady-state levels of EBV miRNAs.
Collapse
|
43
|
Epstein-Barr viruses that express a CD21 antibody provide evidence that gp350's functions extend beyond B-cell surface binding. J Virol 2009; 84:1139-47. [PMID: 19889766 DOI: 10.1128/jvi.01953-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The gp350 glycoprotein encoded by BLLF1 is crucial for efficient Epstein-Barr virus (EBV) infection of resting B cells. Gp350 binds to CD21, but whether this interaction sums up its functions remains unknown. We generated gp350-null EBVs that display CD19-, CD21-, or CD22-specific antibodies at their surface (designated as DeltaBLLF1-Ab). Gp350-complemented (DeltaBLLF1-C) and DeltaBLLF1-Ab were found to bind equally well to B cells. Surprisingly, DeltaBLLF1 binding was reduced only 1.7-fold relative to its complemented counterparts. Furthermore, B cells exposed to DeltaBLLF1-Ab or DeltaBLLF1 viruses presented structural antigens with comparable efficiency and achieved 25 to 80% of the T-cell activation elicited by DeltaBLLF1-C. These findings show that the gp350-CD21 interaction pair plays only a modest role during virus transfer to the endosomal compartment. However, primary B cells or Raji B cells infected with DeltaBLLF1-C viruses displayed a 35- to 70-fold higher infection rates than those exposed to DeltaBLLF1, DeltaBLLF1-CD22Ab, or DeltaBLLF1-CD19Ab viruses. Complementation of the gp350 knockout phenotype with CD21Ab substantially enhanced infection rates relative to DeltaBLLF1 but remained sevenfold (Raji B-cell line) to sixfold (primary B cells) less efficient than with gp350. We therefore infer that gp350 mainly exerts its functions after the internalization step, presumably during release of the viral capsid from the endosomal compartment, and that CD21-dependent but also CD21-independent molecular mechanisms are involved in this process. The latter appear to be characteristic of B-cell infection since transfection of CD21 in 293 cells improved the infection rates with both DeltaBLLF1-CD21Ab and DeltaBLLF1-C to a similar extent.
Collapse
|
44
|
Shannon-Lowe C, Adland E, Bell AI, Delecluse HJ, Rickinson AB, Rowe M. Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol 2009; 83:7749-60. [PMID: 19439479 PMCID: PMC2708605 DOI: 10.1128/jvi.00108-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/05/2009] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with malignant diseases of lymphoid and epithelial cell origin. The tropism of EBV is due to B-cell-restricted expression of CD21, the major receptor molecule for the virus. However, efficient infection of CD21- epithelial cells can be achieved via transfer from EBV-coated B cells. We compare and contrast here the early events following in vitro infection of primary B cells and epithelial cells. Using sensitive, quantitative reverse transcription-PCR assays for several latent and lytic transcripts and two-color immunofluorescence staining to analyze expression at the single cell level, we confirmed and extended previous reports indicating that the two cell types support different patterns of transcription. Furthermore, whereas infection of B cells with one or two copies of EBV resulted in rapid amplification of the viral genome to >20 copies per cell, such amplification was not normally observed after infection of primary epithelial cells or undifferentiated epithelial lines. In epithelial cells, EBNA1 expression was detected in only ca. 40% of EBER+ cells, and the EBV genome was subsequently lost during prolonged culture. One exception was that infection of AGS, a gastric carcinoma line, resulted in maintenance of EBNA1 expression and amplification of the EBV episome. In contrast to B cells, where amplification of the EBV episome occurred even with a replication-defective BZLF1-knockout virus, amplification in AGS cells was dependent upon early lytic cycle gene expression. These data highlight the influence of the host cell on the outcome of EBV infection with regard to genome expression, amplification, and maintenance.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- CR-UK Institute for Cancer Studies, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Patients with Alzheimer's disease (AD) express severe cognitive deficiencies with a concurrent increase in brain deposits of aggregated amyloid-beta (Abeta), a catabolic derivative of the ubiquitous amyloid precursor protein (APP). Interference in the homeostasis of Abeta has been suggested as a treatment for AD patients. In AD murine models it has been shown that active and passive immunization against Abeta alters the equilibrium of the different forms of Abeta in brain and serum, leading to a concomitant cognitive improvement. Generally, the clinical trials that followed the study of the murine AD model confirmed the results of the AD models, although safety issues advocate the passive vaccination approach rather than the active one. However, passive vaccination of patients with monoclonal antibodies derived from nonhuman sources is limited. Anti-Abeta IgM and IgG antibodies, which are present in the serum of every healthy individual and probably play a role in the homeostasis of Abeta in healthy subjects, might be beneficial to AD patients, as shown for the effect exerted by the commercial preparation of intravenous immunoglobulin. Human monoclonal anti-Abeta antibodies, which correspond to the ubiquitous anti-Abeta antibodies, are plausible candidates for future immunotherapy of AD patients.
