1
|
Kang JW, Chan KWK, Vasudevan SG, Low JG. α-Glucosidase inhibitors as broad-spectrum antivirals: Current knowledge and future prospects. Antiviral Res 2025; 238:106147. [PMID: 40120858 DOI: 10.1016/j.antiviral.2025.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Affiliation(s)
- James Wj Kang
- Department of Infectious Diseases, Singapore General Hospital, Singapore, 168753, Singapore
| | - Kitti Wing Ki Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Institute of Biomedicine and Glycomics, Griffith University, Queensland, Australia
| | - Jenny G Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore, 168753, Singapore; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169857, Singapore.
| |
Collapse
|
2
|
Nemčovičová I, Kóňa J, Poláková M, Klunda T, Bitala A, Benko M, Lenhartová S, Nemčovič M. Small glycomimetic antagonists of the cytomegalovirus glycoprotein UL141 prevent binding to TRAIL death receptor. J Biol Chem 2025; 301:108490. [PMID: 40216247 PMCID: PMC12140054 DOI: 10.1016/j.jbc.2025.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 05/13/2025] Open
Abstract
Human cytomegalovirus (HCMV) UL141 inhibits immune recognition of virally infected cells by natural killer cells and cytotoxic T cells through modulation of cellular receptors (e.g., TRAIL-R2/-R1, CD155, CD112). Recent findings suggest that UL141 is also a critical component of the HCMV virion, further emphasizing its significance. In this study, we aimed to develop a small synthetic compound as a UL141 antagonist. Building on our crystal structure analysis, we designed compounds to specifically bind viral UL141, thereby blocking its interaction with target receptors thus inhibiting its immunoevasive functions. We evaluated a small library of synthesized compounds composed of diverse saccharide units conjugated with nonsaccharide moieties, such as nonionic glycolipids, pyrrolidines, and "click" conjugates. An ELISA-like TMB-binding assay, coupled with dynabeads coating, was employed to assess the ability of these compounds to inhibit TRAIL-R2 binding in vitro. The most promising compounds capable of inhibiting complex formation were further analyzed using surface plasmon resonance. Compound 18 exhibited the strongest binding affinity to UL141, with KD of 2.93 μM. Molecular docking studies identified specific binding sites on UL141, and the fragmented molecular orbital method was applied to evaluate interaction energy patterns between the antagonist and the UL141 protein. Mutational analysis was conducted to validate the identified binding sites on UL141. Additionally, cellular cytotoxicity assays were performed to confirm the nontoxic properties of these compounds. Collectively, our findings suggest that synthetic glycomimetics represent promising candidates for targeting the viral glycoprotein HCMV UL141, thereby disrupting TRAIL death receptor signaling, thus mitigating viral activity.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Biomedical Research Center (BMC), Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medical Vision, o. z., Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomáš Klunda
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Bitala
- Biomedical Research Center (BMC), Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mário Benko
- Biomedical Research Center (BMC), Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Lenhartová
- Biomedical Research Center (BMC), Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Liu Q, Liu Y, Liu T, Fan J, Xia Z, Zhou Y, Deng X. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:55. [PMID: 39325109 PMCID: PMC11427655 DOI: 10.1007/s13659-024-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Collapse
Affiliation(s)
- Qiantong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanyun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Science, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Roy A, Roy M, Gacem A, Datta S, Zeyaullah M, Muzammil K, Farghaly TA, Abdellattif MH, Yadav KK, Simal-Gandara J. Role of bioactive compounds in the treatment of hepatitis: A review. Front Pharmacol 2022; 13:1051751. [PMID: 36618936 PMCID: PMC9810990 DOI: 10.3389/fphar.2022.1051751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| | - Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Shreeja Datta
- Biotechnology Department, Delhi Technological University, Rohini, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, Universidade de Vigo, Ourense, Spain,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| |
Collapse
|
5
|
Mesa JM, Comini MA, Dibello E, Gamenara D. Organocatalytic synthesis and anti‐trypanosomal activity evaluation of L‐pentofuranose‐mimetic iminosugars. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juan Manuel Mesa
- Universidad de la Republica Uruguay Organic chemistry department Gral. Flores 2124 11800 Montevideo URUGUAY
| | - Marcelo Alberto Comini
- Institut Pasteur Montevideo Group Redox Biology of Trypanosomes Mataojo 2020 11400 Montevideo URUGUAY
| | - Estefania Dibello
- Universidad de la República Uruguay Departamento de Química Orgánica Gral. Flores 21 24 11800 Montevideo URUGUAY
| | - Daniela Gamenara
- Universidad de la Republica Facultad de Quimica Organic Chemistry Department Gral. Flores 2124 11800 Montevideo URUGUAY
| |
Collapse
|
6
|
Wang H, Shen Y, Zhao L, Ye Y. 1-Deoxynojirimycin and its Derivatives: A Mini Review of the Literature. Curr Med Chem 2021; 28:628-643. [PMID: 31942844 DOI: 10.2174/0929867327666200114112728] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
1-Deoxynojirimycin (1-DNJ) is a naturally occurring sugar analogue with unique bioactivities. It is found in mulberry leaves and silkworms, as well as in the metabolites of certain microorganisms, including Streptomyces and Bacillus. 1-DNJ is a potent α-glucosidase inhibitor and it possesses anti-hyperglycemic, anti-obese, anti-viral and anti-tumor properties. Some derivatives of 1-DNJ, like miglitol, miglustat and migalastat, were applied clinically to treat diseases such as diabetes and lysosomal storage disorders. The present review focused on the extraction, determination, pharmacokinetics and bioactivity of 1-DNJ, as well as the clinical application of 1-DNJ derivatives.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Shen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Martínez-Bailén M, Galbis E, Carmona AT, de-Paz MV, Robina I. Preparation of water-soluble glycopolymers derived from five-membered iminosugars. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond) 2019; 14:1471-1491. [PMID: 31166139 DOI: 10.2217/nnm-2018-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is not easily cleared from the human body and in most cases turned into chronic infection. This chronicity is a major cause of liver damage, cirrhosis and hepatocellular carcinoma. Therefore, immediate detection and treatment of HCV guarantees eradication of the virus and prevention of chronicity complications. Since discovery of HCV in 1989, several emerging treatments were developed such as polyethylene glycol(PEG)-ylated interferon/ribavirin, direct acting antivirals and host targeting antivirals. Despite the progress in anti-HCV therapy, there is still a pressing need of new approaches for affordable and effective drug delivery systems using nanomedicine. In this review, the contribution of nanoparticles as a promising delivery system for HCV immunizing, diagnostic and therapeutic agents are discussed.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45267, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak, Jordan
