1
|
Ackermann M, Kubacki J, Heaggans S, Hayward GS, Lechmann J. Epidemiological, serological, and viral genomic analysis of an outbreak of elephant hemorrhagic disease in Switzerland. PLoS One 2025; 20:e0301247. [PMID: 40193325 PMCID: PMC11975098 DOI: 10.1371/journal.pone.0301247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/15/2025] [Indexed: 04/09/2025] Open
Abstract
Elephant hemorrhagic disease (EHD), caused by several Elephant endotheliotropic herpesviruses (EEHV), represents a frequently lethal syndrome, affecting both captive and free-living elephants. In the summer of 2022, three young Asian elephants (Elephas maximus) succumbed to EHD in a zoo in Switzerland, despite considerable preventive efforts and early detection of EEHV1A viremia. In this communication, we describe the extent of preventive measures in terms of prior virus detection, active survey of viremia, and antibody status. The results show that: (1) A previously undetected EEHV1A strain had remained unrecognized among these elephants. Probably, the virus re-emerged after almost 40 years of latency from one of the oldest elephants in the zoo. (2) While two of the three affected animals had prior immune responses against EEHV1, their strain-specific immunity proved insufficient to prevent EHD. The complete genomic DNA sequence of the EEHV1A strain involved was determined, and detailed comparisons with multiple EEHV1 strains were made, revealing a much greater extent of divergence and level of complexity among the encoded proteins than previously described. Overall, these data confirmed that all three EHD cases here had been infected by the same novel strain of EEHV subtype 1A.
Collapse
Affiliation(s)
- Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland,
| | - Sarah Heaggans
- Viral Oncology Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Gary S. Hayward
- Viral Oncology Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Julia Lechmann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Pharmacokinetics and analytical determination of acyclovir in Asian elephant calves ( Elephas maximus). Vet Anim Sci 2022; 15:100227. [PMID: 35024493 PMCID: PMC8724961 DOI: 10.1016/j.vas.2021.100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Pharmacokinetic and bioavailability data of acyclovir following intravenous and oral administration are reported for Asian elephant calves. Data represent the first comprehensive LC-MS/MS analysis of plasma acyclovir concentrations after i.v. and oral administration in elephants.
A therapeutic regimen that includes antiviral drugs is critical for the survival of Asian elephant (Elephas maximus) calves infected with elephant endotheliotropic herpesvirus hemorrhagic disease (EEHV-HD), with acyclovir showing considerable promise. The purpose of this study was to determine the pharmacokinetics and bioavailability of acyclovir following intravenous (IV) and oral (PO) administration in Asian elephants. A single dose of acyclovir (15 mg/kg, IV or 45 mg/kg, PO) was administered to four healthy elephant calves, with a minimum 2-week washout period between treatments. Serial plasma samples were collected after each injection for acyclovir analysis using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Maximum plasma acyclovir concentrations were 27.02 ± 6.79 µg/mL at 0.94 ± 0.31 h after IV administration, and 1.45 ± 0.20 µg/mL at 3.00 ± 0.70 h after PO administration. The half-life of the elimination phase (T1/2) was 5.84 ± 0.74 and 8.74 ± 2.47 h after IV and PO administration, respectively. After IV administration, acyclovir concentrations were higher than the half-maximal inhibitory concentration (IC50) of those found for herpes simplex virus (HSV) 1 and 2 in humans, and equid alpha herpesvirus-1 (EHV-1) for at least 12 h. By contrast, the bioavailability of oral administration was low, only 6.03 ± 0.87%, so higher doses by that route likely are needed to be effective. Due to the high concentration of plasma acyclovir after IV administration, the dose may need to be adjusted to prevent any negative side effects.
Collapse
Key Words
- %CV, Mean precision
- AUC0-inf, Total area under the plasma concentration-time curve from time zero to infinity
- AUC0-t, Total area under the plasma concentration-time curve from time 0–48h
- Acyclovir
- Asian elephant
- Bioavailability
- Cl, Total clearance
- Cmax, Peak plasma concentration
- EEHV, Elephantendotheliotropic herpesviruses
- EEHV-HD, Elephant endotheliotropic herpesvirus hemorrhagic disease
- EHV, Equid alphaherpesvirus
- Elephant endotheliotropic herpesvirus (EEHV)
- F, Bioavailability
- HSV, Herpes simplex virus
- IV, Intravenous administration
- Kel, Elimination rate constant
- LC-MS/MS, Liquid chromatography-tandem mass spectrometry
- LLOQ, Lower limit of quantitation
- MAT, Mean absorption time
- MRM, Multiple reaction monitoring
- MRT, Mean residence time
- PO, Oral administration
- Pharmacokinetics
- QC, Quality control
- S/N, Signal to noise ratio
- T1/2, Elimination half-life
- Tmax, Time to reach peak plasma
- Vd(ss), Steady-state volume of distribution
- m/z, Mass-to-charge ratio
- r2, Coefficients of determination
Collapse
|
3
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
4
|
Boonprasert K, Punyapornwithaya V, Tankaew P, Angkawanish T, Sriphiboon S, Titharam C, Brown JL, Somgird C. Survival analysis of confirmed elephant endotheliotropic herpes virus cases in Thailand from 2006 - 2018. PLoS One 2019; 14:e0219288. [PMID: 31276571 PMCID: PMC6611605 DOI: 10.1371/journal.pone.0219288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
Abstract
The elephant endotheliotropic herpesvirus (EEHV) has been a known cause of death of young elephants in Thailand for over a decade. In this study, we report on the demography, disease characteristics and mortality of 58 elephants with confirmed EEHV hemorrhagic disease between January 2006 and August 2018 using retrospective data subjected to survival analysis. Median age of EEHV presentation was 29 months, and the mortality rate was 68.97% with a median survival time of 36 h. Most EEHV cases occurred in the north of Thailand, the region where most of the country’s captive elephants reside. The hazard ratio analysis identified application of medical procedures and antiviral medications as being significant factors correlated to the risk of death. Our results indicate a need to focus EEHV monitoring efforts on young elephants and to follow current protocols that advise starting treatments before clinical signs appear.