Collapse
Affiliation(s)
- Michael Steinitz
- Department of Pathology, The Hebrew University-Hadassah Medical School, Israel.
| |
Collapse
|
46
|
Stamataki Z, Shannon-Lowe C, Shaw J, Mutimer D, Rickinson AB, Gordon J, Adams DH, Balfe P, McKeating JA. Hepatitis C virus association with peripheral blood B lymphocytes potentiates viral infection of liver-derived hepatoma cells. Blood 2009; 113:585-93. [PMID: 18838615 PMCID: PMC2628366 DOI: 10.1182/blood-2008-05-158824] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/16/2008] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) primarily replicates within the liver, leading to hepatitis, fibrosis, and hepatocellular carcinoma. Infection is also associated with B-cell abnormalities, suggesting an association of the virus with B cells. The infectious JFH-1 strain of HCV can bind primary and immortalized B cells but fails to establish productive infection. However, B cell-associated virus readily infects hepatoma cells, showing an enhanced infectivity compared with extracellular virus. B cells express the viral receptors CD81, SR-BI, and the C-type lectins DC-SIGN and L-SIGN. Antibodies specific for SR-BI and DC-SIGN/L-SIGN reduced B-cell transinfection, supporting a role for these molecules in B-cell association with HCV. Stimulation of B cells with CD40 ligand and interleukin-4 promoted their ability to transinfect hepatoma cells. B cell-associated virus is resistant to trypsin proteolysis and HCV-specific neutralizing antibodies, consistent with particle internalization. HCV promoted the adhesion of primary B cells to Huh-7 hepatomas, providing a mechanism for B-cell retention in the infected liver. In summary, B cells may provide a vehicle for HCV to persist and transmit to the liver.
Collapse
Affiliation(s)
- Zania Stamataki
- Hepatitis C Virus Research Group, Division of Immunity and Infection, Institute for Cancer Studies, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Funaro A, Gribaudo G, Luganini A, Ortolan E, Lo Buono N, Vicenzi E, Cassetta L, Landolfo S, Buick R, Falciola L, Murphy M, Garotta G, Malavasi F. Generation of potent neutralizing human monoclonal antibodies against cytomegalovirus infection from immune B cells. BMC Biotechnol 2008; 8:85. [PMID: 19014469 PMCID: PMC2631500 DOI: 10.1186/1472-6750-8-85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 11/12/2008] [Indexed: 01/03/2023] Open
Abstract
Background Human monoclonal antibodies (mAbs) generated as a result of the immune response are likely to be the most effective therapeutic antibodies, particularly in the case of infectious diseases against which the immune response is protective. Human cytomegalovirus (HCMV) is an ubiquitous opportunistic virus that is the most serious pathogenic agent in transplant patients. The available therapeutic armamentarium (e.g. HCMV hyperimmune globulins or antivirals) is associated with severe side effects and the emergence of drug-resistant strains; therefore, neutralizing human mAb may be a decisive alternative in the prevention of primary and re-activated HCMV infections in these patients. Results The purpose of this study was to generate neutralizing mAb against HCMV from the immunological repertoire of immune donors. To this aim, we designed an efficient technology relying on two discrete and sequential steps: first, human B-lymphocytes are stimulated with TLR9-agonists and IL-2; second, after both additives are removed, the cells are infected with EBV. Using this strategy we obtained 29 clones secreting IgG neutralizing the HCMV infectivity; four among these were further characterized. All of the mAbs neutralize the infection in different combinations of HCMV strains and target cells, with a potency ~20 fold higher than that of the HCMV hyperimmune globulins, currently used in transplant recipients. Recombinant human monoclonal IgG1 suitable as a prophylactic or therapeutic tool in clinical applications has been generated. Conclusion The technology described has proven to be more reproducible, efficient and rapid than previously reported techniques, and can be adopted at low overall costs by any cell biology laboratory for the development of fully human mAbs for immunotherapeutic uses.