| | - James John
- Central Research Facilities, Sri Ramachandra institute of higher education & research, Sri Ramachandra University, Chennai, India
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
9
|
Park SB, Boyer A, Hu Z, Le D, Liang TJ. Discovery and characterization of a novel HCV inhibitor targeting the late stage of HCV life cycle. Antivir Ther 2019; 24:371-381. [PMID: 30880685 PMCID: PMC11542171 DOI: 10.3851/imp3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Currently approved anti-HCV drugs, the direct-acting antivirals (DAAs), are highly effective and target the viral RNA replication stage of the HCV life cycle. Due to high mutation rate of HCV, drug resistant variants can arise during DAA monotherapy. Thus, a combination of DAAs is necessary to achieve a high response rate. Novel HCV inhibitors targeting the HCV late stage such as assembly and release may further improve combination therapy with the DAAs. Here we characterize one late stage-targeting candidate compound, 6-(4-chloro-3-methylphenoxy)-pyridin-3-amine (MLS000833705). METHODS We treated HCV-infected cells with MLS000833705 and other HCV inhibitors and examined HCV RNA and infectious titres. We evaluated the colocalization of HCV core and lipid droplets by confocal microscopy. We performed HCV core-proteinase K digestion assay and several lipid assays to study the mechanism of MLS000833705. RESULTS We showed that MLS000833705 decreased extracellular HCV RNA levels more than intracellular HCV RNA levels in HCV infectious cell culture. Similarly, MLS000833705 reduced infectious HCV titres substantially more in the culture supernatant than intracellularly. Confocal microscopy showed that MLS000833705 did not affect the colocalization of HCV core protein with cellular lipid droplets where HCV assembles. HCV core-proteinase K digestion assay showed that MLS000833705 inhibited the envelopment of HCV capsid. CONCLUSIONS Our study demonstrates that MLS000833705 is a late-stage HCV inhibitor targeting HCV morphogenesis and maturation. Therefore, MLS000833705 can be used as a molecular probe to study HCV maturation and secretion and possibly guide development of a new class of HCV antivirals.
Collapse
Affiliation(s)
- Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Boyer
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derek Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Krol E, Wandzik I, Pastuch-Gawolek G, Szewczyk B. Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars. Molecules 2018; 23:molecules23071547. [PMID: 29954068 PMCID: PMC6099588 DOI: 10.3390/molecules23071547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV), the etiological agent of the most common and dangerous diseases of the liver, is a major health problem worldwide. Despite many attempts, there is still no vaccine available. Although many drugs have been approved for use mostly in combination regimen, their high costs make them out of reach in less developed regions. Previously, we have synthesized a series of compounds belonging to uridine derivatives of 2-deoxy sugars and have proved that some of them possess antiviral activity against influenza A virus associated with N-glycosylation inhibition. Here, we analyze the antiviral properties of these compounds against HCV. Using cell culture-derived HCV (HCVcc), HCV pseudoparticles (HCVpp), and replicon cell lines, we have shown high anti-HCV activity of two compounds. Our results indicated that compounds 2 and 4 significantly reduced HCVcc propagation with IC50 values in low μM range. Further experiments using the HCVpp system confirmed that both compounds significantly impaired the infectivity of produced HCVpp due to the inhibition of the correct maturation of viral glycoproteins. Overall, our results suggest that inhibiting the glycosylation process might be a good target for new therapeutics not only against HCV, but other important viral pathogens which contain envelopes with highly glycosylated proteins.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Gabriela Pastuch-Gawolek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
11
|
|
12
|
Krol E, Wandzik I, Krejmer-Rabalska M, Szewczyk B. Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus. Int J Mol Sci 2017; 18:ijms18081700. [PMID: 28777309 PMCID: PMC5578090 DOI: 10.3390/ijms18081700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/22/2017] [Accepted: 07/30/2017] [Indexed: 12/29/2022] Open
Abstract
Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives of uridine (designated IW3 and IW7) targeting the glycan processing steps during maturation of viral glycoproteins show good anti-influenza virus activity and may be a promising alternative approach for the development of new anti-influenza therapy. In this study, a number of IW3 and IW7 analogues with different structural modifications in 2-deoxy sugar or uridine parts were synthesized and evaluated for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay in vitro, we showed that compounds 2, 3, and 4 exerted the most inhibitory effect on influenza virus A/ostrich/Denmark/725/96 (H5N2) infection in Madin-Darby canine kidney (MDCK) cells, with 50% inhibitory concentrations (IC50) for virus growth ranging from 82 to 100 (μM) without significant toxicity for the cells. The most active compound (2) showed activity of 82 μM with a selectivity index value of 5.27 against type A (H5N2) virus. Additionally, compound 2 reduced the formation of HA glycoprotein in a dose-dependent manner. Moreover, an analysis of physicochemical properties of studied compounds demonstrated a significant linear correlation between lipophilicity and antiviral activity. Therefore, inhibition of influenza A virus infection by conjugates of uridine and 2-deoxy sugars is a new promising approach for the development of new derivatives with anti-influenza activities.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Martyna Krejmer-Rabalska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
13
|
Lo YC, Huang IH, Ho TC, Chien YW, Perng GC. Antiviral Drugs and Other Therapeutic Options for Dengue Virus Infection. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 2017; 45:571-582. [PMID: 28408497 PMCID: PMC5390498 DOI: 10.1042/bst20160182] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
Many viruses require the host endoplasmic reticulum protein-folding machinery in order to correctly fold one or more of their glycoproteins. Iminosugars with glucose stereochemistry target the glucosidases which are key for entry into the glycoprotein folding cycle. Viral glycoproteins are thus prevented from interacting with the protein-folding machinery leading to misfolding and an antiviral effect against a wide range of different viral families. As iminosugars target host enzymes, they should be refractory to mutations in the virus. Iminosugars therefore have great potential for development as broad-spectrum antiviral therapeutics. We outline the mechanism giving rise to the antiviral activity of iminosugars, the current progress in the development of iminosugar antivirals and future prospects for this field.
Collapse
|
15
|
Lacour W, Adjili S, Blaising J, Favier A, Monier K, Mezhoud S, Ladavière C, Place C, Pécheur EI, Charreyre MT. Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses. Adv Healthc Mater 2016; 5:2032-44. [PMID: 27113918 PMCID: PMC7159338 DOI: 10.1002/adhm.201600091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses.
