1
|
Eliseikina MG, Boyko AV, Shamshurina EV, Ryazanova TV. Complete genome of the new bacilliform virus that causes Milky Hemolymph Syndrome in Chionoecetes bairdi (Rathbun, 1924). J Invertebr Pathol 2024; 206:108179. [PMID: 39154988 DOI: 10.1016/j.jip.2024.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The genome of a new member of the Nimaviridae family has been sequenced. The Chionoecetes bairdi bacilliform virus (CbBV) causes Milky Hemolymph Syndrome (MHS) in Chionoecetes bairdi populations of the Pacific coast of Kamchatka. The CbBV genome is represented by double-stranded DNA with a length of 245,567 nucleotides containing 120 ORFs. Of these, 85 proteins had significant matches in the NCBI database, and 57 genes encoded capsid, envelope, tegument and nonstructural proteins. Comparative analysis of the genomes of CbBV and a number of representatives of the class nuclear arthropod large DNA viruses (NALDVs) made it possible to isolate 49 evolutionarily conserved orthologue core genes. Among them, 5 were multicopy genes, and 44 were single-copy genes. There were ancestral genes characteristic of all Naldaviricetes - per os infectivity complex genes, one DNA polymerase gene and one thymidylate synthase gene. Phylogenetic analysis of representatives of the Nimaviridae family revealed that the CbBV and Chionoecetes opilio bacilliform virus (CoBV) form an independent clade within the family separate from the clade containing WSSV strains. This is supported by data on the order and arrangement of genes in the genomes of nimaviruses that were identical within each clade but differed between them. In addition, a high identity of the genomes and proteomes of CbBV and CoBV (approximately 99%) was shown, and their identity with WSSV strains was no more than 33%. The data on the structure of the genome of the new virus that causes MHS in C. bairdi indicate that it belongs to the family Nimaviridae, genus Whispovirus. Thus, the CbBV infecting the commercially important species of Tanner crab in populations of the Pacific coast of Kamchatka is the second "wild" representative of replicating nimaviruses whose genome has been characterized after the CoBV that causes MHS in C. opilio in populations of the Sea of Japan. The discovery of a new member of the family that infects decapods indicates the prevalence of nimaviruses in marine ecosystems. The information obtained is important for understanding the evolution of representatives of the class of nuclear arthropod large DNA viruses. The discovery of a new nimavirus that causes MHS in Chionoecetes crabs, in contrast to the white spot syndrome (WSS) caused by WSSV strains, makes it relevant to identify two variants and possibly species within the family, namely, WSSV and Milky Hemolymph Syndrome virus (MHSV).
Collapse
Affiliation(s)
- M G Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, Vladivostok 690041, Russia.
| | - A V Boyko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, Vladivostok 690041, Russia
| | - E V Shamshurina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, Vladivostok 690041, Russia
| | - T V Ryazanova
- Kamchatka Filiation of Russian Federal Research Institute of Fisheries and Oceanography, St. Naberezhnaya 18, Petropavlovsk-Kamchatsky 683000, Russia
| |
Collapse
|
2
|
Panrat T, Phongdara A, Wuthisathid K, Meemetta W, Phiwsaiya K, Vanichviriyakit R, Senapin S, Sangsuriya P. Structural modelling and preventive strategy targeting of WSSV hub proteins to combat viral infection in shrimp Penaeus monodon. PLoS One 2024; 19:e0307976. [PMID: 39074084 DOI: 10.1371/journal.pone.0307976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
White spot syndrome virus (WSSV) presents a considerable peril to the aquaculture sector, leading to notable financial consequences on a global scale. Previous studies have identified hub proteins, including WSSV051 and WSSV517, as essential binding elements in the protein interaction network of WSSV. This work further investigates the functional structures and potential applications of WSSV hub complexes in managing WSSV infection. Using computational methodologies, we have successfully generated comprehensive three-dimensional (3D) representations of hub proteins along with their three mutual binding counterparts, elucidating crucial interaction locations. The results of our study indicate that the WSSV051 hub protein demonstrates higher binding energy than WSSV517. Moreover, a unique motif, denoted as "S-S-x(5)-S-x(2)-P," was discovered among the binding proteins. This pattern perhaps contributes to the detection of partners by the hub proteins of WSSV. An antiviral strategy targeting WSSV hub proteins was demonstrated through the oral administration of dual hub double-stranded RNAs to the black tiger shrimp, Penaeus monodon, followed by a challenge assay. The findings demonstrate a decrease in shrimp mortality and a cessation of WSSV multiplication. In conclusion, our research unveils the structural features and dynamic interactions of hub complexes, shedding light on their significance in the WSSV protein network. This highlights the potential of hub protein-based interventions to mitigate the impact of WSSV infection in aquaculture.
Collapse
Affiliation(s)
- Tanate Panrat
- Prince of Songkla University International College, Prince of Songkla University, Hatyai Campus, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kitti Wuthisathid
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Watcharachai Meemetta
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornsunee Phiwsaiya
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| |
Collapse
|
3
|
Zhang Y, Zhang P, Ni M, Zhou B, Bai Y, Zheng J, Cui Z. Spätzle, a signaling molecule that interacts with pathogen-associated molecules and Toll-like receptor in Portunus trituberculatus. Int J Biol Macromol 2022; 223:17-25. [PMID: 36336152 DOI: 10.1016/j.ijbiomac.2022.10.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Spätzle is a crucial ligand for Toll-like receptor (TLR) that triggers the activation of TLR signal pathway in insects. In this study, open reading frames (ORFs) of two spätzles were cloned from Portunus trituberculatus (PtSpz1 and PtSpz2). Both of PtSpzs contained the typical cystine-knot domain of spätzle. Tissue distribution analysis showed that both of PtSpzs were predominantly expressed in the gills. Transcriptional levels of the two PtSpzs in hemocytes and gill rapidly increased at 3 h and 6 h post Vibrio alginolyticus challenge, respectively. The two PtSpzs could bind to several pathogen-associated molecules including lipopolysaccharide (LPS), peptidoglycan (PGN) and envelope proteins of white spot syndrome virus (WSSV). Moreover, the two PtSpzs could directly interact with the extracellular leucine-rich repeats (LRR) domain of TLR. This study revealed that spätzle could interact with pathogen-associated molecules and TLR of host, which may be two important steps for spätzle to deliver signals into host cells.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
4
|
Rab7 Investigation Insights into the Existence of White Spot Syndrome Virus in Crustaceans: An In Silico Approach. Adv Virol 2022; 2022:3887441. [PMID: 36313590 PMCID: PMC9613395 DOI: 10.1155/2022/3887441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, previously published Rab7 sequences from National Center for Biotechnology Information (NCBI) have been investigated from chordates, mollusks, annelids, cnidarians, amphibians, priapulids, brachiopods, and arthropods including decapods and other groups. Among decapod crustacean isolates, amino acid variations were found in 13 locations. Penaeid shrimps had variations in positions 13 (I ⟶ J), 22 (T ⟶ A), 124 (G ⟶ X), and 149 (V ⟶ X) while interestingly the freshwater prawn and mitten crab both had amino acid substitutions in positions 87 (V ⟶ C) and 95 (T ⟶ S) along with the other disagreements in amino acid positions 178 (S ⟶ N), 201 (D ⟶ E), 181 (E ⟶ D), 182 (L ⟶ I), 183 (Y ⟶ G), 184 (N ⟶ H), and 198 (A ⟶ T). Among 100 isolates of Rab7 from organisms of various phyla, mutations were observed in several positions. These mutations caused variations in hydrophobicity and isoelectric point which impact the ligand-protein binding affinity. Some common mutations were found in the organisms of the same phylum and among different phyla. Homology modeling of Rab7 proteins from different organisms was done using SWISS-MODEL and validated further by developing Ramachandran plots. Protein-protein docking showed that active residues were there in the binding interfaces of Rab7 from organisms of seven different phyla and VP28 of WSSV. Similarities were observed in the Rab7-VP28 complexes in those selected organisms which differed from the Rab7-VP28 complex in the case of Penaeid shrimp. The findings of this study suggest that WSSV may exist in different marine organisms that have Rab7 protein and transmit to crustaceans like shrimps and crabs which are of commercial importance.
