1
|
Burnett D, Hussein M, Barr ZK, Näther LN, Wright KM, Tilsner J. Live-cell RNA imaging with the inactivated endonuclease Csy4 enables new insights into plant virus transport through plasmodesmata. PLoS Pathog 2025; 21:e1013049. [PMID: 40203052 PMCID: PMC12052393 DOI: 10.1371/journal.ppat.1013049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 05/05/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Plant-infecting viruses spread through their hosts by transporting their infectious genomes through intercellular nano-channels called plasmodesmata. This process is mediated by virus-encoded movement proteins. Whilst the sub-cellular localisations of movement proteins have been intensively studied, live-cell RNA imaging systems have so far not been able to detect viral genomes inside the plasmodesmata. Here, we describe a highly sensitive RNA live-cell reporter based on an enzymatically inactive form of the small bacterial endonuclease Csy4, which binds to its cognate stem-loop with picomolar affinity. This system allows imaging of plant viral RNA genomes inside plasmodesmata and shows that potato virus X RNA remains accessible within the channels and is therefore not fully encapsidated during movement. We also combine Csy4-based RNA-imaging with interspecies movement complementation to show that an unrelated movement protein from tobacco mosaic virus can recruit potato virus X replication complexes adjacent to plasmodesmata. Therefore, recruitment of potato virus X replicase is mediated non-specifically, likely by indirect coupling of movement proteins and viral replicase via the viral RNA or co-compartmentalisation, potentially contributing to transport specificity. Lastly, we show that a 'self-tracking' virus can express the Csy4-based reporter during the progress of infection. However, expression of the RNA-binding protein in cis interferes with viral movement by an unidentified mechanism when cognate stem-loops are present in the viral RNA.
Collapse
Affiliation(s)
- David Burnett
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Mohamed Hussein
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cukurova University, Institute of Natural and Applied Sciences, Saricam, Adana, Turkey
| | - Zoe Kathleen Barr
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Laura Newsha Näther
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
| | - Kathryn M. Wright
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
2
|
Shen M, Wang Y, Chen Y, Peng J, Wu G, Rao S, Wu J, Zheng H, Chen J, Yan F, Lu Y, Wu G. Potato Type I Protease Inhibitor Mediates Host Defence Against Potato Virus X Infection by Interacting With a Viral RNA Silencing Suppressor. MOLECULAR PLANT PATHOLOGY 2025; 26:e70073. [PMID: 40083063 PMCID: PMC11906362 DOI: 10.1111/mpp.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Counteracting plant RNA silencing ensures successful viral infection. The P25 protein encoded by potato virus X (PVX) is a multifunctional protein that acts as a viral RNA silencing suppressor (VSR). In this study, we screened out a potato type I protease inhibitor (PI) in Nicotiana benthamiana (NbPI) that interacts with P25. Silencing of NbPI by tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) promoted the infection of PVX. Overexpression of NbPI in transgenic plants conferred resistance to PVX infection. Moreover, transient expression of NbPI impaired the VSR activity and cell-to-cell movement complementation ability of P25. Further experiments showed that P25 protein degradation was through the combination of autophagy and the ubiquitin-26S proteasome system (UPS), leading to impairment of P25. Taken together, we have identified NbPI as a new host factor that compromises PVX infection by targeting and degrading the VSR P25.
Collapse
Affiliation(s)
- Minjie Shen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yonghao Wang
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yi Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jian Wu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
3
|
Merwaiss F, Lozano‐Sanchez E, Zulaica J, Rusu L, Vazquez‐Vilar M, Orzáez D, Rodrigo G, Geller R, Daròs J. Plant virus-derived nanoparticles decorated with genetically encoded SARS-CoV-2 nanobodies display enhanced neutralizing activity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:876-891. [PMID: 37966715 PMCID: PMC10955499 DOI: 10.1111/pbi.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.
Collapse
Affiliation(s)
- Fernando Merwaiss
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Enrique Lozano‐Sanchez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - João Zulaica
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Luciana Rusu
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Ron Geller
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
4
|
Wu WC, Chen IH, Hou PY, Wang LH, Tsai CH, Cheng CP. The phosphorylation of the movement protein TGBp1 regulates the accumulation of the Bamboo mosaic virus. J Gen Virol 2024; 105. [PMID: 38189334 DOI: 10.1099/jgv.0.001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Phosphorylation and dephosphorylation of viral movement proteins plays a crucial role in regulating virus movement. Our study focused on investigating the movement protein TGBp1 of Bamboo mosaic virus (BaMV), which is a single-stranded positive-sense RNA virus. Specifically, we examined four potential phosphorylation sites (S15, S18, T58, and S247) within the TGBp1 protein. To study the impact of phosphorylation, we introduced amino acid substitutions at the selected sites. Alanine substitutions were used to prevent phosphorylation, while aspartate substitutions were employed to mimic phosphorylation. Our findings suggest that mimicking phosphorylation at S15, S18 and T58 of TGBp1 might be linked to silencing suppressor activities. The phosphorylated form at these sites exhibits a loss of silencing suppressor activity, leading to reduced viral accumulation in the inoculated leaves. Furthermore, mimicking phosphorylation at residues S15 and S18 could diminish viral accumulation at the single-cell level, while doing so at residue T58 could influence virus movement. However, mimicking phosphorylation at residue S247 does not appear to be relevant to both functions of TGBp1. Overall, our study provides insights into the functional significance of specific phosphorylation sites in BaMV TGBp1, illuminating the regulatory mechanisms involved in virus movement and silencing suppression.