Collapse
Affiliation(s)
| | - Veerasak Punyapornwithaya
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pallop Tankaew
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| | - Taweepoke Angkawanish
- Elephant Hospital, National Elephant Institute, Forest Industry Organization, Lampang, Thailand
| | - Supaphen Sriphiboon
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakornpathom, Thailand
| | - Chatchote Titharam
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, United State of America
| | - Chaleamchat Somgird
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
5
|
Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front Microbiol 2019; 10:941. [PMID: 31134006 PMCID: PMC6517553 DOI: 10.3389/fmicb.2019.00941] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-herpesvirus thymidine kinase (TK) genes are virulence-related genes and are nonessential for viral replication; they are often preferred target genes for the construction of gene-deleted attenuated vaccines and genetically engineered vectors for inserting and expressing foreign genes. The enzymes encoded by TK genes are key kinases in the nucleoside salvage pathway and have significant substrate diversity, especially the herpes simplex virus 1 (HSV-1) TK enzyme, which phosphorylates four nucleosides and various nucleoside analogues. Hence, the HSV-1 TK gene is exploited for the treatment of viral infections, as a suicide gene in antitumor therapy, and even for the regulation of stem cell transplantation and treatment of parasitic infection. This review introduces the effects of α-herpesvirus TK genes on viral virulence and infection in the host and classifies and summarizes the current main application domains and potential uses of these genes. In particular, mechanisms of action, clinical limitations, and antiviral and antitumor therapy development strategies are discussed.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Azab W, Damiani AM, Ochs A, Osterrieder N. Subclinical infection of a young captive Asian elephant with elephant endotheliotropic herpesvirus 1. Arch Virol 2017; 163:495-500. [PMID: 29094239 DOI: 10.1007/s00705-017-3628-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Elephant endotheliotropic herpesviruses (EEHVs) are a continuous threat for young Asian elephants. We report a laboratory-confirmed infection of a 5-year-old female Asian elephant (AZ_2016) in the Berlin Zoologischer Garten. Initially, high EEHV-1 loads were detected in trunk swabs obtained from the young elephant during routine screening. The animal showed no clinical signs except for slight irritability. EEHV-1 was continuously shed for almost one year, with fluctuations in viral load from time to time. Our investigations highlight the continuous threat of EEHV-1 to young captive Asian elephants and stress the importance of routine monitoring of captive elephants to allow early detection of infection.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Armando Mario Damiani
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
- Instituto de Medicina y Biología Experimental de Cuyo IMBECU, CCT Mendoza-CONICET, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andreas Ochs
- Zoologischer Garten Berlin AG, Hardenbergplatz 8, 10787, Berlin, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
7
|
Long SY, Latimer EM, Hayward GS. Review of Elephant Endotheliotropic Herpesviruses and Acute Hemorrhagic Disease. ILAR J 2016; 56:283-96. [PMID: 26912715 DOI: 10.1093/ilar/ilv041] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
More than 100 young captive and wild Asian elephants are known to have died from a rapid-onset, acute hemorrhagic disease caused primarily by multiple distinct strains of two closely related chimeric variants of a novel herpesvirus species designated elephant endotheliotropic herpesvirus (EEHV1A and EEHV1B). These and two other species of Probosciviruses (EEHV4 and EEHV5) are evidently ancient and likely nearly ubiquitous asymptomatic infections of adult Asian elephants worldwide that are occasionally shed in trunk wash secretions. Although only a handful of similar cases have been observed in African elephants, they also have proved to harbor their own multiple and distinct species of Probosciviruses-EEHV2, EEHV3, EEHV6, and EEHV7-found in lung and skin nodules or saliva. For reasons that are not yet understood, approximately 20% of Asian elephant calves appear to be susceptible to the disease when primary infections are not controlled by normal innate cellular and humoral immune responses. Sensitive specific polymerase chain reaction (PCR) DNA blood tests have been developed, routine monitoring has been established, the complete large DNA genomes of each of the four Asian EEHV species have now been sequenced, and PCR gene subtyping has provided unambiguous evidence that this is a sporadic rather than epidemic disease that it is not being spread among zoos or other elephant housing facilities. Nevertheless, researchers have not yet been able to propagate EEHV in cell culture, determine whether or not human antiherpesvirus drugs are effective inhibitors, or develop serology assays that can distinguish between antibodies against the multiple different EEHV species.