Collapse
|
5
|
Zheng S, Meng F, Li D, Liu L, Ge D, Wang Q, Liu H. A Deacetylase CqSIRT1 Promotes WSSV Infection by Binding to Viral Envelope Proteins in Cherax quadricarinatus. Viruses 2022; 14:v14081733. [PMID: 36016356 PMCID: PMC9414731 DOI: 10.3390/v14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Sirtuin 1 (SIRT1), a member of the class III lysine deacetylases, exhibits powerful functional diversity in physiological processes and disease occurrences. However, the potential molecular mechanism underlying the role of SIRT1 during viral infection in crustaceans is poorly understood. Herein, SIRT1 was functionally characterized from the red claw crayfish Cherax quadricarinatus, which possesses typically conserved deacetylase domains and strong evolutionary relationships across various species. Moreover, gene knockdown of CqSIRT1 in crayfish haematopoietic tissue (Hpt) cell culture inhibited white spot syndrome virus (WSSV) late envelope gene vp28 transcription. In contrast, enhancement of deacetylase activity using a pharmacological activator promoted the replication of WSSV. Mechanically, CqSIRT1 was co-localized with viral envelope protein VP28 in the nuclei of Hpt cells and directly bound to VP28 with protein pulldown and co-immunoprecipitation assays. Furthermore, CqSIRT1 also interacted with another two viral envelope proteins, VP24 and VP26. To the best of our knowledge, this is the first report that WSSV structural proteins are linked to lysine deacetylases, providing a better understanding of the role of CqSIRT1 during WSSV infection and novel insights into the basic mechanism underlying the function of lysine deacetylases in crustaceans.
Collapse
Affiliation(s)
- Shucheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fanjuan Meng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Dongli Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lingke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Di Ge
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Correspondence: (Q.W.); (H.L.)
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Correspondence: (Q.W.); (H.L.)
| |
Collapse
|
6
|
Hsu JCK, Huang HT, Lin HJ, Chou HY, Huang PY, Prachumwat A, Chen LL. Applying Modified VP53A Recombinant Protein as an Anti-White Spot Syndrome Virus Biological Agent in Litopenaeus vannamei Farming. Viruses 2022; 14:v14071353. [PMID: 35891334 PMCID: PMC9324474 DOI: 10.3390/v14071353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Shrimp farming is an important economic activity. However, due to the spread of pathogens, shrimp aquaculture is becoming increasingly difficult. Many studies have confirmed that white spot syndrome virus (WSSV) recombinant proteins can inhibit viral infection. Among them, VP53 recombinant protein has been found to reduce mortality upon WSSV challenge. This study was conducted in Kaohsiung, Taiwan and reports the first field feeding trial to demonstrate that WSSV recombinant proteins can improve shrimp survival rates at a farming scale. Prior to the feeding trial, the shrimp were confirmed to be slightly infected with WSSV, Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND), non-AHPND V. parahaemolyticus strains, and Enterocytozoon hepatopenaei (EHP), which are common pathogens that shrimp farmers often face. The shrimp were then divided into two groups: a control group (C group) fed with a commercial diet and a protein group (P group) fed with the same commercial feed with VP53 recombinant protein. Our findings indicated that the survival rate and expression of immune genes of the P group were higher than those of the C group. The intestinal microbiota of the two groups were also analysed. Collectively, our results confirmed that the recombinant WSSV envelope protein derivative can be used as an effective anti-virus biological agent in shrimp farms.
Collapse
Affiliation(s)
- Jeff Chia-Kai Hsu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Innocreate Bioscience Co., Ltd., Zhonghe District, New Taipei City 23557, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.H.); (H.-Y.C.)
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hsin-Yiu Chou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.H.); (H.-Y.C.)
| | - Po-Yu Huang
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan;
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.P.); (L.-L.C.)
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (A.P.); (L.-L.C.)
| |
Collapse
|
7
|
Cheng-Ming Y, Ning-Qiu L, Li-Chao R, Zhe W, Lian-Qin C, Jiang-Feng L. Identification and characterization of two highly homologous lysozymes from red swamp crayfish, Procambarus clarkii. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100017. [PMID: 36420494 PMCID: PMC9680052 DOI: 10.1016/j.fsirep.2021.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
Lysozyme is an important immune effector in innate immunity against pathogen infection. But the study on the active region of lysozyme is limited. In this study, two highly homologous lysozymes were identified from crayfish (designated as PcLysi4 and PcLysi5). The molecular structures of PcLysi4 and PcLysi5 were predicted by SWISS-MODEL with the structure of lysozyme (PDB accession No. 4PJ2.2.B) as model. The results suggested that the structure of PcLysi4 and PcLysi5 were highly similar, but there were more α-helices at positions (127–139) and longer β-sheet at positions (49–57) in the structure of PcLysi5 than in that of PcLysi4. The antibacterial and antiviral functions of the two lysozymes were investigated. PcLysi4 and PcLysi5 could promote the bacterial clearance ability of crayfish, and increase the survival rate of Vibrio-infected crayfish. Further study showed that PcLysi5 inhibited WSSV replication, and enhanced the survival rate of WSSV-infected crayfish. There was no evidence that PcLysi4 has an influence on WSSV replication. Furthermore, PcLysi5 was detected to interact with envelope protein VP24 of WSSV. Our results would provide a new reference for the study on active region of lysozyme.