Collapse
Affiliation(s)
- Wan-Chen Wu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Pei-Yu Hou
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - Lan-Hui Wang
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Chi-Ping Cheng
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| |
Collapse
|
5
|
Shahgolzari M, Venkataraman S, Osano A, Akpa PA, Hefferon K. Plant Virus Nanoparticles Combat Cancer. Vaccines (Basel) 2023; 11:1278. [PMID: 37631846 PMCID: PMC10459942 DOI: 10.3390/vaccines11081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Plant virus nanoparticles (PVNPs) have garnered considerable interest as a promising nanotechnology approach to combat cancer. Owing to their biocompatibility, stability, and adjustable surface functionality, PVNPs hold tremendous potential for both therapeutic and imaging applications. The versatility of PVNPs is evident from their ability to be tailored to transport a range of therapeutic agents, including chemotherapy drugs, siRNA, and immunomodulators, thereby facilitating targeted delivery to the tumor microenvironment (TME). Furthermore, PVNPs may be customized with targeting ligands to selectively bind to cancer cell receptors, reducing off-target effects. Additionally, PVNPs possess immunogenic properties and can be engineered to exhibit tumor-associated antigens, thereby stimulating anti-tumor immune responses. In conclusion, the potential of PVNPs as a versatile platform for fighting cancer is immense, and further research is required to fully explore their potential and translate them into clinical applications.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anne Osano
- Department of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
| | - Paul Achile Akpa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Kim DH, Jeong RD, Choi S, Ju HJ, Yoon JY. Application of Rapid and Reliable Detection of Cymbidium Mosaic Virus by Reverse Transcription Recombinase Polymerase Amplification Combined with Lateral Flow Immunoassay. THE PLANT PATHOLOGY JOURNAL 2022; 38:665-672. [PMID: 36503195 PMCID: PMC9742802 DOI: 10.5423/ppj.ft.10.2022.0147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Cymbidium mosaic virus (CymMV) is one of economically important viruses that cause significant losses of orchids in the world. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow immunostrip (LFI) assay was developed for the detection of CymMV in orchid plants. A pair of primers containing fluorescent probes at each terminus that amplifies highly specifically a part of the coat protein gene of CymMV was determined for RT-RPA assay. The RT-RPA assay involved incubation at an isothermal temperature (39°C) and could be performed rapidly within 30 min. In addition, no cross-reactivity was observed to occur with odontoglossum ringspot virus and cymbidium chlorotic mosaic virus. The RT-RPA with LFI assay (RT-RPA-LFI) for CymMV showed 100 times more sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR). Furthermore, the RT-PCR-LFI assay demonstrated the simplicity and the rapidity of CymMV detection since the assay did not require any equipment, by comparing results with those of conventional RT-PCR. On-site application of the RT-RPA-LFI assay was validated for the detection of CymMV in field-collected orchids, indicating a simple, rapid, sensitive, and reliable method for detecting CymMV in orchids.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185,
Korea
| | - Sena Choi
- Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
| | - Ju-Yeon Yoon
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
7
|
Jiang X, Luan Y, Chai M, Yang Y, Wang Y, Deng W, Li Y, Cheng X, Wu X. The N-Terminal α-Helix of Potato Virus X-Encoded RNA-Dependent RNA Polymerase Is Required for Membrane Association and Multimerization. Viruses 2022; 14:v14091907. [PMID: 36146714 PMCID: PMC9504981 DOI: 10.3390/v14091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Positive-sense single-stranded RNA viruses replicate in virus-induced membranous organelles for maximum efficiency and immune escaping. The replication of potato virus X (PVX) takes place on the endoplasmic reticulum (ER); however, how PVX-encoded RNA-dependent RNA polymerase (RdRp) is associated with the ER is still unknown. A proline-kinked amphipathic α-helix was recently found in the MET domain of RdRp. In this study, we further illustrate that the first α-helix of the MET domain is also required for ER association. Moreover, we found that the MET domain forms multimers on ER and the first α-helix is essential for multimerization. These results suggest that the RdRp of PVX adopts more than one hydrophobic motif for membrane association and for multimerization.
Collapse
Affiliation(s)
- Xue Jiang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yameng Luan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mengzhu Chai
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yingshuai Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yuting Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Wenjia Deng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yonggang Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.C.); (X.W.)
| | - Xiaoyun Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.C.); (X.W.)
| |
Collapse
|
8
|
Short 5' Untranslated Region Enables Optimal Translation of Plant Virus Tricistronic RNA via Leaky Scanning. J Virol 2022; 96:e0214421. [PMID: 35262378 DOI: 10.1128/jvi.02144-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regardless of the general model of translation in eukaryotic cells, a number of studies suggested that many mRNAs encode multiple proteins. Leaky scanning, which supplies ribosomes to downstream open reading frames (ORFs) by readthrough of upstream ORFs, has great potential to translate polycistronic mRNAs. However, the mRNA elements controlling leaky scanning and their biological relevance have rarely been elucidated, with exceptions such as the Kozak sequence. Here, we have analyzed the strategy of a plant RNA virus to translate three movement proteins from a single RNA molecule through leaky scanning. The in planta and in vitro results indicate thatthe significantly shorter 5' untranslated region (UTR) of the most upstream ORF promotes leaky scanning, potentially fine-tuning the translation efficiency of the three proteins in a single RNA molecule to optimize viral propagation. Our results suggest that the remarkably short length of the leader sequence, like the Kozak sequence, is a translational regulatory element with a biologically important role, as previous studies have shown biochemically. IMPORTANCE Potexvirus, a group of plant viruses, infect a variety of crops, including cultivated crops. It has been thought that the three transition proteins that are essential for the cell-to-cell transfer of potexviruses are translated from two subgenomic RNAs, sgRNA1 and sgRNA2. However, sgRNA2 has not been clearly detected. In this study, we have shown that sgRNA1, but not sgRNA2, is the major translation template for the three movement proteins. In addition, we determined the transcription start site of sgRNA1 in flexiviruses and found that the efficiency of leaky scanning caused by the short 5' UTR of sgRNA1, a widely conserved feature, regulates the translation of the three movement proteins. When we tested the infection of viruses with mutations introduced into the length of the 5' UTR, we found that the movement efficiency of the virus was affected. Our results provide important additional information on the protein translation strategy of flexiviruses, including Potexvirus, and provide a basis for research on their control as well as the need to reevaluate the short 5' UTR as a translational regulatory element with an important role in vivo.