Collapse
Affiliation(s)
- Simon Y Long
- Simon Y. Long, MS, VMD, is a pathology postdoctoral fellow in the Department of Molecular and Comparative Pathobiology and a graduate student under Dr. Gary S. Hayward in the graduate program in Cellular and Molecular Medicine at Johns Hopkins School of Medicine in Baltimore, Maryland. Erin M. Latimer, MS, is a research specialist and manager of the National Elephant Herpesvirus Laboratory at the Smithsonian's National Zoological Park in Washington, DC. Gary S. Hayward, PhD, is a professor in the Viral Oncology Program, Pharmacology and Molecular Sciences, and Pathology Departments at Johns Hopkins School of Medicine in Baltimore, Maryland
| | - Erin M Latimer
- Simon Y. Long, MS, VMD, is a pathology postdoctoral fellow in the Department of Molecular and Comparative Pathobiology and a graduate student under Dr. Gary S. Hayward in the graduate program in Cellular and Molecular Medicine at Johns Hopkins School of Medicine in Baltimore, Maryland. Erin M. Latimer, MS, is a research specialist and manager of the National Elephant Herpesvirus Laboratory at the Smithsonian's National Zoological Park in Washington, DC. Gary S. Hayward, PhD, is a professor in the Viral Oncology Program, Pharmacology and Molecular Sciences, and Pathology Departments at Johns Hopkins School of Medicine in Baltimore, Maryland
| | - Gary S Hayward
- Simon Y. Long, MS, VMD, is a pathology postdoctoral fellow in the Department of Molecular and Comparative Pathobiology and a graduate student under Dr. Gary S. Hayward in the graduate program in Cellular and Molecular Medicine at Johns Hopkins School of Medicine in Baltimore, Maryland. Erin M. Latimer, MS, is a research specialist and manager of the National Elephant Herpesvirus Laboratory at the Smithsonian's National Zoological Park in Washington, DC. Gary S. Hayward, PhD, is a professor in the Viral Oncology Program, Pharmacology and Molecular Sciences, and Pathology Departments at Johns Hopkins School of Medicine in Baltimore, Maryland
| |
Collapse
|
8
|
Dastjerdi A, Seilern-Moy K, Darpel K, Steinbach F, Molenaar F. Surviving and fatal Elephant Endotheliotropic Herpesvirus-1A infections in juvenile Asian elephants - lessons learned and recommendations on anti-herpesviral therapy. BMC Vet Res 2016; 12:178. [PMID: 27567895 PMCID: PMC5002104 DOI: 10.1186/s12917-016-0806-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Elephant Endotheliotropic Herpesviruses (EEHVs) can cause acute haemorrhagic disease in young Asian elephants (Elephas maximus) and clinical EEHV infections account for the majority of their fatalities. The anti-herpesviral drug famciclovir (FCV) has been used routinely to treat viraemic at-risk elephants, but thus far without proven efficacy. This paper presents clinical and virological investigations of two EEHV-1A infected elephants treated with FCV, and discusses anti-herpesvirus therapies of viraemic elephants. Cases presentations Two 1.5 year old male Asian elephants at a zoological collection in the UK developed clinical EEHV-1A infections. Case 1 showed signs of myalgia for the duration of 24 hours before returning back to normal. EEHV-1A DNAemia was confirmed on the day of clinical signs and continued to be present for 18 days in total. Trunk shedding of the virus commenced 10 days after detection of initial DNAemia. Case 2 tested positive for EEHV-1A DNAemia in a routine blood screening sample in the absence of clinical signs. The blood viral load increased exponentially leading up to fatal clinical disease seven days after initial detection of DNAemia. Both calves were treated with 15 mg/kg FCV per rectum on detection of DNAemia and penciclovir, the FCV metabolite, could be detected in the blood at assumed therapeutic levels. The early indicators for clinical disease were a marked absolute and relative drop in white blood cells, particularly monocytes prior to the detection of viraemia. The most prognostic haematological parameter at later stages of the disease was the platelet count showing a continuous sharp decline throughout, followed by a dramatic drop at the time of death. Conclusions The EEHV-1A viraemic animals investigated here further highlight the ongoing threat posed by these viruses to juvenile Asian elephants. The findings call into question the efficacy of rectal FCV in clinical cases and direct towards the use of alternative anti-herpesvirus drugs and complementary treatments such as plasma infusions if no improvement in either viral load or the above-mentioned blood parameters are observed in the initial days of viraemia despite anti-herpesvirus therapy.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Katharina Seilern-Moy
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Karin Darpel
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Falko Steinbach
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | |
Collapse
|
9
|
Complete Genome Sequence of Elephant Endotheliotropic Herpesvirus 4, the First Example of a GC-Rich Branch Proboscivirus. mSphere 2016; 1:mSphere00081-15. [PMID: 27340695 PMCID: PMC4911795 DOI: 10.1128/msphere.00081-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023] Open
Abstract
A novel group of mammalian DNA viruses called elephant endotheliotropic herpesviruses (EEHVs) belonging to the Proboscivirus genus has been associated with nearly 100 cases of highly lethal acute hemorrhagic disease in young Asian elephants worldwide. The complete 180-kb genomes of prototype strains from three AT-rich branch viruses, EEHV1A, EEHV1B, and EEHV5, have been published. However, less than 6 kb of DNA sequence each from EEHV3, EEHV4, and EEHV7 showed them to be a hugely diverged second major branch with GC-rich characteristics. Here, we determined the complete 206-kb genome of EEHV4(Baylor) directly from trunk wash DNA by next-generation sequencing and de novo assembly procedures. Among a total of 119 genes with an overall colinear organization similar to those of the AT-rich EEHVs, major features of EEHV4 include a family of 26 paralogous 7xTM and vGPCR-like genes plus 25 novel or missing genes. The genome also contains an unusual distribution of tracts of 5 to 11 successive A or T nucleotides in intergenic domains between the mostly much higher GC content protein coding regions. Furthermore, an extremely high GC-rich bias in the third wobble position of codons clearly delineates the coding regions for many but not all proteins. There are also two novel captured cellular genes, including a C-type lectin (vECTL) and an O-linked acetylglucosamine transferase (vOGT), as well as an unusually large and complex Ori-Lyt dyad symmetry domain. Finally, 30 kb from a second strain proved to include three small chimeric domains, indicating the existence of distinct EEHV4A and EEHV4B subtypes. IMPORTANCE Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect both Asian and African elephants, but lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. Milder disease caused by EEHV5 or EEHV4 is being increasingly recognized as well, but little is known about the latter, which is estimated to have diverged at least 35 million years ago from the others within a distinctive GC-rich branch of the Proboscivirus genus. Here, we have determined the complete genomic DNA sequence of a strain of EEHV4 obtained from a trunk wash sample collected from a surviving Asian elephant calf undergoing asymptomatic shedding during convalescence after an acute hemorrhagic disease episode. This represents the first example from among the three known GC-rich branch Proboscivirus species to be assembled and fully annotated. Several distinctive features of EEHV4 compared to AT-rich branch genomes are described.