Collapse
Affiliation(s)
- William Lacour
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Salim Adjili
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Julie Blaising
- Université Lyon, Univ Claude Bernard, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), F-69424, Lyon, France
| | - Arnaud Favier
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Karine Monier
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
| | - Sarra Mezhoud
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Catherine Ladavière
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Christophe Place
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - Eve-Isabelle Pécheur
- Université Lyon, Univ Claude Bernard, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), F-69424, Lyon, France
| | - Marie-Thérèse Charreyre
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| |
Collapse
|
16
|
Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK, Tarr AW. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 2016; 97:2265-2279. [PMID: 27384448 PMCID: PMC5042129 DOI: 10.1099/jgv.0.000537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.
Collapse
Affiliation(s)
- Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C. Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Barnabas King
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Correspondence Alexander W. Tarr
| |
Collapse
|
17
|
Son SH, Seko A, Daikoku S, Fujikawa K, Suzuki K, Ito Y, Kanie O. Endoplasmic Reticulum (ER)-Targeted, Galectin-Mediated Retrograde Transport by Using a HaloTag Carrier Protein. Chembiochem 2016; 17:630-9. [DOI: 10.1002/cbic.201500489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Sang-Hyun Son
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
- College of Pharmacy; Korea University; 2511 Sejong-ro Jochiwon-eup Sejong 339-700 South Korea
| | - Akira Seko
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Shusaku Daikoku
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kohki Fujikawa
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Suntory Bioorganic Research Institute; 8-1-1 Seikadai Seika-cho Soraku-gun Kyoto 619-0284 Japan
| | - Katsuhiko Suzuki
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Faculty of Pharmaceutical Sciences; Aomori University; 2-3-1 Kohbata Aomori 030-0943 Japan
| | - Yukishige Ito
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Synthetic Cellular Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Osamu Kanie
- Institute of Glycoscience; Tokai University; 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
- ERATO; Science and Technology Agency (JST); 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
18
|
Dengue Virus Evolution under a Host-Targeted Antiviral. J Virol 2015; 89:5592-601. [PMID: 25762732 DOI: 10.1128/jvi.00028-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The host-targeted antiviral drug UV-4B reduces viral replication and promotes survival in a mouse model of experimental dengue virus (DENV) infection. UV-4B is an iminosugar that inhibits the α-glucosidase family of enzymes and subsequently the folding of glycosylated proteins, both viral and host. Here, we utilized next-generation sequencing to investigate evolution of a flavivirus under selective pressure by a host-targeted antiviral in vivo. In viral populations recovered from UV-4B-treated mice, there was a significant increase in the number of single-nucleotide polymorphisms (SNPs) and the ratio of nonsynonymous to synonymous SNPs compared to findings in viral populations from vehicle-treated mice. The strongest evidence of positive selection was in the glycosylated membrane protein, thereby providing in vivo validation of the mechanism of action of an iminosugar. In addition, mutations in glycosylated proteins were present only in drug-treated mice after a single passage. However, the bulk of the other mutations were present in both populations, indicating nonspecific selective pressure. Together with the continued control of viremia by UV-4B, these findings are consistent with the previously predicted high genetic barrier to escape mutations in host-targeted antivirals. IMPORTANCE Although hundreds of millions of people are infected with DENV every year, there is currently no approved vaccine or antiviral therapy. UV-4B has demonstrated antiviral activity against DENV and is expected to enter clinical trials soon. Therefore, it is important to understand the mechanisms of DENV resistance to UV-4B. Host-targeted antivirals are thought to have a higher genetic barrier to escape mutants than directly acting antivirals, yet there are very few published studies of viral evolution under host-targeted antivirals. No study to date has described flavivirus evolution in vivo under selective pressure by a host-based antiviral drug. We present the first in vivo study of the sequential progression of viral evolution under selective pressure by a host-targeted antiviral compound. This study bolsters support for the clinical development of UV-4B as an antiviral drug against DENV, and it provides a framework to compare how treatment with other host-targeted antiflaviviral drugs in humans and different animal models influence viral genetic diversity.
Collapse
|
19
|
Meredith LW, Farquhar MJ, Tarr AW, McKeating JA. Type I interferon rapidly restricts infectious hepatitis C virus particle genesis. Hepatology 2014; 60:1891-901. [PMID: 25066844 PMCID: PMC4265257 DOI: 10.1002/hep.27333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Interferon-alpha (IFNα) has been used to treat chronic hepatitis C virus (HCV) infection for over 20 years with varying efficacy, depending on the infecting viral genotype. The mechanism of action of IFNα is not fully understood, but is thought to target multiple stages of the HCV lifecycle, inhibiting viral transcription and translation leading to a degradation of viral RNA and protein expression in the infected cell. IFNα induces the expression of an array of interferon-stimulated genes within minutes of receptor engagement; however, the impact of these early responses on the viral lifecycle are unknown. We demonstrate that IFNα inhibits the genesis of infectious extracellular HCV particles within 2 hours of treating infected cells, with minimal effect on the intracellular viral burden. Importantly, this short duration of IFNα treatment of infected cells significantly reduced cell-free and cell-to-cell dissemination. The secreted viral particles showed no apparent change in protein content or density, demonstrating that IFNα inhibits particle infectivity but not secretion rates. To investigate whether particles released from IFNα-treated cells have a reduced capacity to establish infection we used HCV lentiviral pseudotypes (HCVpp) and demonstrated a defect in cell entry. Using a panel of monoclonal antibodies targeting the E2 glycoprotein, we demonstrate that IFNα alters glycoprotein conformation and receptor utilization. CONCLUSION These observations show a previously unreported and rapid effect of IFNα on HCV particle infectivity that inhibits de novo infection events. Evasion of this response may be a contributing factor in whether a patient achieves early or rapid virological response, a key indicator of progression to sustained virological response or clearance of viral infection.