Collapse
|
9
|
Verchot J. Potato virus X: A global potato-infecting virus and type member of the Potexvirus genus. MOLECULAR PLANT PATHOLOGY 2022; 23:315-320. [PMID: 34791766 PMCID: PMC8828454 DOI: 10.1111/mpp.13163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
TAXONOMY Potato virus X is the type-member of the plant-infecting Potexvirus genus in the family Alphaflexiviridae. PHYSICAL PROPERTIES Potato virus X (PVX) virions are flexuous filaments 460-480 nm in length. Virions are 13 nm in diameter and have a helical pitch of 3.4 nm. The genome is approximately 6.4 kb with a 5' cap and 3' poly(A) terminus. PVX contains five open reading frames, four of which are essential for cell-to-cell and systemic movement. One protein encodes the viral replicase. Cellular inclusions, known as X-bodies, occur near the nucleus of virus-infected cells. HOSTS The primary host is potato, but it infects a wide range of dicots. Diagnostic hosts include Datura stramonium and Nicotiana tabacum. PVX is transmitted in nature by mechanical contact. USEFUL WEBSITE: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/alphaflexiviridae/1330/genus-potexvirus.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
10
|
Park CH, Song EG, Ryu KH. A multiplex PCR assay for the simultaneous detection of five potexviruses infecting cactus plants using dual-priming oligonucleotides (DPOs) primers. J Virol Methods 2021; 298:114280. [PMID: 34592336 DOI: 10.1016/j.jviromet.2021.114280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/19/2021] [Accepted: 09/03/2021] [Indexed: 11/15/2022]
Abstract
Five potexviruses, namely, cactus virus X (CVX), opuntia virus X, pitaya virus X (PiVX), schlumbergera virus X (SchVX) and zygocactus virus X (ZyVX), have been reported in cactus plants. In this report, a multiplex RT-PCR assay, based on specific dual-priming oligonucleotide (DPO) primers, was developed to detect these five viruses simultaneously in field samples. Using 18 field plants comprising 16 cactus species, these viruses were detected among nine of the 18 plants, including the simultaneous detection of CVX, PiVX, SchVX and ZyVX co-infecting an Aporocactus flagelliformis and a Notocactus leninghausii f. cristatus plant. The multiplex PCR assay was thus applied successfully in the field plants and it would be useful in the diagnosis of viral infections in cactus plants.
Collapse
Affiliation(s)
- Chung Hwa Park
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Republic of Korea
| | - Eun Gyeong Song
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Republic of Korea
| | - Ki Hyun Ryu
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Republic of Korea.
| |
Collapse
|
11
|
Komatsu K, Sasaki N, Yoshida T, Suzuki K, Masujima Y, Hashimoto M, Watanabe S, Tochio N, Kigawa T, Yamaji Y, Oshima K, Namba S, Nelson RS, Arie T. Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. J Virol 2021; 95:e0190620. [PMID: 34346768 PMCID: PMC8475525 DOI: 10.1128/jvi.01906-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Nobumitsu Sasaki
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Suzuki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Yuki Masujima
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoya Tochio
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience, Department of Clinical Plant Science, Hosei University, Koganei, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Richard S. Nelson
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| |
Collapse
|
12
|
Abrahamian P, Hammond J, Hammond RW. Development and optimization of a pepino mosaic virus-based vector for rapid expression of heterologous proteins in plants. Appl Microbiol Biotechnol 2021; 105:627-645. [PMID: 33394156 DOI: 10.1007/s00253-020-11066-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Plant-virus-derived vectors are versatile tools with multiple applications in agricultural and medical biotechnology. In this study, we developed pepino mosaic virus (PepMV) (family Alphaflexiviridae; genus Potexvirus) into a vector for heterologous protein expression in plants. PepMV was initially cloned in a step-wise manner, fully sequenced and the full-length infectious clone was tested for infectivity in Nicotiana benthamiana. Initial infectious clones resulted in poor replication of PepMV and lack of systemic movement. Mutations in the viral sequence affected systemic infection. Two suspected mutations were altered to restore systemic infectivity. PepMV infection was apparent as early as 4 days post agroinfiltration (dpa) inoculation in N. benthamiana. A multiple cloning site was inserted into the PepMV genome for introduction and expression of foreign genes. Several modifications to the wild-type vector were made, such as a replacing the native subgenomic promoter (SGP) with a heterologous SGP, and introduction of translational enhancers and terminators, to improve heterologous expression of the foreign gene-of-interest. GFP was used as a reporter for monitoring virus infection and protein production. Strong GFP expression was observed as early as 4 dpa with a translational enhancer. The PepMV-based vector produces rapid expression of the foreign gene in comparison to two other potexvirus-based vectors. GFP production was monitored over time and optimal protein production was recorded between 5 and 7 dpa. GFP protein levels reached up to 4% and decreased to 0.5% total soluble protein at 7 and 14 dpa, respectively. Future studies will evaluate this virus-based vector for large-scale production of pharmaceutical compounds. KEY POINTS: • A pepino mosaic virus isolate was developed into a plant-based expression vector. • Expression levels of the heterologous protein were comparable or exceeded previously developed viral vectors. • Protein levels in plants were highest between 5 and 7 days and decreased gradually.
Collapse
Affiliation(s)
- Peter Abrahamian
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | - John Hammond
- United States National Arboretum, Floral and Nursery Plants Research Unit, USDA-ARS, Beltsville, MD, 20705, USA
| | - Rosemarie W Hammond
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
13
|
Insight into the bZIP Gene Family in Solanum tuberosum: Genome and Transcriptome Analysis to Understand the Roles of Gene Diversification in Spatiotemporal Gene Expression and Function. Int J Mol Sci 2020; 22:ijms22010253. [PMID: 33383823 PMCID: PMC7796262 DOI: 10.3390/ijms22010253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
The basic region-leucine zipper (bZIP) transcription factors (TFs) form homodimers and heterodimers via the coil–coil region. The bZIP dimerization network influences gene expression across plant development and in response to a range of environmental stresses. The recent release of the most comprehensive potato reference genome was used to identify 80 StbZIP genes and to characterize their gene structure, phylogenetic relationships, and gene expression profiles. The StbZIP genes have undergone 22 segmental and one tandem duplication events. Ka/Ks analysis suggested that most duplications experienced purifying selection. Amino acid sequence alignments and phylogenetic comparisons made with the Arabidopsis bZIP family were used to assign the StbZIP genes to functional groups based on the Arabidopsis orthologs. The patterns of introns and exons were conserved within the assigned functional groups which are supportive of the phylogeny and evidence of a common progenitor. Inspection of the leucine repeat heptads within the bZIP domains identified a pattern of attractive pairs favoring homodimerization, and repulsive pairs favoring heterodimerization. These patterns of attractive and repulsive heptads were similar within each functional group for Arabidopsis and S. tuberosum orthologs. High-throughput RNA-seq data indicated the most highly expressed and repressed genes that might play significant roles in tissue growth and development, abiotic stress response, and response to pathogens including Potato virus X. These data provide useful information for further functional analysis of the StbZIP gene family and their potential applications in crop improvement.