Collapse
|
10
|
Comparison of the Gene Coding Contents and Other Unusual Features of the GC-Rich and AT-Rich Branch Probosciviruses. mSphere 2016; 1:mSphere00091-16. [PMID: 27340696 PMCID: PMC4911796 DOI: 10.1128/msphere.00091-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect either Asian or African elephants, but the highly lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. In the accompanying paper [P. D. Ling et al., mSphere 1(3):e00081-15, http://dx.doi.org/10.1128/mSphere.00081-15], we report the complete 206-kb genome of EEHV4, the third different species causing disease in Asian elephants and the first example of a GC-rich branch proboscivirus. To gain insights into the nature and differential properties of these two very anciently diverged lineages of elephant herpesviruses, we describe here several additional unusual features found in the complete GC-rich genome of EEHV4 with particular emphasis on patterns of divergence as well as common unique features that are distinct from those of all other herpesviruses, such as the enlarged AT-rich intergenic domains and gene families, including the large number of vGPCR-like proteins. Nearly 100 cases of lethal acute hemorrhagic disease in young Asian elephants have been reported worldwide. All tested cases contained high levels of elephant endotheliotropic herpesvirus (EEHV) DNA in pathological blood or tissue samples. Seven known major types of EEHVs have been partially characterized and shown to all belong to the novel Proboscivirus genus. However, the recently determined 206-kb EEHV4 genome proved to represent the prototype of a GC-rich branch virus that is very distinct from the previously published 180-kb EEHV1A, EEHV1B, and EEHV5A genomes, which all fall within an alternative AT-rich branch. Although EEHV4 retains the large family of 7xTM and vGPCR-like genes, six are unique to either just one or the other branch. While both branches display a highly enriched distribution of A and T tracts in intergenic domains, they are generally much larger within the GC-rich branch. Both branches retain the vGCNT1 acetylglucosamine transferase and at least one vOX-2 gene, but the two branches differ by 25 genes overall, with the AT-rich branch encoding a fucosyl transferase (vFUT9) plus two or three more vOX2 proteins and an immunoglobulin-like gene family that are all absent from the GC-rich branch. Several envelope glycoproteins retain only 15 to 20% protein identity or less across the two branches. Finally, the two plausible predicted transcriptional regulatory proteins display no homology at all to those in the alpha-, beta-, or gammaherpesvirus subfamilies. These results reinforce our previous proposal that the probosciviruses should be designated a new subfamily of mammalian herpesviruses. IMPORTANCE Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect either Asian or African elephants, but the highly lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. In the accompanying paper [P. D. Ling et al., mSphere 1(3):e00081-15, 10.1128/mSphere.00081-15], we report the complete 206-kb genome of EEHV4, the third different species causing disease in Asian elephants and the first example of a GC-rich branch proboscivirus. To gain insights into the nature and differential properties of these two very anciently diverged lineages of elephant herpesviruses, we describe here several additional unusual features found in the complete GC-rich genome of EEHV4 with particular emphasis on patterns of divergence as well as common unique features that are distinct from those of all other herpesviruses, such as the enlarged AT-rich intergenic domains and gene families, including the large number of vGPCR-like proteins.
Collapse
|
11
|
Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants. J Virol 2015; 90:3028-43. [PMID: 26719245 DOI: 10.1128/jvi.02936-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. IMPORTANCE Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly involves a variety of strains of EEHV1, whose natural host has been unclear. Here, we carried out genotype analyses by partial PCR sequencing of necropsy tissue from five asymptomatic African elephants and identified multiple simultaneous infections by several different EEHV types, including high concentrations in lymphoid lung nodules. Overall, the results provide strong evidence that EEHV2, EEHV3, EEHV6, and EEHV7 represent natural ubiquitous infections in African elephants, whereas Asian elephants harbor EEHV1A, EEHV1B, EEHV4, and EEHV5. Although a single case of fatal cross-species infection by EEHV3 is known, the results do not support the previous concept that highly pathogenic EEHV1A crossed from African to Asian elephants in zoos.