Collapse
Affiliation(s)
- Yin Cheng-Ming
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Li Ning-Qiu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China
| | - Ren Li-Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Wang Zhe
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China
| | - Chai Lian-Qin
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China
- School of Life Sciences Henan University, Kaifeng 475004, China.
| | - Lan Jiang-Feng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
- Corresponding authors at: Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
8
|
Huang PY, Huang YH, Leu JH, Chen LL. Feasibility Study on the Use of Fly Maggots ( Musca domestica) as Carriers to Inhibit Shrimp White Spot Syndrome. Life (Basel) 2021; 11:life11080818. [PMID: 34440562 PMCID: PMC8402094 DOI: 10.3390/life11080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
The shrimp aquaculture industry has encountered many diseases that have caused significant losses, with the most serious being white spot syndrome (WSS). Until now, no cures, vaccines, or drugs have been found to counteract the WSS virus (WSSV). The purpose of this study was to develop an oral delivery system to transport recombinant proteinaceous antigens into shrimp. To evaluate the feasibility of the oral delivery system, we used white shrimp as the test species and maggots as protein carriers. The results indicated that the target protein was successfully preserved in the maggot, and the protein was detected in the gastrointestinal tract of the shrimp, showing that this oral delivery system could deliver the target protein to the shrimp intestine, where it was absorbed. In addition, the maggots were found to increase the total haemocyte count and phenoloxidase activity of the shrimp, and feeding shrimp rVP24-fed maggots significantly induced the expression of penaeidins 2. In the WSSV challenge, the survival rate of rVP24-fed maggots was approximately 43%. This study showed that maggots can be used as effective oral delivery systems for aquatic products and may provide a new method for aquatic vaccine delivery systems.
Collapse
Affiliation(s)
- Po-Yu Huang
- Centre of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan;
| | - Yi-Hsuan Huang
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Y.-H.H.); (J.-H.L.)
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Y.-H.H.); (J.-H.L.)
| | - Li-Li Chen
- Centre of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan;
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Y.-H.H.); (J.-H.L.)
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5302)
| |
Collapse
|
9
|
Xiao B, Fu Q, Niu S, Zhu P, He J, Li C. Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. Emerg Microbes Infect 2020; 9:390-412. [PMID: 32397950 PMCID: PMC7048182 DOI: 10.1080/22221751.2020.1729068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging studies have indicated that some penaeidins restrict virus infection; however, the mechanism(s) involved are poorly understood. In the present study, we uncovered that penaeidins are a novel family of antiviral effectors against white spot syndrome virus (WSSV), which antagonize the envelope proteins to block viral entry. We found that the expression levels of four identified penaeidins from Litopenaeus vannamei, including BigPEN, PEN2, PEN3, and PEN4, were significantly induced in hemocytes during the early stage of WSSV infection. Knockdown of each penaeidin in vivo via RNA interference resulted in elevated viral loads and rendered shrimp more susceptible to WSSV, while the survival rate was rescued via the injection of recombinant penaeidins. All penaeidins, except PEN4, were shown to interact with several envelope proteins of WSSV, and all four penaeidins were observed to be located on the outer surface of the WSSV virion. Co-incubation of each recombinant penaeidin with WSSV inhibited virion internalization into hemocytes. More importantly, we found that PEN2 competitively bound to the envelope protein VP24 to release it from polymeric immunoglobulin receptor (pIgR), the cellular receptor required for WSSV infection. Moreover, we also demonstrated that BigPEN was able to bind to VP28 of WSSV, which disrupted the interaction between VP28 and Rab7 – the Rab GTPase that contributes to viral entry by binding with VP28. Taken together, our results demonstrated that penaeidins interact with the envelope proteins of WSSV to block multiple viral infection processes, thereby protecting the host against WSSV.
Collapse
Affiliation(s)
- Bang Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Qihui Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Shengwen Niu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, P. R. People's Republic of China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
10
|
Guo E, Korkut GG, Jaree P, Söderhäll I, Söderhäll K. A Pacifastacus leniusculus serine protease interacts with WSSV. FISH & SHELLFISH IMMUNOLOGY 2017; 68:211-219. [PMID: 28705723 DOI: 10.1016/j.fsi.2017.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Serine proteases are involved in many critical physiological processes including virus spread and replication. In the present study, we identified a new clip-domain serine protease (PlcSP) in the crayfish Pacifastacus leniusculus hemocytes, which can interact with the White Spot Syndrome Virus (WSSV) envelope protein VP28. It was characterized by a classic clip domain with six strictly conserved Cys residues, and contained the conserved His-Asp-Ser (H-D-S) motif in the catalytic domain. Furthermore, signal peptide prediction revealed that it has a 16-residue secretion signal peptide. Tissue distribution showed that it was mainly located in P. leniusculus hemocytes, and its expression was increased in hemocytes upon WSSV challenge. In vitro knock down of PlcSP decreased both the expression of VP28 and the WSSV copy number in hematopoietic stem (HPT) cells. Accordingly, these data suggest that the new serine protease may be of importance for WSSV infection into hematopoietic cells.
Collapse
Affiliation(s)
- Enen Guo
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Gül Gizem Korkut
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Phattarunda Jaree
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Lee YJ, Chen LL. WSSV envelope protein VP51B links structural protein complexes and may mediate virus infection. JOURNAL OF FISH DISEASES 2017; 40:571-581. [PMID: 27454323 DOI: 10.1111/jfd.12538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 05/08/2023]
Abstract
White spot syndrome virus (WSSV), an enveloped double-stranded DNA virus, is the causative agent of a disease that has led to severe mortalities of cultured shrimps in Taiwan and many other countries. In the previous study, Penaeus monodon chitin-binding protein (CBP) and glucose transporter 1 (Glut1), two cell membrane proteins, were found to at least interact with other 10 WSSV envelope proteins including VP51B. These envelope proteins might form a protein complex. According to the known information, VP51B was used to identify its role in the protein complex. Western blotting of the intact viral particles and fractionation of the viral components confirmed that VP51B is one of WSSV envelope proteins. In this study, the protein-protein interaction between VP51B and other WSSV envelope proteins was identified by far-western blot experiment and VP51B was found to interact with VP24, VP31, VP32, VP39B and VP41A. Furthermore, the in vivo neutralization experiment using recombinant VP51B plus with VP39B showed the best inhibition. These data indicate that VP51B participates in the WSSV protein complex and plays an important role in WSSV infection.