Collapse
Affiliation(s)
- Luke W Meredith
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK
| | - Michelle J Farquhar
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK
| | - Alexander W Tarr
- School of Molecular Medical Sciences and the Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical CentreNottingham, UK
| | - Jane A McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK,NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| |
Collapse
|
20
|
Li X, Lü ZR, Shen D, Zhan Y, Yang JM, Park YD, Zhou HM, Sheng Q, Lee J. The inhibitory role of Co2+ on α-glucosidase: Inhibition kinetics and molecular dynamics simulation integration study. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Anji A, Miller H, Raman C, Phillips M, Ciment G, Kumari M. Expression of α-subunit of α-glucosidase II in adult mouse brain regions and selected organs. J Neurosci Res 2014; 93:82-93. [PMID: 25131991 DOI: 10.1002/jnr.23470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/22/2014] [Accepted: 07/16/2014] [Indexed: 01/14/2023]
Abstract
α-Glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in the folding of nascent glycoproteins, is heterodimeric, consisting of α (GIIα) and β (GIIβ) subunits. The catalytic GIIα subunit, with the help of mannose 6-phosphate receptor homology domain of GIIβ, sequentially hydrolyzes two α1-3-linked glucose residues in the second step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding are crucial for protein stability and trafficking and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies, such as viral infection, cancer, and diabetes. Despite the widespread use of GIIα inhibitory drugs and the role of GIIα in brain function, little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to the GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. By using this antibody, we showed that the GIIα protein is highly expressed in testis, kidney, and lung, with the lowest amount in heart. GIIα polypeptide levels in whole brain were comparable to those in spleen. However, a higher expression of GIIα protein was detected in the cerebral cortex, reflecting its continuous requirement in correct folding of cell surface proteins.
Collapse
Affiliation(s)
- Antje Anji
- Department of Anatomy and Physiology, CVM, Kansas State University, Manhattan, Kansas
| | | | | | | | | | | |
Collapse
|
22
|
Gerold G, Pietschmann T. The HCV life cycle: in vitro tissue culture systems and therapeutic targets. Dig Dis 2014; 32:525-37. [PMID: 25034285 DOI: 10.1159/000360830] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) is a highly variable plus-strand RNA virus of the family Flaviviridae. Viral strains are grouped into six epidemiologically relevant genotypes that differ from each other by more than 30% at the nucleotide level. The variability of HCV allows immune evasion and facilitates persistence. It is also a substantial challenge for the development of specific antiviral therapies effective across all HCV genotypes and for prevention of drug resistance. Novel HCV cell culture models were instrumental for identification and profiling of therapeutic strategies. Concurrently, these models revealed numerous host factors critical for HCV propagation, some of which have emerged as targets for antiviral therapy. It is generally assumed that the use of host factors is conserved among HCV isolates and genotypes. Additionally, the barrier to viral resistance is thought to be high when interfering with host factors. Therefore, current drug development includes both targeting of viral factors but also of host factors essential for virus replication. In fact, some of these host-targeting agents, for instance inhibitors of cyclophilin A, have advanced to late stage clinical trials. Here, we highlight currently available cell culture systems for HCV, review the most prominent host-targeting strategies against hepatitis C and critically discuss opportunities and risks associated with host-targeting antiviral strategies.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE - Institute of Experimental Virology, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | |
Collapse
|
23
|
Krol E, Pastuch-Gawolek G, Nidzworski D, Rychlowski M, Szeja W, Grynkiewicz G, Szewczyk B. Synthesis and antiviral activity of a novel glycosyl sulfoxide against classical swine fever virus. Bioorg Med Chem 2014; 22:2662-70. [DOI: 10.1016/j.bmc.2014.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/21/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
|
24
|
Blaising J, Lévy PL, Gondeau C, Phelip C, Varbanov M, Teissier E, Ruggiero F, Polyak SJ, Oberlies NH, Ivanovic T, Boulant S, Pécheur EI. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol 2013; 15:1866-82. [PMID: 23701235 DOI: 10.1111/cmi.12155] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/01/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) is a global health concern infecting 170 million people worldwide. Previous studies indicate that the extract from milk thistle known as silymarin and its main component silibinin inhibit HCV infection. Here we investigated the mechanism of anti-HCV action of silymarin-derived compounds at the molecular level. By using live-cell confocal imaging, single particle tracking, transmission electron microscopy and biochemical approaches on HCV-infected human hepatoma cells and primary hepatocytes, we show that silibinin potently inhibits HCV infection and hinders HCV entry by slowing down trafficking through clathrin-coated pits and vesicles. Detailed analyses revealed that silibinin altered the formation of both clathrin-coated pits and vesicles in cells and caused abnormal uptake and trafficking of transferrin, a well-known cargo of the clathrin endocytic pathway. Silibinin also inhibited infection by other viruses that enter cells by clathrin-mediated endocytosis including reovirus, vesicular stomatitis and influenza viruses. Our study demonstrates that silibinin inhibits HCV early steps of infection by affecting endosomal trafficking of virions. It provides new insights into the molecular mechanisms of action of silibinin against HCV entry and also suggests that silibinin is a potential broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Julie Blaising
- UMR CNRS 5086, IBCP, Lyon, France; UMR Inserm U1052/CNRS 5286, Cancer Research Center of Lyon, University of Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bush CO, Pokrovskii MV, Saito R, Morganelli P, Canales E, Clarke MO, Lazerwith SE, Golde J, Reid BG, Babaoglu K, Pagratis N, Zhong W, Delaney WE, Paulson MS, Beran RKF. A small-molecule inhibitor of hepatitis C virus infectivity. Antimicrob Agents Chemother 2013; 58:386-96. [PMID: 24165192 PMCID: PMC3910743 DOI: 10.1128/aac.02083-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023] Open
Abstract
One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough. Currently, most DAAs inhibit HCV replication. We recently reported that the combination of two distinct classes of HCV inhibitors, entry inhibitors and replication inhibitors, prolonged reductions in extracellular HCV in persistently infected cells. We therefore sought to identify new inhibitors targeting aspects of the HCV replication cycle other than RNA replication. We report here the discovery of the first small-molecule HCV infectivity inhibitor, GS-563253, also called HCV infectivity inhibitor 1 (HCV II-1). HCV II-1 is a substituted tetrahydroquinoline that selectively inhibits genotype 1 and 2 HCVs with low-nanomolar 50% effective concentrations. It was identified through a high-throughput screen and subsequent chemical optimization. HCV II-1 only permits the production and release of noninfectious HCV particles from cells. Moreover, infectious HCV is rapidly inactivated in its presence. HCV II-1 resistance mutations map to HCV E2. In addition, HCV-II prevents HCV endosomal fusion, suggesting that it either locks the viral envelope in its prefusion state or promotes a viral envelope conformation change incapable of fusion. Importantly, the discovery of HCV II-1 opens up a new class of HCV inhibitors that prolong viral suppression by HCV replication inhibitors in persistently infected cell cultures.