Collapse
|
12
|
Comparative genome analysis of four elephant endotheliotropic herpesviruses, EEHV3, EEHV4, EEHV5, and EEHV6, from cases of hemorrhagic disease or viremia. J Virol 2014; 88:13547-69. [PMID: 25231309 DOI: 10.1128/jvi.01675-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The genomes of three types of novel endotheliotropic herpesviruses (elephant endotheliotropic herpesvirus 1A [EEHV1A], EEHV1B, and EEHV2) associated with lethal hemorrhagic disease in Asian elephants have been previously well characterized and assigned to a new Proboscivirus genus. Here we have generated 112 kb of DNA sequence data from segments of four more types of EEHV by direct targeted PCR from blood samples or necropsy tissue samples from six viremic elephants. Comparative phylogenetic analysis of nearly 30 protein-encoding genes of EEHV5 and EEHV6 show that they diverge uniformly by nearly 20% from their closest relatives, EEHV2 and EEHV1A, respectively, and are likely to have similar overall gene content and genome organization. In contrast, seven EEHV3 and EEHV4 genes analyzed differ from those of all other EEHVs by 37% and have a G+C content of 63% compared to just 42% for the others. Three strains of EEHV5 analyzed clustered into two partially chimeric subgroups EEHV5A and EEHV5B that diverge by 19% within three small noncontiguous segments totaling 6.2 kb. We conclude that all six EEHV types should be designated as independent species within a proposed new fourth Deltaherpesvirinae subfamily of mammalian herpesviruses. These virus types likely initially diverged close to 100 million years ago when the ancestors of modern elephants split from all other placental mammals and then evolved into two major branches with high- or low-G+C content about 35 million years ago. Later additional branching events subsequently generated three paired sister taxon lineages of which EEHV1 plus EEHV6, EEHV5 plus EEHV2, and EEHV4 plus EEHV3 may represent Asian and African elephant versions, respectively. IMPORTANCE One of the factors threatening the long-term survival of endangered Asian elephants in both wild range countries and in captive breeding populations in zoos is a highly lethal hemorrhagic herpesvirus disease that has killed at least 70 young Asian elephants worldwide. The genomes of the first three types of EEHVs (or probosciviruses) identified have been partially characterized in the preceding accompanying paper (L. K. Richman, J.-C. Zong, E. M. Latimer, J. Lock, R. C. Fleischer, S. Y. Heaggans, and G. S. Hayward, J. Virol. 88:13523-13546, 2014, http://dx.doi.org/10.1128/JVI.01673-14). Here we have used PCR DNA sequence analysis from multiple segments of DNA amplified directly from blood or necropsy tissue samples of six more selected cases of hemorrhagic disease to partially characterize four other types of EEHVs from either Asian or African elephants. We propose that all six types and two chimeric subtypes of EEHV belong to multiple lineages of both AT-rich and GC-rich branches within a new subfamily to be named the Deltaherpesvirinae, which evolved separately from all other mammalian herpesviruses about100 million years ago.
Collapse
|
13
|
Elephant endotheliotropic herpesviruses EEHV1A, EEHV1B, and EEHV2 from cases of hemorrhagic disease are highly diverged from other mammalian herpesviruses and may form a new subfamily. J Virol 2014; 88:13523-46. [PMID: 25231303 DOI: 10.1128/jvi.01673-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED A family of novel endotheliotropic herpesviruses (EEHVs) assigned to the genus Proboscivirus have been identified as the cause of fatal hemorrhagic disease in 70 young Asian elephants worldwide. Although EEHV cannot be grown in cell culture, we have determined a total of 378 kb of viral genomic DNA sequence directly from clinical tissue samples from six lethal cases and two survivors. Overall, the data obtained encompass 57 genes, including orthologues of 32 core genes common to all herpesviruses, 14 genes found in some other herpesviruses, plus 10 novel genes, including a single large putative transcriptional regulatory protein (ORF-L). On the basis of differences in gene content and organization plus phylogenetic analyses of conserved core proteins that have just 20% to 50% or less identity to orthologues in other herpesviruses, we propose that EEHV1A, EEHV1B, and EEHV2 could be considered a new Deltaherpesvirinae subfamily of mammalian herpesviruses that evolved as an intermediate branch between the Betaherpesvirinae and Gammaherpesvirinae. Unlike cytomegaloviruses, EEHV genomes encode ribonucleotide kinase B subunit (RRB), thymidine kinase (TK), and UL9-like origin binding protein (OBP) proteins and have an alphaherpesvirus-like dyad symmetry Ori-Lyt domain. They also differ from all known betaherpesviruses by having a 40-kb large-scale inversion of core gene blocks I, II, and III. EEHV1 and EEHV2 DNA differ uniformly by more than 25%, but EEHV1 clusters into two major subgroups designated EEHV1A and EEHV1B with ancient partially chimeric features. Whereas large segments are nearly identical, three nonadjacent loci totaling 15 kb diverge by between 21 and 37%. One strain of EEHV1B analyzed is interpreted to be a modern partial recombinant with EEHV1A. IMPORTANCE Asian elephants are an endangered species whose survival is under extreme pressure in wild range countries and whose captive breeding populations in zoos are not self-sustaining. In 1999, a novel class of herpesviruses called EEHVs was discovered. These viruses have caused a rapidly lethal hemorrhagic disease in 20% of all captive Asian elephant calves born in zoos in the United States and Europe since 1980. The disease is increasingly being recognized in Asian range countries as well. These viruses cannot be grown in cell culture, but by direct PCR DNA sequence analysis from segments totaling 15 to 30% of the genomes from blood or necropsy tissue from eight different cases, we have determined that they fall into multiple types and chimeric subtypes of a novel Proboscivirus genus, and we propose that they should also be classified as the first examples of a new mammalian herpesvirus subfamily named the Deltaherpesvirinae.