Collapse
Affiliation(s)
- Y J Lee
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - L L Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| |
Collapse
|
12
|
Sun L, Su Y, Zhao Y, Fu ZQ, Wu Y. Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus. Sci Rep 2016; 6:32309. [PMID: 27572278 PMCID: PMC5004148 DOI: 10.1038/srep32309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded β–barrel fold with mostly antiparallel β-strands, and the loops extending out the β–barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yintao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanhe Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zheng-Qing Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
13
|
Sun L, Wu Y. Envelope protein VP24 from White spot syndrome virus: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 2016; 72:586-90. [PMID: 27487921 PMCID: PMC4973298 DOI: 10.1107/s2053230x16009055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/04/2016] [Indexed: 11/10/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major shrimp pathogen known to infect penaeid shrimp and other crustaceans. VP24 is one of the major envelope proteins of WSSV. In order to facilitate purification, crystallization and structure determination, the predicted N-terminal transmembrane region of approximately 26 amino acids was truncated from VP24 and several mutants were prepared to increase the proportion of selenomethionine (SeMet) residues for subsequent structural determination using the SAD method. Truncated VP24, its mutants and the corresponding SeMet-labelled proteins were purified, and the native and SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of VP24 were obtained using a reservoir consisting of 0.1 M Tris-HCl pH 8.5, 2.75 M ammonium acetate with a drop volume ratio of two parts protein solution to one part reservoir solution. Notably, ATP was added as a critical additive to the drop with a final concentration of 10 mM. Crystals of SeMet-labelled VP24 mutant diffracted to 3.0 Å resolution and those of the native diffracted to 2.4 Å resolution; the crystals belonged to space group I213, with unit-cell parameters a = b = c = 140 Å.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
14
|
Dai Y, Wang Y, Zhao L, Qin Z, Yuan J, Qin Q, Lin L, Lan J. A novel L-type lectin was required for the multiplication of WSSV in red swamp crayfish (Procambarus clakii). FISH & SHELLFISH IMMUNOLOGY 2016; 55:48-55. [PMID: 27208793 PMCID: PMC7111660 DOI: 10.1016/j.fsi.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
L-type lectins are involved in glycoproteins secretory pathways and are associated with many immune responses. There is growing evidence that L-type lectins are also involved in viral replication. In this study, a novel L-type lectin (named as PcL-lectin) was identified from red swamp crayfish (Procambarus clakii). Gene sequencing and phylogenetic tree analysis results showed that the PcL-lectin was a kind of endoplasmic reticulum Golgi intermediate compartment-53 (ERGIC-53). The expression level of PcL-lectin was significantly down regulated in crayfish after challenged with white spot syndrome virus (WSSV). Recombinant PcL-lectin protein facilitated the replication of WSSV in crayfish. In addition, WSSV replication was decreased when endogenous PcL-lectin was knocked down by RNA interference in crayfish. Furthermore, PcL-lectin may interact with VP24, an envelope protein of WSSV. Our results suggest that PcL-lectin may be required for the multiplication of WSSV, and will pave a new way for the developing of strategies against WSSV infection.
Collapse
Affiliation(s)
- Yunjia Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuqing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lingling Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhendong Qin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiwei Qin
- College of Marine Sciences, South China Normal University, Guangzhou, 510642, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
15
|
Li Z, Li F, Han Y, Xu L, Yang F. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection. J Virol 2016; 90:842-50. [PMID: 26512091 PMCID: PMC4702682 DOI: 10.1128/jvi.02357-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186-200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186-200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms.
Collapse
Affiliation(s)
- Zaipeng Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yali Han
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
16
|
Yang H, Li S, Li F, Lv X, Xiang J. Recombinant expression and functional analysis of an isoform of anti-lipopolysaccharide factors (FcALF5) from Chinese shrimp Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:47-54. [PMID: 26123888 DOI: 10.1016/j.dci.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) have a great potential to be used as a substitute for antibiotics since AMPs don't lead to bacteria's drug resistance. Anti-lipopolysaccharide factors (ALFs) are one type of AMPs and exist in crustaceans. In the present study, we produced a recombinant protein (rFcALF5) of an ALF isoform (FcALF5) from Chinese shrimp Fenneropenaeus chinensis through a prokaryotic expression system. The rFcALF5 exhibited varied antibacterial activities against different bacteria. Besides its antibacterial activities, it could also inhibit the infection of white spot syndrome virus (WSSV) to shrimp after pre-incubation with this virus. In order to learn the antiviral mechanism on how rFcALF5 influences WSSV infection, the interaction between the total proteins of WSSV and rFcALF5 was analyzed and the data showed that rFcALF5 had direct interaction with the envelope protein VP24 of WSSV. The LPS binding domain (LBD) of FcALF5 also showed direct interaction with VP24 of WSSV. Therefore we inferred that the antiviral activity of FcALF5 might be achieved through the binding of its LBD to VP24 of WSSV. These findings provided more information to develop new strategies for the control of shrimp disease in aquaculture.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| | - Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Li Z, Chen W, Xu L, Li F, Yang F. Identification of the interaction domains of white spot syndrome virus envelope proteins VP28 and VP24. Virus Res 2015; 200:24-9. [PMID: 25637460 DOI: 10.1016/j.virusres.2015.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
VP28 and VP24 are two major envelope proteins of white spot syndrome virus (WSSV). The direct interaction between VP28 and VP24 has been described in previous studies. In this study, we confirmed this interaction and mapped the interaction domains of VP28 and VP24 by constructing a series of deletion mutants. By co-immunoprecipitation, two VP28-binding domains of VP24 were located at amino acid residues 46-61 and 148-160, while VP24-binding domain of VP28 was located at amino acid residues 31-45. These binding domains were further corroborated by peptide blocking assay, in which synthetic peptides spanning the binding domains were able to inhibit VP28-VP24 interaction, whereas same-size control peptides from non-binging regions did not.
Collapse
Affiliation(s)
- Zaipeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China; School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Weiyu Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Limei Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| |
Collapse
|
18
|
Thomas A, Sudheer NS, Viswanathan K, Kiron V, Bright Singh IS, Narayanan RB. Immunogenicity and protective efficacy of a major White Spot Syndrome Virus (WSSV) envelope protein VP24 expressed in Escherichia coli against WSSV. J Invertebr Pathol 2014; 123:17-24. [DOI: 10.1016/j.jip.2014.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/16/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
|
19
|
Characterization of white spot syndrome virus VP52B and its interaction with VP26. Virus Genes 2014; 50:46-51. [PMID: 25331340 DOI: 10.1007/s11262-014-1126-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
White spot syndrome virus (WSSV) is one of the major pathogens of cultured shrimp. Identification of envelope protein interactions has become a central issue for the understanding of WSSV assembly. In this paper, WSSV envelope protein VP52B was fused with GST-tag and expressed in Escherichia coli BL-21(DE3). Immunogold-electron microscopy revealed that VP52B was located on the outside surface of WSSV virions. Far-Western blotting analysis suggested that VP52B might directly interact with a major viral envelope protein VP26, and their interaction was confirmed by GST pull-down assay. Further investigation showed that the VP52B binding domain was located between residues 135-170 of VP26. These findings will enhance our understanding of the molecular mechanisms of WSSV morphogenesis.
Collapse
|
20
|
Anti-lipopolysaccharide factor isoform 3 from Penaeus monodon (ALFPm3) exhibits antiviral activity by interacting with WSSV structural proteins. Antiviral Res 2014; 110:142-50. [DOI: 10.1016/j.antiviral.2014.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
|
21
|
Huang PY, Leu JH, Chen LL. A newly identified protein complex that mediates white spot syndrome virus infection via chitin-binding protein. J Gen Virol 2014; 95:1799-1808. [DOI: 10.1099/vir.0.064782-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White spot syndrome virus (WSSV) is a large enveloped virus which has caused severe mortality and huge economic losses in the shrimp farming industry. The enveloped virus must be combined with the receptors of the host cell membrane by the virus envelope proteins. In the case of WSSV, binding of envelope proteins with receptors of the host cell membrane was discovered in a number of previous studies, such as VP53A and 10 other proteins with chitin-binding protein (CBP), VP28 with Penaeus monodon Rab7, VP187 with β-integrin, and so on. WSSV envelope proteins were also considered capable of forming a protein complex dubbed an ‘infectome’. In this study, the research was focused on the role of CBP in the WSSV infection process, and the relationship between CBP and the envelope proteins VP24, VP28, VP31, VP32 VP39B, VP53A and VP56. The results of the reverse transcription-PCR analyses showed that CBP existed in a variety of shrimp. The speed of WSSV infection could be slowed down by inhibiting CBP gene expression. Far-Western blot analysis and His pull-down assays were conducted, and a protein complex was found that appeared to be composed of a ‘linker’ protein consisting of VP31, VP32 and VP39B together with four envelope proteins, including VP24, VP28, VP53A and VP56. This protein complex was possibly another part of the infectome and the possible binding region with CBP. The findings of this study may have identified certain points for further WSSV research.