Collapse
|
14
|
Kwon J, Kasai A, Maoka T, Masuta C, Sano T, Nakahara KS. RNA silencing-related genes contribute to tolerance of infection with potato virus X and Y in a susceptible tomato plant. Virol J 2020; 17:149. [PMID: 33032637 PMCID: PMC7542965 DOI: 10.1186/s12985-020-01414-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.
Collapse
Affiliation(s)
- Joon Kwon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Tetsuo Maoka
- Division of Agro-Environmental Research, Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan. .,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
15
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Grinzato A, Kandiah E, Lico C, Betti C, Baschieri S, Zanotti G. Atomic structure of potato virus X, the prototype of the Alphaflexiviridae family. Nat Chem Biol 2020; 16:564-569. [DOI: 10.1038/s41589-020-0502-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/16/2020] [Indexed: 01/31/2023]
|
17
|
Gómez-Aix C, Alcaide C, Gómez P, Aranda MA, Sánchez-Pina MA. In situ hybridization for the localization of two pepino mosaic virus isolates in mixed infections. J Virol Methods 2019; 267:42-47. [PMID: 30771385 DOI: 10.1016/j.jviromet.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
In situ hybridization (ISH) is an informative and relatively accessible technique for the localization of viral genomes in plant tissue and cells. However, simultaneous visualization of related plant viruses in mixed infections may be limited by the nucleotide similarity in the genomes and the single chromogenic detection over the same sample preparation. To address this issue, we used two Pepino mosaic virus isolates and performed ISH over consecutive serial cross-sections of paraffin-embedded leaf samples of single and mixed infected Nicotiana benthamiana plants. Moreover, the probe design was optimized to reduce cross-hybridisation, and co-localization was based on the overlapping of consecutive cross-sections from mixed infected leaves; thus, our results showed that both Pepino mosaic virus isolates co-localized in the same leaf tissue. In turn, both isolates were localized in the cytoplasm of the same cells. These results provide valuable information for studying mixed infections in plants by using a simple ISH procedure that is accessible to any pathology laboratory.
Collapse
Affiliation(s)
- C Gómez-Aix
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - C Alcaide
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - P Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M A Sánchez-Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
18
|
Thekke-Veetil T, Ho T, Postman JD, Martin RR, Tzanetakis IE. A Virus in American Blackcurrant ( Ribes americanum) with Distinct Genome Features Reshapes Classification in the Tymovirales. Viruses 2018; 10:v10080406. [PMID: 30081487 PMCID: PMC6115964 DOI: 10.3390/v10080406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
A novel virus with distinct genome features was discovered by high throughput sequencing in a symptomatic blackcurrant plant. The virus, tentatively named Ribes americanum virus A (RAVA), has distinct genome organization and molecular features bridging genera in the order Tymovirales. The genome consists of 7106 nucleotides excluding the poly(A) tail. Five open reading frames were identified, with the first encoding a putative viral replicase with methyl transferase (MTR), AlkB, helicase, and RNA dependent RNA polymerase (RdRp) domains. The genome organization downstream of the replicase resembles that of members of the order Tymovirales with an unconventional triple gene block (TGB) movement protein arrangement with none of the other four putative proteins exhibiting significant homology to viral proteins. Phylogenetic analysis using replicase conserved motifs loosely placed RAVA within the Betaflexiviridae. Data strongly suggest that RAVA is a novel virus that should be classified as a species in a new genus in the Betaflexiviridae or a new family within the order Tymovirales.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | - Joseph D Postman
- National Clonal Germplasm Repository, United States Department of Agriculture, Corvallis, OR 97333, USA.
| | - Robert R Martin
- Horticultural Crops Research Unit, United States Department of Agriculture, Corvallis, OR 97331, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
19
|
Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares MC. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses. Viruses 2017; 9:E358. [PMID: 29186781 PMCID: PMC5744133 DOI: 10.3390/v9120358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022] Open
Abstract
To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana. Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.
Collapse
Affiliation(s)
| | | | | | - M. Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”—Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, Algarrobo-Costa, 29750 Málaga, Spain; (Y.L.-R.); (J.N.-C.); (E.M.)
| |
Collapse
|
20
|
Lozano I, Leiva AM, Jimenez J, Fernandez E, Carvajal-Yepes M, Cuervo M, Cuellar WJ. Resolution of cassava-infecting alphaflexiviruses: Molecular and biological characterization of a novel group of potexviruses lacking the TGB3 gene. Virus Res 2017; 241:53-61. [PMID: 28365210 DOI: 10.1016/j.virusres.2017.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
Several potexviruses (Family Alphaflexiviridae) have been reported infecting cassava (Manihot esculenta Crantz) in the Americas. They were isolated from severely diseased plants during the last 30-40 years and include: Cassava common mosaic virus (CsCMV), Cassava Caribbean mosaic virus (CsCaMV), Cassava Colombian symptomless virus (CsCSV) and Cassava virus X (CsVX). However, their definitive classification as distinct species remains unresolved for several reasons, including the lack of sequence data and unavailability of samples from original isolates. This complicates disease diagnostics, cassava germplasm exchange certification, evaluation of virus cleaning protocols and epidemiological studies. Furthermore, a recently detected novel alphaflexivirus, indicates that cassava-infecting potexviruses may be more diverse. To solve the identity of these viruses, we started indexing samples from different parts of Colombia using different sets of PCR primers, antisera available and inoculation to indicator plants. Results show that there are three major phylogenetic groups of potexviruses infecting cassava, and they correspond to CsCMV, CsVX and the newly identified Cassava new alphaflexivirus (CsNAV). Bioassays and sequence analysis established that isolates of CsNAV and CsVX cause latent infections in different cassava landraces, they are not efficiently transmitted to the indicator plant Nicotiana benthamiana and they lack the gene 3 of the conserved potexviral 'triple gene block' (TGB). In contrast, all isolates of CsCMV (which have a characteristic potexvirus genome arrangement) caused Cassava Common Mosaic Disease (CCMD) in single infections and were efficiently transmitted to N. benthamiana. Although phylogenetic analysis of the replicase sequence placed CsNAV and CsVX as members of the Potexvirus genus, their distinct genome arrangement and biological characteristics suggest they can be considered as members of a separate taxonomic group.