Collapse
|
26
|
Silva S, Sánchez-Fernández EM, Ortiz Mellet C, Tatibouët A, Pilar Rauter A, Rollin P. N-Thiocarbonyl Iminosugars: Synthesis and Evaluation of Castanospermine Analogues Bearing Oxazole-2(3H)-thione Moieties. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Gerold G, Pietschmann T. Opportunities and Risks of Host-targeting Antiviral Strategies for Hepatitis C. CURRENT HEPATITIS REPORTS 2013; 12:200-213. [PMID: 32214912 PMCID: PMC7089091 DOI: 10.1007/s11901-013-0187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infects more than 2 % of the world population with highest prevalence in parts of Africa and Asia. Past standard of care using interferon α and ribavirin had adverse effects and showed modest efficacy for some HCV genotypes spurring the development of direct acting antivirals (DAAs). Such DAAs target viral proteins and are thus better tolerated but they suffer from emergence of vial resistance. Furthermore, DAAs are often HCV genotype specific. Novel drug candidates targeting host factors required for HCV propagation, so called host-targeting antivirals (HTAs), promise to overcome both caveats. The genetic barrier to resistance is usually considered to be high for HTAs and all HCV genotypes presumably use the same host factors. Recent data, however, challenge these assumptions, at least for some HTAs. Here, we highlight the most important host-targeting strategies against hepatitis C and critically discuss their opportunities and risks.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Thomas Pietschmann
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| |
Collapse
|
28
|
Krol E, Wandzik I, Gromadzka B, Nidzworski D, Rychlowska M, Matlacz M, Tyborowska J, Szewczyk B. Anti-influenza A virus activity of uridine derivatives of 2-deoxy sugars. Antiviral Res 2013; 100:90-7. [PMID: 23911991 DOI: 10.1016/j.antiviral.2013.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/06/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022]
Abstract
Influenza viruses are important pathogens that cause respiratory infections in humans and animals. Apart from vaccinations, antiviral drugs play a significant role in controlling spread of the disease. Influenza A virus contains two membrane glycoproteins on the external part of viral envelope: hemagglutinin (HA) and neuraminidase (NA), which are crucial for productive infection in target cells. In the present work, two derivatives of tunicamycin - uridine derivatives of 2-deoxy sugars (designated IW3 and IW7), which target the glycan processing steps during maturation of viral glycoproteins, were assayed for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay we showed, that both IW3 and IW7 inhibitors exerted significant inhibitory effect on influenza A virus infection in MDCK cells without significant toxicity for the cells. Moreover, tested compounds selectively suppressed viral protein expression in a dose-dependent manner, suggesting that the mechanism of their antiviral activity may be similar to this shown previously for other viruses. We have also excluded the possibility that both inhibitors act at the replication step of virus life cycle. Using real-time PCR assay it was shown that IW3 and IW7 did not change the level of viral RNA in infected MDCK cells after a single round of infection. Therefore, inhibition of influenza A virus infection by uridine derivatives of 2-deoxy sugars, acting as glycosylation inhibitors, is a promising alternative approach for the development of new anti-influenza A therapy.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Perry ST, Buck MD, Plummer EM, Penmasta RA, Batra H, Stavale EJ, Warfield KL, Dwek RA, Butters TD, Alonzi DS, Lada SM, King K, Klose B, Ramstedt U, Shresta S. An iminosugar with potent inhibition of dengue virus infection in vivo. Antiviral Res 2013; 98:35-43. [DOI: 10.1016/j.antiviral.2013.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/26/2022]
|
30
|
Barker MK, Rose DR. Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. J Biol Chem 2013; 288:13563-74. [PMID: 23536181 DOI: 10.1074/jbc.m113.460436] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The enzyme “GluI” is key to the synthesis of critical glycoproteins in the cell. RESULTS We have determined the structure of GluI, and modeled binding with its unique sugar substrate. CONCLUSION The specificity of this interaction derives from a unique conformation of the substrate. SIGNIFICANCE Understanding the mechanism of the enzyme is of basic importance and relevant to potential development of antiviral inhibitors. Processing α-glucosidase I (GluI) is a key member of the eukaryotic N-glycosylation processing pathway, selectively catalyzing the first glycoprotein trimming step in the endoplasmic reticulum. Inhibition of GluI activity impacts the infectivity of enveloped viruses; however, despite interest in this protein from a structural, enzymatic, and therapeutic standpoint, little is known about its structure and enzymatic mechanism in catalysis of the unique glycan substrate Glc3Man9GlcNAc2. The first structural model of eukaryotic GluI is here presented at 2-Å resolution. Two catalytic residues are proposed, mutations of which result in catalytically inactive, properly folded protein. Using Autodocking methods with the known substrate and inhibitors as ligands, including a novel inhibitor characterized in this work, the active site of GluI was mapped. From these results, a model of substrate binding has been formulated, which is most likely conserved in mammalian GluI.
Collapse
Affiliation(s)
- Megan K Barker
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada.
| | | |
Collapse
|
31
|
Novel imino sugar α-glucosidase inhibitors as antiviral compounds. Bioorg Med Chem 2013; 21:4831-8. [PMID: 23582447 DOI: 10.1016/j.bmc.2013.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/21/2022]
Abstract
Deoxynojirimycin (DNJ) based imino sugars display antiviral activity in the tissue culture surrogate model of Hepatitis C (HCV), bovine viral diarrhoea virus (BVDV), mediated by inhibition of ER α-glucosidases. Here, the antiviral activities of neoglycoconjugates derived from deoxynojirimycin, and a novel compound derived from deoxygalactonojirimycin, by click chemistry with functionalised adamantanes are presented. Their antiviral potency, in terms of both viral infectivity and virion secretion, with respect to their effect on α-glucosidase inhibition, are reported. The distinct correlation between the ability of long alkyl chain derivatives to inhibit ER α-glucosidases and their anti-viral effect is demonstrated. Increasing alkyl linker length between DNJ and triazole groups increases α-glucosidase inhibition and reduces the production of viral progeny RNA and the maturation of the envelope polypeptide. Disruption to viral glycoprotein processing, with increased glucosylation on BVDV E2 species, is representative of α-glucosidase inhibition, whilst derivatives with longer alkyl linkers also show a further decrease in infectivity of secreted virions, an effect proposed to be distinct from α-glucosidase inhibition.