Collapse
Affiliation(s)
- Po-Yu Huang
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | - Li-Li Chen
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan, ROC
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan, ROC
| |
Collapse
|
22
|
Huang Y, An L, Hui KM, Ren Q, Wang W. An LDLa domain-containing C-type lectin is involved in the innate immunity of Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:333-344. [PMID: 24140432 DOI: 10.1016/j.dci.2013.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/21/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
C-type lectins (CTLs) have crucial functions in recognizing and eliminating pathogens in innate immunity. This study identified a novel low-density lipoprotein receptor class A (LDLa) domain-containing CTL, designated as EsCTLDcp, from the Chinese mitten crab Eriocheir sinensis. The EsCTLDcp cDNA is 1258 bp long, with a 975 bp open reading frame that encodes a 324-amino acid protein. EsCTLDcp contains a signal peptide, an LDLa, and a single C-type lectin-like domain. EsCTLDcp was only expressed in the hepatopancreas of normal crabs, and its expression was regulated following crab challenge with pathogen-associated molecular patterns and with bacteria. The recombinant EsCTLDcp agglutinates Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Vibrio parahaemolyticus and Aeromonas hydrophila) in the presence of calcium. rEsCTLDcp also binds to various bacteria including S. aureus, Bacillus thuringiensis, Bacillus subtilis, Escherichia coli, Vibrio natriegens, V. parahaemolyticus, and A. hydrophila. The rEsCTLDcp protein helped the crabs clear the virulent Gram-negative bacterium V. parahaemolyticus in vivo, as well as interacted with VP24, an envelope protein of white spot syndrome virus (WSSV). These data suggest that EsCTLDcp functions as a pattern-recognition receptor involved in the innate immunity of E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | | | | | | | | |
Collapse
|
23
|
Ahanger S, Sandaka S, Ananad D, Mani MK, Kondadhasula R, Reddy CS, Marappan M, Valappil RK, Majumdar KC, Mishra RK. Protection of shrimp Penaeus monodon from WSSV infection using antisense constructs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:63-73. [PMID: 23907649 DOI: 10.1007/s10126-013-9529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3-VP24, pPn-VP24), VP28 (pH3-VP28, pPn-VP28), TS (pH3-TS, pPn-TS), and RR2 (pH3-RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Sajad Ahanger
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), E405-East Wing 3rd Floor, CCMB, Uppal Road, Hyderabad, 500007, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization and interactome study of white spot syndrome virus envelope protein VP11. PLoS One 2014; 9:e85779. [PMID: 24465701 PMCID: PMC3897518 DOI: 10.1371/journal.pone.0085779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/06/2013] [Indexed: 11/27/2022] Open
Abstract
White spot syndrome virus (WSSV) is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570), and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.
Collapse
|
25
|
Li Q, Liu QH, Huang J. VP292 of White spot syndrome virus Interacts with VP26. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2014; 24:54-8. [PMID: 24426258 DOI: 10.1007/s13337-012-0111-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Interactions between virus structural proteins are suggested to be crucial for virus assembly. Many steps in the process of white spot syndrome virus (WSSV) assembly and maturation remain unclear. In this paper, we discovered a new interaction of WSSV VP292. Temporal-transcription analysis showed that VP292 is expressed in the late stage of WSSV infection. Western blot and matrix-assisted laser desorption ionization MS assays showed that VP292 interacts with VP26, a major envelope protein. Far-western blot provided further evidence for interaction between VP292 and VP26. These results collectively demonstrated that VP292 anchors to the envelope through interaction with VP26.
Collapse
Affiliation(s)
- Qian Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China ; Shanghai Ocean University, Shanghai, China
| | - Qing-Hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| |
Collapse
|
26
|
Fu J, Huang Y, Cai J, Wei S, Ouyang Z, Ye F, Huang X, Qin Q. Identification and characterization of Rab7 from orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2014; 36:19-26. [PMID: 24161772 DOI: 10.1016/j.fsi.2013.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Rab7 is a small GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. During the virus-host co-evolution, host Rab7 was also exploited by virus to complete their life cycle. To date, however, the roles of fish Rab7 in virus infection remained largely unknown. Here, we cloned and characterized a Rab7 gene from grouper, Epinephelus coioides (Ec-Rab7). The full-length Ec-Rab7 cDNA was composed of 1182 bp and encoded a polypeptide of 207 amino acids which shared 99% identity with that from Anoplopoma fimbria or Oreochromis niloticus. Ec-Rab7 contained five conserved domains of Rab GTPase family including GTP-binding or GTPase regions as well as an effector site. RT-PCR analysis revealed that Ec-Rab7 ubiquitously expressed in all detected tissues and its transcript in spleen was up-regulated after challenge with Singapore grouper iridovirus (SGIV). Subcellular localization analysis revealed that Ec-Rab7 was distributed in the cytoplasm as spots and mostly colocalized with lysosomes. Notably, the ectopic expressed Ec-Rab7 partly aggregated into the viral factories in cells infected by SGIV. Furthermore, overexpression of Ec-Rab7 accelerated the occurrence of cytopathic effect (CPE) induced by SGIV infection and promoted viral gene transcription. In addition, far western blotting assay revealed that Ec-Rab7 might interact with viral proteins, including SGIV VP69 and VP101. Taken together, our data suggested that Ec-Rab7 might be potentially involved in SGIV replication.
Collapse
Affiliation(s)
- Jing Fu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jia Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengliang Ouyang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Fuzhou Ye
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, PR China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| |
Collapse
|
27
|
Sangsuriya P, Huang JY, Chu YF, Phiwsaiya K, Leekitcharoenphon P, Meemetta W, Senapin S, Huang WP, Withyachumnarnkul B, Flegel TW, Lo CF. Construction and application of a protein interaction map for white spot syndrome virus (WSSV). Mol Cell Proteomics 2014; 13:269-82. [PMID: 24217020 PMCID: PMC3879619 DOI: 10.1074/mcp.m113.029199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/21/2013] [Indexed: 01/28/2023] Open
Abstract
White spot syndrome virus (WSSV) is currently the most serious global threat for cultured shrimp production. Although its large, double-stranded DNA genome has been completely characterized, most putative protein functions remain obscure. To provide more informative knowledge about this virus, a proteomic-scale network of WSSV-WSSV protein interactions was carried out using a comprehensive yeast two-hybrid analysis. An array of yeast transformants containing each WSSV open reading frame fused with GAL4 DNA binding domain and GAL4 activation domain was constructed yielding 187 bait and 182 prey constructs, respectively. On screening of ∼28,000 pairwise combinations, 710 interactions were obtained from 143 baits. An independent coimmunoprecipitation assay (co-IP) was performed to validate the selected protein interaction pairs identified from the yeast two-hybrid approach. The program Cytoscape was employed to create a WSSV protein-protein interaction (PPI) network. The topology of the WSSV PPI network was based on the Barabási-Albert model and consisted of a scale-free network that resembled other established viral protein interaction networks. Using the RNA interference approach, knocking down either of two candidate hub proteins gave shrimp more protection against WSSV than knocking down a nonhub gene. The WSSV protein interaction map established in this study provides novel guidance for further studies on shrimp viral pathogenesis, host-viral protein interaction and potential targets for therapeutic and preventative antiviral strategies in shrimp aquaculture.