Collapse
Affiliation(s)
- Ivan Lozano
- Agrobiodiversity Research Area (AgBio), International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| | - Ana M Leiva
- Agrobiodiversity Research Area (AgBio), International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia; Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira, Colombia
| | - Jenyfer Jimenez
- Agrobiodiversity Research Area (AgBio), International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia; Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira, Colombia
| | - Elizabeth Fernandez
- Sub-Dirección de Recursos Genéticos, Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Monica Carvajal-Yepes
- Agrobiodiversity Research Area (AgBio), International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| | - Maritza Cuervo
- Agrobiodiversity Research Area (AgBio), International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| | - Wilmer J Cuellar
- Agrobiodiversity Research Area (AgBio), International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia.
| |
Collapse
|
21
|
Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Sci Rep 2017; 7:39678. [PMID: 28059075 PMCID: PMC5216350 DOI: 10.1038/srep39678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessive resistance gene in Arabidopsis thaliana toward plant viruses in Alpha- and Betaflexiviridae. We found that infection by Plantago asiatica mosaic virus (PlAMV), a potexvirus, was delayed in ncbp mutants of A. thaliana. Virus replication efficiency did not differ between an ncbp mutant and a wild type plant in single cells, but viral cell-to-cell movement was significantly delayed in the ncbp mutant. Furthermore, the accumulation of triple-gene-block protein 2 (TGB2) and TGB3, the movement proteins of potexviruses, decreased in the ncbp mutant. Inoculation experiments with several viruses showed that the accumulation of viruses encoding TGBs in their genomes decreased in the ncbp mutant. These results indicate that nCBP is a novel member of the eIF4E family recessive resistance genes whose loss impairs viral cell-to-cell movement by inhibiting the efficient accumulation of TGB2 and TGB3.
Collapse
|
22
|
Choi H, Cho WK, Kim KH. Two homologous host proteins interact with potato virus X RNAs and CPs and affect viral replication and movement. Sci Rep 2016; 6:28743. [PMID: 27353522 PMCID: PMC4926161 DOI: 10.1038/srep28743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Because viruses encode only a small number of proteins, all steps of virus infection rely on specific interactions between viruses and hosts. We previously screened several Nicotiana benthamiana (Nb) proteins that interact with the stem-loop 1 (SL1) RNA structure located at the 5' end of the potato virus X (PVX) genome. In this study, we characterized two of these proteins (NbCPIP2a and NbCPIP2b), which are homologous and are induced upon PVX infection. Electrophoretic mobility shift assay confirmed that both proteins bind to either SL1(+) or SL1(-) RNAs of PVX. The two proteins also interact with the PVX capsid protein (CP) in planta. Overexpression of NbCPIP2a positively regulated systemic movement of PVX in N. benthamiana, whereas NbCPIP2b overexpression did not affect systemic movement of PVX. Transient overexpression and silencing experiments demonstrated that NbCPIP2a and NbCPIP2b are positive regulators of PVX replication and that the effect on replication was greater for NbCPIP2a than for NbCPIP2b. Although these two host proteins are associated with plasma membranes, PVX infection did not affect their subcellular localization. Taken together, these results indicate that NbCPIP2a and NbCPIP2b specifically bind to PVX SL1 RNAs as well as to CP and enhance PVX replication and movement.
Collapse
Affiliation(s)
- Hoseong Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
García Ruíz D, Olarte Quintero MA, Gutiérrez Sánchez PA, Marín Montoya MA. Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. Bukasov) en Antioquia, Colombia. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n1.51389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
<p>El Potato virus (PVX) es uno de los virus más limitantes del cultivo de la papa en el mundo. Es transmitido solamente por contacto y por tubérculo-semilla. Su control se fundamenta en la siembra de tubérculos certificados por su sanidad viral y en la disponibilidad de metodologías de diagnóstico altamente sensibles. En este trabajo se evaluó la prevalencia del PVX en cuatro diferentes tejidos de tubérculos de Solanum tuberosum subsp. andigena var. Diacol-Capiro y S. phureja var. Criolla Colombia utilizando pruebas de DAS-ELISA para 128 submuestras y de RT-qPCR para 32 grupos de submuestras (4 submuestras/grupo). Los resultados de las pruebas serológicas indicaron la presencia de PVX en el 6,25 y 50% de las submuestras analizadas para la variedad Diacol-Capiro y Criolla Colombia, respectivamente; mientras que los niveles de prevalencia del PVX utilizando la detección por RT-qPCR fueron del 93,75%, independientemente de la variedad de papa y del tejido evaluado. Los valores promedio del ciclo umbral (Ct) en las RT-qPCR fueron de 25,6 (Ct=18,02 a 34,49) y el análisis de las curvas de desnaturalización permitió identificar dos variantes del virus con valores de Tm de 79,5±1°C y 83,7±1°C. La secuenciación de los amplicones obtenidos por RT-qPCR para los controles positivos y para dos de las muestras, confirmó su naturaleza viral. Estos resultados señalan unos muy altos niveles de prevalencia de PVX en el material de siembra de papa en Antioquia y la necesidad de fortalecer los programas de certificación de semilla con pruebas de detección como RT-qPCR.</p>
Collapse
|
24
|
Putlyaev EV, Smirnov AA, Karpova OV, Atabekov JG. Double Subgenomic Promoter Control for a Target Gene Superexpression by a Plant Viral Vector. BIOCHEMISTRY. BIOKHIMIIA 2015; 80:1039-46. [PMID: 26547072 DOI: 10.1134/s000629791508009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several new deconstructed vectors based on a potexvirus genome sequence for efficient expression of heterologous proteins in plants were designed. The first obtained vector (AltMV-single), based on the Alternanthera mosaic virus (AltMV) strain MU genome, bears a typical architecture for deconstructed plant viral vectors, i.e. a triple gene block was deleted from the viral genome and the model gene of interest was placed under control of the first viral subgenomic promoter. To enhance the efficiency of expression, maintained by the AltMV-single, another vector (AltMV-double) was designed. In AltMV-double, the gene of interest was controlled by two viral subgenomic promoters located sequentially without a gap upstream of the target gene. It was found that AltMV-double provided a significantly higher level of accumulation of the target protein in plants than AltMV-single. Moreover, our data clearly show the requirement of the presence and functioning of both the subgenomic promoters for demonstrated high level of target protein expression by AltMV-double. Taken together, our results describe an additional possible way to enhance the efficiency of transient protein expression maintained in plants by a plant viral vector.