Collapse
|
32
|
Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol 2013; 58:375-84. [PMID: 23041307 DOI: 10.1016/j.jhep.2012.09.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma worldwide. Furthermore, HCV-induced liver disease is a major indication of liver transplantation. In the past years, direct-acting antivirals (DAAs) targeting HCV enzymes have been developed. DAAs increase the virologic response to anti-HCV therapy but may lead to selection of drug-resistant variants and treatment failure. To date, strategies to prevent HCV infection are still lacking and antiviral therapy in immunocompromised patients, patients with advanced liver disease and HIV/HCV-co-infection remains limited. Alternative or complementary approaches addressing the limitations of current antiviral therapies are to boost the host's innate immunity or interfere with host factors required for pathogenesis. Host-targeting agents (HTAs) provide an interesting perspective for novel antiviral strategies against viral hepatitis since they have (i) a high genetic barrier to resistance, (ii) a pan-genotypic antiviral activity, and (iii) complementary mechanisms of action to DAAs and might therefore act in a synergistic manner with current standard of care or DAAs in clinical development. This review highlights HTAs against HCV infection that have potential as novel antivirals and are in preclinical or clinical development.
Collapse
|
33
|
Comparative proteomic analysis of HIV-1 particles reveals a role for Ezrin and EHD4 in the Nef-dependent increase of virus infectivity. J Virol 2013; 87:3729-40. [PMID: 23325686 DOI: 10.1128/jvi.02477-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a human immunodeficiency virus type 1 (HIV-1) auxiliary protein that plays an important role in virus replication and the onset of acquired immunodeficiency. Although known functions of Nef might explain its contribution to HIV-1-associated pathogenesis, how Nef increases virus infectivity is still an open question. In vitro, Nef-deleted viruses have a defect that prevents efficient completion of early steps of replication. We have previously shown that this restriction is not due to the absence of Nef in viral particles. Rather, a loss of function in virus-producing cells accounts for the lower infectivity of nef-deleted viruses compared to wild-type (WT) viruses. Here we used DiGE and iTRAQ to identify differences between the proteomes of WT and nef-deleted viruses. We observe that glucosidase II is enriched in WT virions, whereas Ezrin, ALG-2, CD81, and EHD4 are enriched in nef-deleted virions. Functional analysis shows that glucosidase II, ALG-2, and CD81 have no or only Nef-independent effect on infectivity. In contrast, Ezrin and EHD4 are involved in the ability of Nef to increase virus infectivity (referred to thereafter as Nef potency). Indeed, simultaneous Ezrin and EHD4 depletion in SupT1 and 293T virus-producing cells result in an ∼30 and ∼70% decrease of Nef potency, respectively. Finally, while Ezrin behaves as an inhibitory factor counteracted by Nef, EHD4 should be considered as a cofactors required by Nef to increase virus infectivity.
Collapse
|
34
|
Identification of hepatitis C virus inhibitors targeting different aspects of infection using a cell-based assay. Antimicrob Agents Chemother 2012; 56:6109-20. [PMID: 22948883 DOI: 10.1128/aac.01413-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With 2 to 3% of the worldwide population chronically infected, hepatitis C virus (HCV) infection continues to be a major health care burden. Unfortunately, current interferon-based treatment options are not effective in all patients and are associated with significant side effects. Consequently, there is an ongoing need to identify and develop new anti-HCV therapies. Toward this goal, we previously developed a cell-based HCV infection assay for antiviral compound screening based on a low-multiplicity-of-infection approach that uniquely allows for the identification of antiviral compounds that target cell culture-derived HCV (HCVcc) at any step of the viral infection cycle. Using this assay, here we report the screening of the NCI Diversity Set II library, containing 1,974 synthesized chemical compounds, and the identification of compounds with specific anti-HCV activity. In combination with toxicity counterscreening, we identified 30 hits from the compound library, 13 of which showed reproducible and dose-dependent inhibition of HCV with mean therapeutic indices (50% cytotoxic concentration [CC(50)]/50% effective concentration [EC(50)]) of greater than 6. Using HCV pseudotype and replicon systems of multiple HCV genotypes, as well as infectious HCVcc-based assembly and secretion analysis, we determined that different compounds within this group of candidate inhibitors target different steps of viral infection. The compounds identified not only will serve as biological probes to study and further dissect the biology of viral infection but also should facilitate the development of new anti-HCV therapeutic treatments.
Collapse
|
35
|
Timokhova AV, Bakinovskii LV, Zinin AI, Popenko VI, Ivanov AV, Rubtsov PM, Kochetkov SN, Belzhelarskaya SN. Effect of deoxynojirimycin derivatives on morphogenesis of hepatitis C virus. Mol Biol 2012; 46:579-587. [DOI: 10.1134/s0026893312040115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
36
|
Unexpected cure from cutaneous leukocytoclastic vasculitis in a patient treated with N-butyldeoxynojirimycin (miglustat) for Gaucher disease. Adv Med Sci 2012; 57:169-73. [PMID: 22515974 DOI: 10.2478/v10039-012-0021-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cutaneous leukocytoclastic vasculitis (CLV) is a necrotizing inflammation of the small vessels in the dermis. We report the case of a Swedish man with an untreated N370S/L444P Gaucher disease who developed CLV at the age of 79 years. The patient has been treated for CLV with topical and oral corticosteroids, moisturizing agents, and periodically with antibiotics for 3 years without improvement. Administration of miglustat (N-butyldeoxynojirimycin; Zavesca®) because of progress of Gaucher disease resulted in a prompt and durable cure of the CLV.
Collapse
|
37
|
McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? Br J Pharmacol 2011; 162:328-45. [PMID: 20942857 DOI: 10.1111/j.1476-5381.2010.01064.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cytosolic heat shock proteins have received significant attention as emerging therapeutic targets. Much of this excitement has been triggered by the discovery that HSP90 plays a central role in the maintenance and stability of multifarious oncogenic membrane receptors and their resultant tyrosine kinase activity. Numerous studies have dealt with the effects of small molecules on chaperone- and stress-related pathways of the endoplasmic reticulum (ER). However, unlike cytosolic chaperones, relatively little emphasis has been placed upon translational avenues towards targeting of the ER for inhibition of folding/secretion of disease-promoting proteins. Here, we summarise existing small molecule inhibitors and potential future targets of ER chaperone-mediated inhibition. Client proteins of translational relevance in disease treatment are outlined, alongside putative future disease treatment modalities based on ER-centric targeted therapies. Particular attention is paid to cancer and autoimmune disorders via the effects of the GRP94 inhibitor geldanamycin and its population of client proteins, overloading of the unfolded protein response, and inhibition of members of the IL-12 family of cytokines by celecoxib and non-coxib analogues.