Collapse
Affiliation(s)
- Pakkakul Sangsuriya
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- §Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Jiun-Yan Huang
- ¶Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Fei Chu
- ¶Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Kornsunee Phiwsaiya
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- ‖National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pimlapas Leekitcharoenphon
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Watcharachai Meemetta
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Saengchan Senapin
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- ‖National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wei-Pang Huang
- ¶Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Boonsirm Withyachumnarnkul
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- **Shrimp Genetic Improvement Center, Surat Thani 84100, Thailand
- ‡‡Department of Anatomy, Faculty of Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Timothy W. Flegel
- From the ‡Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- ‖National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chu-Fang Lo
- ¶Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
- ¶¶Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
28
|
Li J, Xu L, Li F, Yang F. Low-abundance envelope protein VP12 of white spot syndrome virus interacts with envelope protein VP150 and capsid protein VP51. Virus Res 2013; 178:206-10. [PMID: 24144859 DOI: 10.1016/j.virusres.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022]
Abstract
VP12 and VP150 are two minor envelope proteins of white spot syndrome virus (WSSV). In our previous studies, VP12 was found to co-migrate with 53-kDa form of VP150 on two-dimensional Blue Native/SDS-PAGE, suggesting that there is an interaction between them. In this study, we confirmed the interaction by co-immunoprecipitation assay and demonstrated that the binding region with VP12 is located between residues 207 and 803 of VP150. Further studies found that VP12 can be attached to WSSV capsids by interacting with capsid protein VP51. These findings suggest that VP12 may function as a linker protein participating in the linkage between VP12/VP150 complex and viral nucleocapsid.
Collapse
Affiliation(s)
- Jianbo Li
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of State Oceanic Administration; Third Institute of Oceanography, Xiamen 361005, China.
| | | | | | | |
Collapse
|
29
|
Prohibitin Interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii. J Virol 2013; 87:12756-65. [PMID: 24049173 DOI: 10.1128/jvi.02198-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans.
Collapse
|
30
|
Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Reprint of: Virus-binding proteins and their roles in shrimp innate immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1018-1024. [PMID: 23416697 DOI: 10.1016/j.fsi.2013.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Collapse
Affiliation(s)
- Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | |
Collapse
|
31
|
Peng XX. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:63-71. [PMID: 22484215 DOI: 10.1016/j.dci.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals.
Collapse
Affiliation(s)
- Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
32
|
Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:11-26. [PMID: 22484214 DOI: 10.1016/j.dci.2012.03.016] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 05/26/2023]
Abstract
The annual production of shrimp culture in mainland of China has been over one million tons for several years. The major cultivated penaeidae species are Litopenaeus vannamei, Fenneropenaeus chinensis, Penaeus monodon and Marsupenaeus japonicus. Due to the importance of shrimp aquaculture in China, researchers have paid more attention to the molecular mechanism of shrimp disease occurrence and tried to develop an efficient control strategy for disease. This paper summarizes the research progress related to innate immunity of penaeid shrimp made in the last decade in Mainland China. Several pattern recognition receptors, such as lectin, toll, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) and tetraspanin were identified. The major signal transduction pathways, including Toll pathway, IMD pathway, which might be involved in the immune response of shrimp, were focused on and most of the components in Toll pathway were identified. Also, cellular immune responses such as phagocytosis and apoptosis were regarded playing very important roles in anti-WSSV infection to shrimp. The molecules involved in the maintenance of the immune homeostasis of shrimp and the progress on molecular structure and pathogenic mechanism of WSSV were summarized. Therefore, the brief outline about the immune system of shrimp is drawn based on the recent data which will help us to understand the immune responses of shrimp to different pathogens.
Collapse
Affiliation(s)
- Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | |
Collapse
|
33
|
Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Virus-binding proteins and their roles in shrimp innate immunity. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1269-1275. [PMID: 23023111 DOI: 10.1016/j.fsi.2012.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Collapse
Affiliation(s)
- Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | |
Collapse
|
34
|
Flegel TW, Sritunyalucksana K. Shrimp molecular responses to viral pathogens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:587-607. [PMID: 20393775 DOI: 10.1007/s10126-010-9287-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
From almost negligible amounts in 1970, the quantity of cultivated shrimp (~3 million metric tons in 2007) has risen to approach that of the capture fishery and it constitutes a vital source of export income for many countries. Despite this success, viral diseases along the way have caused billions of dollars of losses for shrimp farmers. Desire to reduce the losses to white spot syndrome virus in particular, has stimulated much research since 2000 on the shrimp response to viral pathogens at the molecular level. The objective of the work is to develop novel, practical methods for improved disease control. This review covers the background and limitations of the current work, baseline studies and studies on humoral responses, on binding between shrimp and viral structural proteins and on intracellular responses. It also includes discussion of several important phenomena (i.e., the quasi immune response, viral co-infections, viral sequences in the shrimp genome and persistent viral infections) for which little or no molecular information is currently available, but is much needed.
Collapse
Affiliation(s)
- T W Flegel
- National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani 12120, Thailand.
| | | |
Collapse
|
35
|
Patil R, Shankar KM, Krupesha Sharma SR, Kulkarni A, Patil P, Naveen Kumar BT, Sahoo AK. Epitope analysis of white spot syndrome virus of Penaeus monodon by in vivo neutralization assay employing a panel of monoclonal antibodies. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1007-1013. [PMID: 21310244 DOI: 10.1016/j.fsi.2011.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/16/2011] [Accepted: 01/23/2011] [Indexed: 05/30/2023]
Abstract
A panel of six monoclonal antibodies (MAbs) against the major envelope proteins VP18, VP26 and VP28 of white spot syndrome virus (WSSV) was evaluated for neutralization of the virus in vivo in Penaeus monodon. WSSV stock diluted to 1 x 10⁻⁶ resulting in 100% mortality on 12 day post injection (dpi) was used as optimum infectious dose of virus for challenge. Constant quantity (100 μg/ml) of MAbs C-5, C-14, C-33, C-38, C-56 and C-72 was incubated separately with WSSV (1 x 10⁻⁶ dilution) at 27 °C for 90 min and injected to shrimp. WSSV infection was neutralized by the MAbs C-5, C-14 and C-33 with a relative percent survival (RPS) of 60, 80 and 60 on 12 dpi, respectively compared to 100% mortality in positive control injected with WSSV alone. MAbs C-38, C-56 and C-72 could neutralize WSSV infection with RPS on 12 dpi of 40, 30 and 30, respectively. Shrimp injected with WSSV (1 x 10⁻⁶ dilution) incubated with panel of the MAbs at 100 μg/ml separately were subjected to nested PCR analysis at 0, 8, 12, 24, 36, 48 and 72 hour post injection (hpi) to provide further evidence for neutralization. MAbs C-5, C-14 and C-33 showed delay in WSSV positivity by 24 and 48 hpi by 2nd and 1st step PCR, respectively. MAbs C-38, C-56 and C-72 showed WSSV positivity by 12 and 24 hpi by 2nd and 1st step PCR, respectively. Shrimp injected with WSSV alone showed WSSV positivity by 8 and 12 hpi by 2nd and 1st step PCR, respectively. The study clearly shows that infectivity of WSSV could be delayed by MAbs C-14, C-5 and C-33.