Collapse
Affiliation(s)
- E V Putlyaev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
25
|
Brosseau C, Moffett P. Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. THE PLANT CELL 2015; 27:1742-54. [PMID: 26023161 PMCID: PMC4498209 DOI: 10.1105/tpc.15.00264] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 05/05/2023]
Abstract
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at least two of the four Arabidopsis DCL proteins. PVX can also infect Arabidopsis ago2 mutants, albeit less effectively than double DCL mutants, suggesting that additional AGO proteins may mediate anti-viral defenses. Here we show, using functional assays, that all Arabidopsis AGO proteins have the potential to target PVX lacking its viral suppressor of RNA silencing (VSR), P25, but that only AGO2 and AGO5 are able to target wild-type PVX. However, P25 directly affects only a small subset of AGO proteins, and we present evidence indicating that its protective effect is mediated by precluding AGO proteins from accessing viral RNA, as well as by directly inhibiting the RNA silencing machinery. In agreement with functional assays, we show that Potexvirus infection induces AGO5 expression and that both AGO2 and AGO5 are required for full restriction of PVX infection in systemic tissues of Arabidopsis.
Collapse
Affiliation(s)
- Chantal Brosseau
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
26
|
Liou MR, Hu CC, Chou YL, Chang BY, Lin NS, Hsu YH. Viral elements and host cellular proteins in intercellular movement of Bamboo mosaic virus. Curr Opin Virol 2015; 12:99-108. [PMID: 25951346 DOI: 10.1016/j.coviro.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/23/2022]
Abstract
As a member of the genus Potexvirus, Bamboo mosaic virus (BaMV) also belongs to the plant viruses that encode triple gene block proteins (TGBps) for intercellular movement within the host plants. Recent studies of the movement mechanisms of BaMV have revealed similarities and differences between BaMV and other potexviruses. This review focuses on the general aspects of viral and host elements involved in BaMV movement, the interactions among these elements, and the possible pathways for intra- and intercellular trafficking of BaMV. Major features of BaMV trafficking that have not been demonstrated in other potexviruses include: (i) the involvement of replicase, (ii) fine regulation by coat protein phosphorylation, (iii) the key roles played by TGBp3, (iv) the use of virions as the major transported form, and (v) the involvement of specific host factors, such as Ser/Thr kinase-like protein of Nicotiana benthamiana. We also highlight areas for future study that will provide a more comprehensive understanding of the detailed interactions among viral movement proteins and host factors, as well as the regulatory mechanisms of virus movement. Finally, a model based on the current knowledge is proposed to depict the diverse abilities of BaMV to utilize a wide range of mechanisms for efficient intercellular movement.
Collapse
Affiliation(s)
- Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yuan-Lin Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ban-Yang Chang
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
27
|
|
28
|
Plant virus replication and movement. Virology 2015; 479-480:657-71. [DOI: 10.1016/j.virol.2015.01.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/10/2023]
|
29
|
Andika IB, Maruyama K, Sun L, Kondo H, Tamada T, Suzuki N. Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:781-93. [PMID: 25619543 DOI: 10.1111/tpj.12770] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non-host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX-GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Gutiérrez PA, Alzate JF, Montoya MM. Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia. Virus Genes 2015; 50:518-22. [DOI: 10.1007/s11262-015-1181-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
|
31
|
Aguilar E, Almendral D, Allende L, Pacheco R, Chung BN, Canto T, Tenllado F. The P25 protein of potato virus X (PVX) is the main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. J Virol 2015; 89:2090-103. [PMID: 25473046 PMCID: PMC4338884 DOI: 10.1128/jvi.02896-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Most plant viruses counter the RNA silencing-based antiviral defense by expressing viral suppressors of RNA silencing (VSRs). In this sense, VSRs may be regarded as virulence effectors that can be recognized by the host as avirulence (avr) factors to induce R-mediated resistance. We made use of Agrobacterium-mediated transient coexpression of VSRs in combination with Potato virus X (PVX) to recapitulate in local tissues the systemic necrosis (SN) caused by PVX-potyvirus synergistic infections in Nicotiana benthamiana. The hypersensitive response (HR)-like response was associated with an enhanced accumulation of PVX subgenomic RNAs. We further show that expression of P25, the VSR of PVX, in the presence of VSR from different viruses elicited an HR-like response in Nicotiana spp. Furthermore, the expression of P25 by a Plum pox virus (PPV) vector was sufficient to induce an increase of PPV pathogenicity that led to necrotic mottling. A frameshift mutation in the P25 open reading frame (ORF) of PVX did not lead to necrosis when coexpressed with VSRs. These findings indicate that P25 is the main PVX determinant involved in eliciting a systemic HR-like response in PVX-associated synergisms. Moreover, we show that silencing of SGT1 and RAR1 attenuated cell death in both PVX-potyvirus synergistic infection and the HR-like response elicited by P25. Our study underscores that P25 variants that have impaired ability to suppress RNA silencing cannot act as elicitors when synergized by the presence of other VSRs. These findings highlight the importance of RNA silencing suppression activity in the HR-like response elicited by VSRs in certain hosts. IMPORTANCE The work presented here describes how the activity of the PVX suppressor P25 elicits an HR-like response in Nicotiana spp. when overexpressed with other VSR proteins. This finding suggests that the SN response caused by PVX-associated synergisms is a delayed immune response triggered by P25, once it reaches a threshold level by the action of other VSRs. Moreover, this work supports the contention that the silencing suppressor activity of PVX P25 protein is a prerequisite for HR elicitation. We propose that unidentified avr determinants could be involved in other cases of viral synergisms in which heterologous "helper" viruses encoding strong VSRs exacerbate the accumulation of the avr-encoding virus.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - David Almendral