Collapse
|
14
|
Wilkie GS, Davison AJ, Kerr K, Stidworthy MF, Redrobe S, Steinbach F, Dastjerdi A, Denk D. First fatality associated with elephant endotheliotropic herpesvirus 5 in an Asian elephant: pathological findings and complete viral genome sequence. Sci Rep 2014; 4:6299. [PMID: 25199796 PMCID: PMC5385831 DOI: 10.1038/srep06299] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
Infections of Asian elephants (Elephas maximus) with elephant endotheliotropic herpesvirus (EEHV) can cause a rapid, highly lethal, hemorrhagic disease, which primarily affects juvenile animals up to the age of four years. So far, the majority of deaths have been attributed to infections with genotype EEHV1 or, more rarely, EEHV3 and EEHV4. Here, we report the pathological characteristics of the first fatality linked to EEHV5 infection, and describe the complete viral DNA sequence. Gross post-mortem and histological findings were indistinguishable from lethal cases previously attributed to other EEHV genotypes, and the presence of characteristic herpesviral inclusions in capillary endothelial cells at several sites was consistent with the diagnosis of acute EEHV infection. Molecular analysis confirmed the presence of EEHV5 DNA and was followed by sequencing of the viral genome directly from post-mortem material. The genome is 180,800 bp in size and contains 120 predicted protein-coding genes, five of which are fragmented and presumably nonfunctional. The seven families of paralogous genes recognized in EEHV1 are also represented in EEHV5. The overall degree of divergence (37%) between the EEHV5 and EEHV1 genomes, and phylogenetic analysis of eight conserved genes, support the proposed classification of EEHV5 into a new species (Elephantid herpesvirus 5).
Collapse
Affiliation(s)
- Gavin S Wilkie
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Karen Kerr
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Mark F Stidworthy
- International Zoo Veterinary Group, Station House, Keighley BD21 4NQ, United Kingdom
| | - Sharon Redrobe
- Twycross Zoo - East Midland Zoological Society, Atherstone CV9 3PX, United Kingdom
| | - Falko Steinbach
- 1] Virology Department, Animal Health and Veterinary Laboratories Agency Weybridge, Addlestone KT15 3NB, United Kingdom [2] School of Veterinary Medicine, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Akbar Dastjerdi
- Virology Department, Animal Health and Veterinary Laboratories Agency Weybridge, Addlestone KT15 3NB, United Kingdom
| | - Daniela Denk
- International Zoo Veterinary Group, Station House, Keighley BD21 4NQ, United Kingdom
| |
Collapse
|
15
|
Fatal herpesvirus hemorrhagic disease in wild and orphan asian elephants in southern India. J Wildl Dis 2013; 49:381-93. [PMID: 23568914 DOI: 10.7589/2012-07-193] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Up to 65% of deaths of young Asian elephants (Elephas maximus) between 3 mo and 15 yr of age in Europe and North America over the past 20 yr have been attributed to hemorrhagic disease associated with a novel DNA virus called elephant endotheliotropic herpesvirus (EEHV). To evaluate the potential role of EEHV in suspected cases of a similar lethal acute hemorrhagic disease occurring in southern India, we studied pathologic tissue samples collected from field necropsies. Nine cases among both orphaned camp and wild Asian elephants were identified by diagnostic PCR. These were subjected to detailed gene subtype DNA sequencing at multiple PCR loci, which revealed seven distinct strains of EEHV1A and one of EEHV1B. Two orphan calves that died within 3 days of one another at the same training camp had identical EEHV1A DNA sequences, indicating a common epidemiologic source. However, the high level of EEHV1 subtype genetic diversity found among the other Indian strains matches that among over 30 EEHV1 strains that have been evaluated from Europe and North America. These results argue against the previous suggestions that this is just a disease of captive elephants and that the EEHV1 virus has crossed recently from African elephant (Loxodonta africana) hosts to Asian elephants. Instead, both the virus and the disease are evidently widespread in Asia and, despite the disease severity, Asian elephants appear to be the ancient endogenous hosts of both EEHV1A and EEHV1B.
Collapse
|
16
|
Abstract
Elephant endotheliotropic herpesvirus 1A is a member of the Proboscivirus genus and is a major cause of fatal hemorrhagic disease in endangered juvenile Asian elephants worldwide. Here, we report the first complete genome sequence from this genus, obtained directly from necropsy DNA, in which 60 of the 115 predicted genes are not found in any known herpesvirus.
Collapse
|
17
|
Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases. J Virol 2013; 87:6700-12. [PMID: 23552421 DOI: 10.1128/jvi.00655-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely, EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease.
Collapse
|
18
|
|
19
|
Sariya L, Chatsirivech J, Suksai P, Wiriyarat W, Songjaeng A, Tangsudjai S, Kanthasaewee O, Maikaew U, Chaichoun K. Development of a SYBR Green I-based real-time PCR for detection of elephant endotheliotropic herpesvirus 1 infection in Asian elephants (Elephas maximus). J Virol Methods 2012; 185:160-5. [PMID: 22728215 DOI: 10.1016/j.jviromet.2012.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/02/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Elephant endotheliotropic herpesvirus 1 (EEHV1) can cause fatal hemorrhagic disease in Asian elephants (Elephas maximus). Several studies have described this virus as a major threat to young Asian elephants. A SYBR Green I-based real-time polymerase chain reaction (PCR) was developed to identify EEHV1 on trunk swabs and necropsied tissues. Two of 29 (6.9%) trunk swab samples from healthy Asian elephants were positive for EEHV1. The viruses were analyzed and classified as EEHV1A based on 231 nucleotides of the terminase gene. Necropsied spleen and heart tissue showed the highest level and second highest levels of DNA virus copy accumulation, respectively. The detection limit of the test was 276 copies/μl of DNA. There was no cross-reaction with other mammalian herpesviruses, such as herpes simplex virus 1 and equine herpesvirus 2. Inter- and intra-assay showed low coefficients of variation values indicating the reproducibility of the test. The results indicated that the test can be practically used for epidemiological study, clinical diagnosis, and management and control of EEHV1.