Collapse
Affiliation(s)
- Ada Funaro
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Via Santena 19, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Steinitz M. Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease. Expert Opin Biol Ther 2008; 8:633-42. [PMID: 18407766 DOI: 10.1517/14712598.8.5.633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. OBJECTIVE To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. METHODS Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. RESULTS/CONCLUSIONS In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.
Collapse
Affiliation(s)
- Michael Steinitz
- The Hebrew University-Hadassah Medical School, Department of Pathology, Jerusalem, 91120, POB 12272, Israel.
| |
Collapse
|
49
|
Chaganti S, Ma CS, Bell AI, Croom-Carter D, Hislop AD, Tangye SG, Rickinson AB. Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM+IgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood 2008; 112:672-9. [PMID: 18509091 DOI: 10.1182/blood-2007-10-116269] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in healthy virus carriers within the immunoglobulin (Ig)D(-)CD27(+) (class-switched) memory B-cell compartment that normally arises through antigen stimulation and germinal center transit. Patients with X-linked lymphoproliferative disease (XLP) lack such class-switched memory B cells but are highly susceptible to EBV infection, often developing fatal symptoms resembling those seen in EBV-associated hemophagocytic syndrome (EBV-AHS), a disease caused by aberrant virus entry into the NK- or T-cell system. Here we show that XLP patients who survive primary EBV exposure carry relatively high virus loads in the B-cell, but not the NK- or T-cell, compartment. Interestingly, in the absence of conventional class-switched memory B cells, the circulating EBV load was concentrated within a small population of IgM(+)IgD(+)CD27(+) (nonswitched) memory cells rather than within the numerically dominant naive (IgM(+)IgD(+)CD27(-)) or transitional (CD10(+)CD27(-)) subsets. In 2 prospectively studied patients, the circulating EBV load was stable and markers of virus polymorphism detected the same resident strain over time. These results provide the first definitive evidence that EBV can establish persistence in the B-cell system in the absence of fully functional germinal center activity and of a class-switched memory B-cell compartment.
Collapse
Affiliation(s)
- Sridhar Chaganti
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Distinct ex vivo susceptibility of B-cell subsets to epstein-barr virus infection according to differentiation status and tissue origin. J Virol 2008; 82:4400-12. [PMID: 18321980 DOI: 10.1128/jvi.02630-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) uses tonsils as the portal of entry to establish persistent infection. EBV is found in various B-cell subsets in tonsils but exclusively in memory B cells in peripheral blood. The in vitro susceptibilities of B-cell subsets to EBV infection have been studied solely qualitatively. In this work, we examined quantitatively the in vitro susceptibilities of various B-cell subsets from different tissue origins to EBV infection. First, we established a centrifugation-based inoculation protocol (spinoculation) that resulted in a significantly increased proportion of infected cells compared to that obtained by conventional inoculation, enabling a detailed susceptibility analysis. Importantly, B-cell infection occurred via the known EBV receptors and infected cells showed EBV mRNA expression patterns similar to those observed after conventional inoculation, validating our approach. Tonsillar naïve and memory B cells were infected ex vivo at similar frequencies. In contrast, memory B cells from blood, which represent B cells from various lymphoid tissues, were infected at lower frequencies than their naïve counterparts. Immunoglobulin A (IgA)-positive or IgG-positive tonsillar memory B cells were significantly more susceptible to EBV infection than IgM-positive counterparts. Memory B cells were transformed with lower efficiency than naïve B cells. This result was paralleled by lower proliferation rates. In summary, these data suggest that EBV exploits the B-cell differentiation status and tissue origin to establish persistent infection.
Collapse
|