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Lucía Allende
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Remedios Pacheco
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Bong Nam Chung
- National Institute of Horticultural & Herbal Science, Agricultural Research Center for Climate Change, Jeju Island, Republic of Korea
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Francisco Tenllado
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
32
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
33
|
Kumar D, Kumar R, Hyun TK, Kim JY. Cell-to-cell movement of viruses via plasmodesmata. JOURNAL OF PLANT RESEARCH 2015; 128:37-47. [PMID: 25527904 DOI: 10.1007/s10265-014-0683-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 05/03/2023]
Abstract
Plant viruses utilize plasmodesmata (PD), unique membrane-lined cytoplasmic nanobridges in plants, to spread infection cell-to-cell and long-distance. Such invasion involves a range of regulatory mechanisms to target and modify PD. Exciting discoveries in this field suggest that these mechanisms are executed by the interaction between plant cellular components and viral movement proteins (MPs) or other virus-encoded factors. Striking working analogies exist among endogenous non-cell-autonomous proteins and viral MPs, in which not only do they all use PD to traffic, but also they exploit same regulatory components to exert their functions. Thus, this review discusses on the viral strategies to move via PD and the PD-regulatory mechanisms involved in viral pathogenesis.
Collapse
Affiliation(s)
- Dhinesh Kumar
- Division of Applied Life Science (BK21plus), Department of Biochemistry, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 27-306, 501 Jinju-Daero, Jinju, 660-701, Korea
| | | | | | | |
Collapse
|
34
|
Chewachong GM, Miller SA, Blakeslee JJ, Francis DM, Morris TJ, Qu F. Generation of an Attenuated, Cross-Protective Pepino mosaic virus Variant Through Alignment-Guided Mutagenesis of the Viral Capsid Protein. PHYTOPATHOLOGY 2015; 105:126-34. [PMID: 25496364 DOI: 10.1094/phyto-01-14-0018-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mild variants of many viruses are able to protect infected plants from subsequent invasion by more severe variants of the same viruses through a process known as cross-protection. In the past, the cross-protective viral variants were commonly derived from mild field isolates that were sometimes genetically heterogeneous, providing variable levels of cross-protection. Here, we report a novel approach to rapidly generate cross-protective variants of the tomato-infecting Pepino mosaic virus (PepMV) independently of the availability of mild field isolates. Our approach sought to attenuate PepMV by mutating less conserved amino acid residues of the abundantly produced capsid protein (CP). These less-conserved amino acid residues were identified through multiple alignments of CPs of six potexviruses including PepMV, and were altered systematically to yield six PepMV mutants. These mutants were subsequently inoculated onto the model plant Nicotiana benthamiana, as well as tomato, to evaluate their accumulation levels, symptom severities, and cross-protection potentials. The mutant KD, in which the threonine (T) and alanine (A) residues at CP positions 66 and 67 were replaced with lysine (K) and aspartic acid (D), respectively, were found to accumulate to low levels in infected plants, cause very mild symptoms, and effectively protect both N. benthamiana and tomato against secondary infections by wild-type PepMV. These data suggest that our approach represents a simple, fast, and reliable way of generating attenuated viral variants capable of cross-protection.
Collapse
|
35
|
Mathioudakis MM, Rodríguez-Moreno L, Sempere RN, Aranda MA, Livieratos I. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1356-69. [PMID: 25162316 DOI: 10.1094/mpmi-07-14-0195-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pepino mosaic virus (PepMV) (family Alphaflexiviridae, genus Potexvirus) is a mechanically transmitted tomato pathogen that, over the last decade, has evolved from emerging to endemic worldwide. Here, two heat-shock cognate (Hsc70) isoforms were identified as part of the coat protein (CP)/Hsc70 complex in vivo, following full-length PepMV and CP agroinoculation. PepMV accumulation was severely reduced in Hsp70 virus-induced gene silenced and in quercetin-treated Nicotiana benthamiana plants. Similarly, in vitro-transcribed as well as virion RNA input levels were reduced in quercetin-treated protoplasts, suggesting an essential role for Hsp70 in PepMV replication. As for Potato virus X, the PepMV CP and triple gene-block protein 1 (TGBp1) self-associate and interact with each other in vitro but, unlike in the prototype, both PepMV proteins represent suppressors of transgene-induced RNA silencing with different modes of action; CP is a more efficient suppressor of RNA silencing, sequesters the silencing signal by preventing its spread to neighboring cells and its systemic movement. Here, we provide evidence for additional roles of the PepMV CP and host-encoded Hsp70 in viral infection, the first as a truly multifunctional protein able to specifically bind to a host chaperone and to counterattack an RNA-based defense mechanism, and the latter as an essential factor for PepMV infection.