Collapse
Affiliation(s)
- Rajreddy Patil
- Fish Pathology and Biotechnology Laboratory, Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Analysis of white spot syndrome virus envelope protein complexome by two-dimensional blue native/SDS PAGE combined with mass spectrometry. Arch Virol 2011; 156:1125-35. [DOI: 10.1007/s00705-011-0954-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/18/2011] [Indexed: 01/09/2023]
|
37
|
Chang YS, Liu WJ, Lee CC, Chou TL, Lee YT, Wu TS, Huang JY, Huang WT, Lee TL, Kou GH, Wang AHJ, Lo CF. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins. PLoS One 2010; 5:e10718. [PMID: 20502662 PMCID: PMC2873410 DOI: 10.1371/journal.pone.0010718] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/25/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus), is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument) proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.
Collapse
Affiliation(s)
- Yun-Shiang Chang
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
- * E-mail: (YSC); (AHJW); (CFL)
| | - Wang-Jing Liu
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsung-Lu Chou
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Yuan-Ting Lee
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Tz-Shian Wu
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Jiun-Yan Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Wei-Tung Huang
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Tai-Lin Lee
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Guang-Hsiung Kou
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (YSC); (AHJW); (CFL)
| | - Chu-Fang Lo
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- * E-mail: (YSC); (AHJW); (CFL)
| |
Collapse
|
38
|
Lin Y, Xu L, Yang F. Tetramerization of white spot syndrome virus envelope protein VP33 and its interaction with VP24. Arch Virol 2010; 155:833-8. [DOI: 10.1007/s00705-010-0650-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/19/2010] [Indexed: 11/24/2022]
|
39
|
Sánchez-Paz A. White spot syndrome virus: an overview on an emergent concern. Vet Res 2010; 41:43. [PMID: 20181325 PMCID: PMC2855118 DOI: 10.1051/vetres/2010015] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 02/24/2010] [Indexed: 12/11/2022] Open
Abstract
Viruses are ubiquitous and extremely abundant in the marine environment. One of such marine viruses, the white spot syndrome virus (WSSV), has emerged globally as one of the most prevalent, widespread and lethal for shrimp populations. However, at present there is no treatment available to interfere with the unrestrained occurrence and spread of the disease. The recent progress in molecular biology techniques has made it possible to obtain information on the factors, mechanisms and strategies used by this virus to infect and replicate in susceptible host cells. Yet, further research is still required to fully understand the basic nature of WSSV, its exact life cycle and mode of infection. This information will expand our knowledge and may contribute to developing effective prophylactic or therapeutic measures. This review provides a state-of-the-art overview of the topic, and emphasizes the current progress and future direction for the development of WSSV control strategies.
Collapse
Affiliation(s)
- Arturo Sánchez-Paz
- Centro de Investigaciones Biologicas del Noroeste, Unidad Hermosillo, Hermosillo, Mexico.
| |
Collapse
|
40
|
Abstract
Early events in white spot syndrome virus (WSSV) morphogenesis, particularly the formation of viral membranes, are poorly understood. The major envelope proteins of WSSV are VP28, VP26, VP24, and VP19. Our previous results indicated that VP28 interacts with VP26 and VP24. In the present study, we used coimmunoprecipitation assays and pull-down assays to confirm that the four major proteins in the WSSV envelope can form a multiprotein complex. Yeast two-hybrid assays were also used to test for interactions among the four proteins. In summary, three pairwise protein interactions (VP19-VP28, VP19-VP24, and VP24-VP26) and one self-association (VP24-VP24) were identified for the first time.
Collapse
|
41
|
Zhou Q, Li H, Qi YP, Yang F. Lipid of white-spot syndrome virus originating from host-cell nuclei. J Gen Virol 2009; 89:2909-2914. [PMID: 18931090 DOI: 10.1099/vir.0.2008/002402-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that white-spot syndrome virus (WSSV) generates its envelope in the nucleoplasm is based on electron microscopy observations; however, as yet there is no direct evidence for this. In the present study, the lipids of WSSV and the nuclei of its host, the crayfish Procambarus clarkii, were extracted and the neutral lipid and phospholipid contents were analysed by high-performance liquid chromatography, thin-layer chromatography and gas chromatography/mass spectrometry. Phosphatidylcholine (PC) and phosphatidylethanolamine comprised 62.9 and 25.8 %, respectively, of WSSV phospholipids, whereas they comprised 58.5 and 30 %, respectively, of crayfish nuclei phospholipids. These two phospholipids were the dominant phospholipids, and amounts of other phospholipids were very low in the total WSSV and crayfish nuclei phospholipids. The data indicate that the phospholipid profile of WSSV and crayfish nuclei are similar, which is in agreement with the model that the lipids of WSSV are from the host-cell nuclei. However, the fatty acid chains of PC were different between the WSSV virions and crayfish nuclei, and the viral neutral lipid component was also found to be somewhat more complicated than that of the host nuclei. The number of species of cholesterol and hydrocarbon in virus neutral lipid was increased compared with that in host-cell nuclei neutral lipid. It is suggested that the differences between WSSV and its host are either due to selective sequestration of lipids or reflect the fact that the lipid metabolism of the host is changed by WSSV infection.
Collapse
Affiliation(s)
- Qing Zhou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen, PR China
| | - Hui Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen, PR China
| | - Yi-Peng Qi
- State Key Laboratory of Virology, Section of Molecular Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Feng Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen, PR China
| |
Collapse
|
42
|
The C-terminal region of envelope protein VP38 from white spot syndrome virus is indispensable for interaction with VP24. Arch Virol 2008; 153:2103-6. [PMID: 18932021 DOI: 10.1007/s00705-008-0221-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
White spot syndrome virus (WSSV) is a large, rod-shaped, enveloped double-stranded DNA virus. In this study, VP38, a viral envelope protein, was expressed as a glutathione S-transferase (GST) fusion protein, and a polyclonal antibody against VP38 was obtained. Far-Western blotting and GST pull-down showed that VP38 interacted directly with VP24, a major WSSV envelope protein. In addition, to delineate the interaction region of VP38 with VP24, GST-VP38n (aa 1-142) and GST-VP38c (aa 143-309) were expressed. The GST pull-down assay revealed that VP38 binds via its C-terminal region to VP24. The result implies that VP38 may participate in the formation of the WSSV envelope.