Collapse
|
38
|
Kang J, Blalock GR, Dimitrov JD. Thermodynamic Analysis of Hepatitis C Virus Vitality in Syringes. J Infect Dis 2011; 203:1696-7. [DOI: 10.1093/infdis/jir143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
39
|
Ferraris P, Blanchard E, Roingeard P. Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol 2010; 91:2230-7. [PMID: 20484561 DOI: 10.1099/vir.0.022186-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Like most other positive-strand RNA viruses, hepatitis C virus (HCV) induces changes in the host cell's membranes, resulting in a membranous web. The non-structural proteins of the viral replication complex are thought to be associated with these newly synthesized membranes. We studied this phenomenon, using a Huh7.5 cell clone displaying high levels of replication of a subgenomic replicon of the JFH-1 strain. Electron microscopy of ultrathin sections of these cells revealed the presence of numerous double membrane vesicles (DMVs), resembling those observed for other RNA viruses such as poliovirus and coronavirus. Some sections had more discrete multivesicular units consisting of circular concentric membranes organized into clusters surrounded by a wrapping membrane. These structures were highly specific to HCV as they were not detected in naive Huh7.5 cells. Preparations enriched in these structures were separated from other endoplasmic reticulum-derived membranes by cell cytoplasm homogenization and ultracentrifugation on a sucrose gradient. They were found to contain the non-structural NS3 and NS5A HCV proteins, HCV RNA and LC3-II, a specific marker of autophagic membranes. By analogy to other viral models, HCV may induce DMVs by activating the autophagy pathway. This could represent a strategy to conceal the viral RNA and help the virus to evade double-stranded RNA-triggered host antiviral responses. More detailed characterization of these virus-cell interactions may facilitate the development of new treatments active against HCV and other RNA viruses that are dependent on newly synthesized cellular membranes for replication.
Collapse
Affiliation(s)
- Pauline Ferraris
- INSERM U966, Université François Rabelais and CHRU de Tours, France
| | | | | |
Collapse
|
40
|
Krol E, Wandzik I, Szeja W, Grynkiewicz G, Szewczyk B. In vitro antiviral activity of some uridine derivatives of 2-deoxy sugars against classical swine fever virus. Antiviral Res 2010; 86:154-62. [DOI: 10.1016/j.antiviral.2010.02.314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/20/2010] [Accepted: 02/05/2010] [Indexed: 01/05/2023]
|
41
|
Bonnafous P, Perrault M, Le Bihan O, Bartosch B, Lavillette D, Penin F, Lambert O, Pécheur EI. Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads. J Gen Virol 2010; 91:1919-1930. [PMID: 20375221 DOI: 10.1099/vir.0.021071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell entry and membrane fusion of the hepatitis C virus (HCV) depend on its envelope glycoproteins E1 and E2. HCV pseudotyped particles (HCVpps) are relevant and popular models to study the early steps of the HCV life cycle. However, no structural characterization of HCVpp has been available so far. Using cryo-transmission electron microscopy (cryo-TEM), providing structural information at nanometric resolution, the molecular details of HCVpps and their fusion with liposomes were studied. Cryo-TEM revealed HCVpps as regular 100 nm spherical structures containing the dense retroviral nucleocapsid surrounded by a lipid bilayer. E1-E2 glycoproteins were not readily visible on the membrane surface. Pseudoparticles bearing the E1-E2 glycoproteins of Semliki forest virus looked similar, whereas avian influenza A virus (fowl plague virus) haemagglutinin/neuraminidase-pseudotyped particles exhibited surface spikes. To further characterize HCVpp structurally, a novel method was designed based on magnetic beads covered with anti-HCV antibodies to enrich the samples with particles containing E1-E2. This strategy efficiently sorted HCVpps, which were then directly observed by cryo-TEM in the presence or absence of liposomes at low or neutral pH. After acidification, HCVpps looked the same as at neutral pH and closely contacted the liposomes. These are the first visualizations of early HCV membrane fusion events at the nanometer scale. Furthermore, fluorimetry analysis revealed a relative resistance of HCVpps regarding their fusion capacity when exposed to low pH. This study therefore brings several new molecular details to HCVpp characterization and this efficient strategy of virion immunosorting with magnetic nanobeads is direct, efficient and adaptable to extensive characterization of any virus at a nanometric resolution.
Collapse
Affiliation(s)
- Pierre Bonnafous
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Marie Perrault
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| | - Olivier Le Bihan
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Birke Bartosch
- INSERM, U758, F-69007 Lyon, France
- Université de Lyon, UCB-Lyon 1, IFR128, F-69007 Lyon, France
- Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Dimitri Lavillette
- Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
- INSERM, U758, F-69007 Lyon, France
- Université de Lyon, UCB-Lyon 1, IFR128, F-69007 Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| | - Olivier Lambert
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Eve-Isabelle Pécheur
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| |
Collapse
|
42
|
Delang L, Coelmont L, Neyts J. Antiviral therapy for hepatitis C virus: beyond the standard of care. Viruses 2010; 2:826-866. [PMID: 21994657 PMCID: PMC3185663 DOI: 10.3390/v2040826] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a major health burden, with an estimated 180 million chronically infected individuals worldwide. These patients are at increased risk of developing liver cirrhosis and hepatocellular carcinoma. Infection with HCV is the leading cause of liver transplantation in the Western world. Currently, the standard of care (SoC) consists of pegylated interferon alpha (pegIFN-α) and ribavirin (RBV). However this therapy has a limited efficacy and is associated with serious side effects. Therefore more tolerable, highly potent inhibitors of HCV replication are urgently needed. Both Specifically Targeted Antiviral Therapy for HCV (STAT-C) and inhibitors that are believed to interfere with the host-viral interaction are discussed.