Collapse
Affiliation(s)
- Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu Z, Liu H, Xie X, He J, Luo T, Teng Y. Evaluation of a loop-mediated isothermal amplification assay for rapid diagnosis of soft-shelled turtle iridovirus. J Virol Methods 2011; 173:328-33. [PMID: 21392535 DOI: 10.1016/j.jviromet.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/24/2011] [Accepted: 03/01/2011] [Indexed: 11/28/2022]
Abstract
Softshelled turtle iridovirus (STIV) is the first Asian iridovirus isolated from reptiles, which infects soft-shelled turtles severely and leads to "Red neck disease" associated with high mortality. A set of four specific primers was designed by targeting the STIV Thymidine kinase (TK) gene and amplified STIV DNA specifically under optimized amplification conditions at 63°C for 60 min. The sensitivity of the loop-mediated isothermal amplification (LAMP) assay was found to be 20 copies/μl of STIV DNA. To evaluate the application of the LAMP assay for detection of STIV in clinical samples, 223 samples suspected of STIV infection from turtle tissues were tested by the LAMP assay and by cell-based virus isolation. A 78.5% concordance was observed between the results of the two methods. In this study, a robust and simple LAMP assay for rapid detection of STIV was developed and evaluated, which is the first suitable for potential diagnosis and helping to monitor STIV infections in the aquaculture industry.
Collapse
Affiliation(s)
- Zongxiao Liu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | | | | | | | | | | |
Collapse
|
21
|
Latimer E, Zong JC, Heaggans SY, Richman LK, Hayward GS. Detection and evaluation of novel herpesviruses in routine and pathological samples from Asian and African elephants: identification of two new probosciviruses (EEHV5 and EEHV6) and two new gammaherpesviruses (EGHV3B and EGHV5). Vet Microbiol 2011; 147:28-41. [PMID: 20579821 PMCID: PMC2976818 DOI: 10.1016/j.vetmic.2010.05.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Systemic infections with elephant endotheliotropic herpesviruses (EEHV) cause a rapid onset acute hemorrhagic disease with an 85% mortality rate. More than 60 cases have been confirmed worldwide occurring predominantly in juvenile Asian elephants. Originally, three virus types EEHV1A, EEHV1B and EEHV2 were identified, all members of the Proboscivirus genus within the Betaherpesvirinae. However, four elephant gammaherpesviruses (EGHV) have also been found by DNA PCR approaches in eye and genital secretions of asymptomatic animals, and two more versions of the probosciviruses, EEHV3 and EEHV4, were recently detected in acute hemorrhagic disease cases. To ask whether even more species of elephant herpesviruses may exist, we have developed several new diagnostic DNA PCR assays using multiple round primers in the DNA POL region. These have been used routinely for nearly three years to screen samples submitted to the Elephant Herpesvirus Laboratory for diagnosis of possible cases of EEHV disease in blood and necropsy tissue, as well as in biopsies of other suspicious lesions or growths. Several more cases of EEHV1-associated hemorrhagic disease were confirmed, but in addition, we describe here eleven examples of other known and novel herpesviruses detected and evaluated with these reagents. They include the prototypes of four new elephant herpesviruses, two more within the proboscivirus group EEHV5 and EEHV6, plus two more gammaherpesviruses EGHV3B and EGHV5. We also report initial semi-quantitative PCR assays demonstrating very high viral loads in the blood of the EEHV3 and EEHV4-associated hemorrhagic disease cases.
Collapse
Affiliation(s)
- Erin Latimer
- Elephant Herpesvirus Laboratory, Smithsonian National Zoological Park, 3001 Connecticut Ave., Washington, DC 20008, USA.
| | | | | | | | | |
Collapse
|
22
|
Stanton JJ, Zong JC, Latimer E, Tan J, Herron A, Hayward GS, Ling PD. Detection of pathogenic elephant endotheliotropic herpesvirus in routine trunk washes from healthy adult Asian elephants (Elephas maximus) by use of a real-time quantitative polymerase chain reaction assay. Am J Vet Res 2010; 71:925-33. [PMID: 20673092 DOI: 10.2460/ajvr.71.8.925] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the pathogenesis and transmission of elephant endotheliotropic herpesvirus (EEHV1) by analyzing various elephant fluid samples with a novel EEHV1-specific real-time PCR assay. ANIMALS 5 apparently healthy captive Asian elephants (Elephas maximus) from the same herd. PROCEDURES A real-time PCR assay was developed that specifically detects EEHV1. The assay was used to evaluate paired whole blood and trunk-wash samples obtained from the 5 elephants during a 15-week period. Deoxyribonucleic acid sequencing and viral gene subtyping analysis were performed on trunk-wash DNA preparations that had positive results for EEHV1. Viral gene subtypes were compared with those associated with past fatal cases of herpesvirus-associated disease within the herd. RESULTS The PCR assay detected viral DNA to a level of 1,200 copies/mL of whole blood. It was used to detect EEHV1 in trunk secretions of 3 of the 5 elephants surveyed during the 15-week period. Viral gene subtyping analysis identified 2 distinct elephant herpesviruses, 1 of which was identical to the virus associated with a previous fatal case of herpesvirus-associated disease within the herd. CONCLUSIONS AND CLINICAL RELEVANCE EEHV1 was shed in the trunk secretions of healthy Asian elephants. Trunk secretions may provide a mode of transmission for this virus. Results of this study may be useful for the diagnosis, treatment, and management of EEHV1-associated disease and the overall management of captive elephant populations.