Collapse
|
43
|
Characterization of white spot syndrome virus envelope protein VP51A and its interaction with viral tegument protein VP26. J Virol 2008; 82:12555-64. [PMID: 18829765 DOI: 10.1128/jvi.01238-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterize a novel white spot syndrome virus (WSSV) structural protein, VP51A (WSSV-TW open reading frame 294), identified from a previous mass spectrometry study. Temporal-transcription analysis showed that vp51A is expressed in the late stage of WSSV infection. Gene structure analysis showed that the transcription initiation site of vp51A was 135 bp upstream of the translation start codon. The poly(A) addition signal overlapped with the translation stop codon, TAA, and the poly(A) tail was 23 bp downstream of the TAA. Western blot analysis of viral protein fractions and immunoelectron microscopy both suggested that VP51A is a viral envelope protein. Western blotting of the total proteins extracted from WSSV virions detected a band that was close to the predicted 51-kDa mass, but the strongest signal was around 72 kDa. We concluded that this 72-kDa band was in fact the full-length VP51A protein. Membrane topology assays demonstrated that the VP51A 72-kDa protein is a type II transmembrane protein with a highly hydrophobic transmembrane domain on its N terminus and a C terminus that is exposed on the surface of the virion. Coimmunoprecipitation, colocalization, and yeast two-hybrid assays revealed that VP51A associated directly with VP26 and indirectly with VP28, with VP26 acting as a linker protein in the formation of a VP51A-VP26-VP28 complex.
Collapse
|
44
|
|
45
|
Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB, Nauwynck HJ. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. JOURNAL OF FISH DISEASES 2008; 31:1-18. [PMID: 18086030 DOI: 10.1111/j.1365-2761.2007.00877.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since it first appeared in 1992, white spot syndrome virus (WSSV) has become the most threatening infectious agent in shrimp aquaculture. Within a decade, this pathogen has spread to all the main shrimp farming areas and has caused enormous economic losses amounting to more than seven billion US dollars. At present, biosecurity methods used to exclude pathogens in shrimp farms include disinfecting ponds and water, preventing the entrance of animals that may carry infectious agents and stocking ponds with specific pathogen-free post-larvae. The combination of these practices increases biosecurity in shrimp farming facilities and may contribute to reduce the risk of a WSSV outbreak. Although several control methods have shown some efficacy against WSSV under experimental conditions, no therapeutic products or strategies are available to effectively control WSSV in the field. Furthermore, differences in virulence and clinical outcome of WSSV infections have been reported. The sequencing and characterization of different strains of WSSV has begun to determine aspects of its biology, virulence and pathogenesis. Knowledge on these aspects is critical for developing effective control methods. The aim of this review is to present an update of the knowledge generated so far on different aspects of WSSV organization, morphogenesis, pathology and pathogenesis.
Collapse
Affiliation(s)
- C M Escobedo-Bonilla
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Li Z, Lin Q, Chen J, Wu JL, Lim TK, Loh SS, Tang X, Hew CL. Shotgun identification of the structural proteome of shrimp white spot syndrome virus and iTRAQ differentiation of envelope and nucleocapsid subproteomes. Mol Cell Proteomics 2007; 6:1609-20. [PMID: 17545682 DOI: 10.1074/mcp.m600327-mcp200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major pathogen that causes severe mortality and economic losses to shrimp cultivation worldwide. The genome of WSSV contains a 305-kb double-stranded circular DNA, which encodes 181 predicted ORFs. Previous gel-based proteomics studies on WSSV have identified 38 structural proteins. In this study, we applied shotgun proteomics using off-line coupling of an LC system with MALDI-TOF/TOF MS/MS as a complementary and comprehensive approach to investigate the WSSV proteome. This approach led to the identification of 45 viral proteins; 13 of them are reported for the first time. Seven viral proteins were found to have acetylated N termini. RT-PCR confirmed the mRNA expression of these 13 newly identified viral proteins. Furthermore iTRAQ (isobaric tags for relative and absolute quantification), a quantitative proteomics strategy, was used to distinguish envelope proteins and nucleocapsid proteins of WSSV. Based on iTRAQ ratios, we successfully identified 23 envelope proteins and six nucleocapsid proteins. Our results validated 15 structural proteins with previously known localization in the virion. Furthermore the localization of an additional 12 envelope proteins and two nucleocapsid proteins was determined. We demonstrated that iTRAQ is an effective approach for high throughput viral protein localization determination. Altogether WSSV is assembled by at least 58 structural proteins, including 13 proteins newly identified by shotgun proteomics and one identified by iTRAQ. The localization of 42 structural proteins was determined; 33 are envelope proteins, and nine are nucleocapsid proteins. A comprehensive identification of WSSV structural proteins and their localization should facilitate the studies of its assembly and mechanism of infection.
Collapse
Affiliation(s)
- Zhengjun Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Characterization of a novel envelope protein WSV010 of shrimp white spot syndrome virus and its interaction with a major viral structural protein VP24. Virology 2007; 364:208-13. [PMID: 17400271 DOI: 10.1016/j.virol.2007.02.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 11/28/2022]
Abstract
White spot syndrome virus is one of the most serious viral pathogens causing huge mortality in shrimp farming. Here we report characterization of WSV010, a novel structural protein identified by our recent shotgun proteomics study. Its ORF contains 294 nucleotides encoding 97 amino acids. Transcription analysis using RT-PCR showed that wsv010 is a late gene. Localization analyses by Western blot and immunoelectron microscopy demonstrated that WSV010 is a viral envelope protein. Furthermore, the pull-down assay revealed that WSV010 could interact with VP24, which is a major envelope protein. Since WSV010 lacks a transmembrane domain, these results suggest that WSV010 may anchor to the envelope through interaction with VP24. Previous studies indicated that VP24 could also interact with VP28 and VP26. Therefore, we propose that VP24 may act as a linker protein to associate these envelope proteins together to form a complex, which may play an important role in viral morphogenesis and viral infection.
Collapse
|
48
|
Xie X, Xu L, Yang F. Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol 2006; 80:10615-23. [PMID: 16928742 PMCID: PMC1641770 DOI: 10.1128/jvi.01452-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
White spot syndrome virus (WSSV) virions were purified from the tissues of infected Procambarus clarkii (crayfish) isolates. Pure WSSV preparations were subjected to Triton X-100 treatment to separate into the envelope and nucleocapsid fractions, which were subsequently separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope and nucleocapsid proteins were identified by either matrix-assisted laser desorption ionization-time of flight mass spectrometry or defined antibody. A total of 30 structural proteins of WSSV were identified in this study; 22 of these were detected in the envelope fraction, 7 in the nucleocapsid fraction, and 1 in both the envelope and the nucleocapsid fractions. With the aid of specific antibodies, the localizations of eight proteins were further studied. The analysis of posttranslational modifications revealed that none of the WSSV structural proteins was glycosylated and that VP28 and VP19 were threonine phosphorylated. In addition, far-Western and coimmunoprecipitation experiments showed that VP28 interacted with both VP26 and VP24. In summary, the data obtained in this study should provide an important reference for future molecular studies of WSSV morphogenesis.
Collapse
Affiliation(s)
- Xixian Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, 178 Daxue Rd., Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|