Collapse
Affiliation(s)
| | | | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Minderbroedersstraat 10, 3000 Leuven, Belgium; E-Mails: (L.D.); (L.C.)
| |
Collapse
|
43
|
Pollock S, Antrobus R, Newton L, Kampa B, Rossa J, Latham S, Nichita NB, Dwek RA, Zitzmann N. Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J 2010; 24:1866-78. [PMID: 20097877 DOI: 10.1096/fj.09-145755] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Liposomes are vesicular structures consisting of an aqueous core surrounded by a lipid bilayer. Apart from the cytosol and lysosomes, no other intracellular compartment has been successfully targeted using liposomal delivery. Here, we report the development of liposomes capable of specific targeting to the endoplasmic reticulum (ER) and associated membranes. Using competition and inhibitor assays along with confocal microscopy, we have determined that ER liposomes utilize scavenger and low-density lipoprotein receptors for endocytosis and enter cells through a caveolin- and microtubule-dependent mechanism. They traffic intact to the ER, where fusion with the ER membrane occurs after 22-25 min, which was confirmed by fluorescence-dequenching assays. Once inside the ER, tagged lipids intercalate with the ER membrane and are subsequently incorporated into ER-assembling entities, such as the ER-budding viruses hepatitis C virus (HCV) and bovine viral diarrhea virus (BVDV), lipid droplets, and secreted lipoproteins. ER liposomes are superior to cytosolic liposome formulations for the intracellular delivery of aqueous cargo, such as HIV-1 antivirals, and are especially suited for the prolonged delivery of lipids and lipophilic drugs into human cells.
Collapse
Affiliation(s)
- Stephanie Pollock
- Oxford Antiviral Drug Discovery Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wardrop DJ, Waidyarachchi SL. Synthesis and biological activity of naturally occurring α-glucosidase inhibitors. Nat Prod Rep 2010; 27:1431-68. [DOI: 10.1039/b914958a] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
46
|
Meanwell NA, Kadow JF, Scola PM. Chapter 20 Progress towards the Discovery and Development of Specifically Targeted Inhibitors of Hepatitis C Virus. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2009. [DOI: 10.1016/s0065-7743(09)04420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
47
|
Abstract
Hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are a major threat worldwide. Combination therapy of interferon-alpha and ribavirin is currently the treatment of choice for HCV-infected patients. However, this regimen is only effective in approximately 50% of patients and provokes severe side-effects. Numerous natural alternatives for treating HCV have been suggested. Deoxynojirimycin and its derivatives are iminosugars which exert anti-HCV activity by inhibiting alpha-glucosidases. A non-immunosuppressive derivate of cyclosporine A, NIM811, exerts anti-HCV activity by binding to cyclophilin. Other natural products with promising anti-HCV activity are 2-arylbenzofuran derivatives, Mellein, and pseudoguaianolides. For HBV treatment, several drugs are available, specifically targeting the virus polymerase (lamivudine, entecavir, telbivudine, and adefovir dipivoxil). The efficacy of these drugs is hampered by the development of resistance due to point mutations in the HBV polymerase. Due to drug resistance and adverse side-effects, the search for novel drugs is mandatory. Wogonin, ellagic acid, artemisinin and artesunate, chrysophanol 8-O-beta-D-glucoside, saikosaponin C, and protostane triterpenes are active against HBV. Natural products need to be investigated in more detail to explore their potential as novel adjuncts to established HBV or HCV therapy.
Collapse
|
48
|
N-Butyldeoxynojirimycin is a broadly effective anti-HIV therapy significantly enhanced by targeted liposome delivery. AIDS 2008; 22:1961-9. [PMID: 18753929 DOI: 10.1097/qad.0b013e32830efd96] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE N-Butyldeoxynojirimycin (NB-DNJ), an inhibitor of HIV gp120 folding, was assessed as a broadly active therapy for the treatment of HIV/AIDS. Furthermore, to reduce the effective dose necessary for antiviral activity, NB-DNJ was encapsulated inside liposomes and targeted to HIV-infected cells. METHODS Thirty-one primary isolates of HIV (including drug-resistant isolates) were cultured in peripheral blood mononuclear cells to quantify the effect of NB-DNJ on viral infectivity. pH-sensitive liposomes capable of mediating the intracellular delivery of NB-DNJ inside peripheral blood mononuclear cells were used to increase drug efficacy. RESULTS NB-DNJ decreased viral infectivity with a single round of treatment by an average of 80% in HIV-1-infected and 95% in HIV-2-infected cultures. Two rounds of treatment reduced viral infectivity to below detectable levels for all isolates tested, with a calculated IC50 of 282 and 211 micromol/l for HIV-1 and HIV-2, respectively. When encapsulated inside liposomes, NB-DNJ inhibited HIV-1 with final concentrations in the nmol/l range (IC50 = 4 nmol/l), a 100 000-fold enhancement in IC50 relative to free NB-DNJ. Targeting liposomes to the gp120/gp41 complex with a CD4 molecule conjugated to the outer bilayer increased drug/liposome uptake five-fold in HIV-infected cells compared with uninfected cells. NB-DNJ CD4 liposomes demonstrated additional antiviral effects, reducing viral secretion by 81% and effectively neutralizing free viral particles to prevent further infections. CONCLUSION The use of targeted liposomes encapsulating NB-DNJ provides an attractive therapeutic option against all clades of HIV, including drug-resistant isolates, in an attempt to prevent disease progression to AIDS.
Collapse
|
49
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
50
|
Iminosugars in combination with interferon and ribavirin permanently eradicate noncytopathic bovine viral diarrhea virus from persistently infected cells. Antimicrob Agents Chemother 2008; 52:1820-8. [PMID: 18316522 DOI: 10.1128/aac.01181-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated interferon (IFN) and ribavirin (RBV) as dual therapy and as part of triple-combination therapies with the iminosugars N-butyl-deoxynojirimycin (NB-DNJ), N-nonyl-deoxynojirimycin, and N-7-oxanonyl-6-deoxymethyl-galactonojirimycin. The ability of these compounds to clear bovine viral diarrhea virus (BVDV), a surrogate model for hepatitis C virus (HCV), from a persistently infected Madin-Darby bovine kidney cells cell line was determined by monitoring the secretion of viral RNA and the infectivity of secreted virions. In the BVDV system, after treatment with IFN-RBV alone, viral rebound was observed immediately after removal of the drugs. In contrast, we demonstrate that a triple drug combination of IFN, RBV, and an iminosugar eradicated the BVDV infection in a time- and a dose-dependent manner, leading to sustained viral clearance. Importantly, in the case of NB-DNJ, the sustained viral clearance was achieved by using physiologically relevant and tolerated drug concentrations. Therefore, the use of a triple-combination therapy that includes an iminosugar may prove to be of greater therapeutic value for the treatment of HCV infection than the use of IFN-RBV alone.
Collapse
|