Collapse
Affiliation(s)
- Jeffrey J Stanton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Dale RHI. Birth statistics for African (Loxodonta africana) and Asian (Elephas maximus) elephants in human care: history and implications for elephant welfare. Zoo Biol 2010; 29:87-103. [PMID: 20391462 DOI: 10.1002/zoo.20234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
African (Loxodonta africana) and Asian elephants (Elephas maximus) have lived in the care of humans for many years, yet there is no consensus concerning some basic parameters describing their newborn calves. This study provides a broad empirical basis for generalizations about the birth heights, birth weights, birth times and gestation periods of elephant calves born in captivity. I obtained data concerning at least one of these four characteristics for 218 newborn calves from 74 institutions. Over the past 30 years, newborn Asian elephants have been taller and heavier than newborn African elephants. Neonatal African elephants exhibited sex differences in both weight and height, whereas neonatal Asian elephants have exhibited sex differences only in height. Primiparous dams ex situ are at least as old as their in situ counterparts, whereas ex situ sires appear to be younger than sires in range countries. Confirming earlier anecdotal evidence, both African [N=47] and Asian [N=91] dams gave birth most often at night.
Collapse
Affiliation(s)
- Robert H I Dale
- Department of Psychology, Butler University, Indianapolis, Indiana 46208, USA.
| |
Collapse
|
24
|
Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for a cytoplasmic protein. Virus Genes 2009; 38:345-52. [DOI: 10.1007/s11262-008-0318-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 12/18/2008] [Indexed: 11/27/2022]
|
25
|
Garner MM, Helmick K, Ochsenreiter J, Richman LK, Latimer E, Wise AG, Maes RK, Kiupel M, Nordhausen RW, Zong JC, Hayward GS. Clinico-pathologic features of fatal disease attributed to new variants of endotheliotropic herpesviruses in two Asian elephants (Elephas maximus). Vet Pathol 2009; 46:97-104. [PMID: 19112123 PMCID: PMC3572918 DOI: 10.1354/vp.46-1-97] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The first herpesviruses described in association with serious elephant disease were referred to as endotheliotropic herpesviruses (EEHV) because of their ability to infect capillary endothelial cells and cause potentially fatal disease. Two related viruses, EEHV1 and EEHV2, have been described based on genetic composition. This report describes the similarities and differences in clinicopathologic features of 2 cases of fatal endotheliotropic herpesvirus infections in Asian elephants caused by a previously unrecognized virus within the betaherpesvirus subfamily. EEHV3 is markedly divergent from the 2 previously studied fatal probosciviruses, based on polymerase chain reaction sequence analysis of 2 segments of the viral genome. In addition to ascites, widespread visceral edema, petechiae, and capillary damage previously reported, important findings with EEHV3 infection were the presence of grossly visible renal medullary hemorrhage, a tropism for larger veins and arteries in various tissues, relatively high density of renal herpetic inclusions, and involvement of the retinal vessels. These findings indicate a less selective organ tropism, and this may confer a higher degree of virulence for EEHV3.
Collapse
Affiliation(s)
- M M Garner
- Northwest ZooPath, Monroe WA 98296, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sreekumar E, Janki MBV, Arathy DS, Hariharan R, Premraj CA, Rasool TJ. Molecular characterization and expression of interferon-gamma of Asian elephant (Elephas maximus). Vet Immunol Immunopathol 2007; 118:75-83. [PMID: 17537520 DOI: 10.1016/j.vetimm.2007.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 03/13/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterial organisms has emerged as one of the major diseases in captive elephants. In vitro Interferon-gamma (IFN-gamma) assay is being used as an ancillary test for early detection of TB in domestic and captive wild animals. In the present study, basic sequence information and immunological cross-reactivity of this major cytokine of Asian elephants were explored. At predicted amino acid level, IFN-gamma of Asian elephant showed maximum identity to that of horse (73%). Other IFN-gamma amino acid sequences that showed high level identity were that of giant panda (72%), dog (71%), nine-banded armadillo (69%), cattle (63%) and human (62%). IFN-gamma promoter sequences of Asian elephant, human, cattle and mouse showed high level conservation of the putative transcription factor binding sites, TATA box and transcriptional start site. The functionally important human IFN-gamma promoter elements, such as AP-2IRE-BE, YY1-gammaIFN-BED, ATFCS and AP-1gammaINF binding sites, were absolutely conserved in the corresponding elephant sequence. There was only a single nucleotide variation in the other two important elements, NFAT-gammaINF and IFN-gammaPE, indicating the highly conserved regulation of IFN-gamma expression across different species. Phylogenetic analysis based on IFN-gamma protein sequences revealed a closer relation of Asian elephants and nine-banded armadillo. This shows a closer evolution of these members of Afrotheria and Xenarthra, respectively; and supports the previous reports based on mitochondrial DNA studies. In Western blot analysis, IFN-gamma of Asian elephant expressed in Escherichia coli was detected using an anti-bovine IFN-gamma monoclonal antibody, indicating immunological cross-reactivity.
Collapse
Affiliation(s)
- E Sreekumar
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India.
| | | | | | | | | | | |
Collapse
|