Collapse
|
36
|
Hung CJ, Huang YW, Liou MR, Lee YC, Lin NS, Meng M, Tsai CH, Hu CC, Hsu YH. Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1211-25. [PMID: 25025779 DOI: 10.1094/mpmi-04-14-0112-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study, we investigated the fine regulation of cell-to-cell movement of Bamboo mosaic virus (BaMV). We report that the coat protein (CP) of BaMV is phosphorylated in planta at position serine 241 (S241), in a process involving Nicotiana benthamiana casein kinase 2α (NbCK2α). BaMV CP and NbCK2α colocalize at the plasmodesmata, suggesting that phosphorylation of BaMV may be involved in its movement. S241 was mutated to examine the effects of temporal and spatial dysregulation of phosphorylation on i) the interactions between CP and viral RNA and ii) the regulation of cell-to-cell movement. Replacement of S241 with alanine did not affect RNA binding affinity but moderately impaired cell-to-cell movement. A negative charge at position 241 reduced the ability of CP to bind RNA and severely interfered with cell-to-cell movement. Deletion of residues 240 to 242 increased the affinity of CP to viral RNA and dramatically impaired cell-to-cell movement. A threonine at position 241 changed the binding preference of CP toward genomic RNA and inhibited cell-to-cell movement. Together, these results reveal a fine regulatory mechanism for the cell-to-cell movement of BaMV, which involves the modulation of RNA binding affinity through appropriate phosphorylation of CP by NbCK2α.
Collapse
|
37
|
Koh KW, Lu HC, Chan MT. Virus resistance in orchids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:26-38. [PMID: 25438783 DOI: 10.1016/j.plantsci.2014.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 06/04/2023]
Abstract
Orchid plants, Phalaenopsis and Dendrobium in particular, are commercially valuable ornamental plants sold worldwide. Unfortunately, orchid plants are highly susceptible to viral infection by Cymbidium mosaic virus (CymMV) and Odotoglossum ringspot virus (ORSV), posing a major threat and serious economic loss to the orchid industry worldwide. A major challenge is to generate an effective method to overcome plant viral infection. With the development of optimized orchid transformation biotechnological techniques and the establishment of concepts of pathogen-derived resistance (PDR), the generation of plants resistant to viral infection has been achieved. The PDR concept involves introducing genes that is(are) derived from the virus into the host plant to induce RNA- or protein-mediated resistance. We here review the fundamental mechanism of the PDR concept, and illustrate its application in protecting against viral infection of orchid plants.
Collapse
Affiliation(s)
- Kah Wee Koh
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hsiang-Chia Lu
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
38
|
Wang IN, Hu CC, Lee CW, Yen SM, Yeh WB, Hsu YH, Lin NS. Genetic diversity and evolution of satellite RNAs associated with the bamboo mosaic virus. PLoS One 2014; 9:e108015. [PMID: 25275532 PMCID: PMC4183488 DOI: 10.1371/journal.pone.0108015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
Satellite RNAs (satRNAs) are subviral agents that depend on cognate helper viruses for genome replication and encapsidation. Their negative impacts on helper viruses have been exploited to control plant viral diseases. SatBaMV is a commonly found satRNA associated with Bamboo mosaic virus (BaMV) that infects diverse bamboo species in the field. To investigate the genetic diversity and evolution of satRNAs, we examined seven satBaMV populations derived from five bamboo species and cultivars from Taiwan, China, and India and one from the greenhouse. We found 3 distinct clades among the seven populations. Clade I is consisted of all satBaMV isolates, except for those from Dendrocalamus latiflorus in Taiwan and Bambusa vulgaris in India, which belong to Clades II and III, respectively. Interestingly, nucleotide diversity was lower for Clade I than II and III. However, the nucleotide diversity did not seem to depend on bamboo species or geographic location. Our population genetic analyses revealed the presence of excessive low-frequency polymorphic sites, which suggests that the satBaMV population was under purifying selection and/or population expansion. Further analysis of P20, the only satBaMV gene that encodes a non-structural protein involved in the long-distance movement of satBaMV, showed evidence of purifying selection. Taken together, our results suggest that purifying selection against defective P20 protein is responsible at least in part for the evolution of the satBaMV genome.
Collapse
Affiliation(s)
- Ing-Nang Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Biological Sciences, University at Albany, Albany, New York, United States of America
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ching-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Sih-Min Yen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wen-Bing Yeh
- Department of Entomology, National Chung Hsin University, Taichung, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
39
|
Minato N, Komatsu K, Okano Y, Maejima K, Ozeki J, Senshu H, Takahashi S, Yamaji Y, Namba S. Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1. Arch Virol 2014; 159:885-96. [PMID: 24154949 DOI: 10.1007/s00705-013-1860-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023]
Abstract
Plant virus expression vectors provide a powerful tool for basic research as well as for practical applications. Here, we report the construction of an expression vector based on plantago asiatica mosaic virus (PlAMV), a member of the genus Potexvirus. Modification of a vector to enhance the expression of a foreign gene, combined with the use of the foot-and-mouth disease virus 2A peptide, allowed efficient expression of the foreign gene in two model plant species, Arabidopsis thaliana and Nicotiana benthamiana. Comparison with the widely used potato virus X (PVX) vector demonstrated that the PlAMV vector retains an inserted foreign gene for a longer period than PVX. Moreover, our results showed that the GFP expression construct PlAMV-GFP exhibits stronger RNA silencing suppression activity than PVX-GFP, which is likely to contribute to the stability of the PlAMV vector.
Collapse
Affiliation(s)
- Nami Minato
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nam J, Nam M, Bae H, Lee C, Lee BC, Hammond J, Lim HS. AltMV TGB1 Nucleolar Localization Requires Homologous Interaction and Correlates with Cell Wall Localization Associated with Cell-to-Cell Movement. THE PLANT PATHOLOGY JOURNAL 2013; 29:454-9. [PMID: 25288976 PMCID: PMC4174812 DOI: 10.5423/ppj.nt.04.2013.0045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 05/08/2023]
Abstract
The Potexvirus Alternanthera mosaic virus (AltMV) has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to form homologous interactions. The helicase domains of AltMV TGB1 were separately mutated to identify which regions are involved in homologous TGB1 interactions. The yeast two hybrid system and Bimolecular Fluorescence Complementation (BiFC) in planta were utilized to examine homologous interactions of the mutants. Helicase motif I of AltMV TGB1 was found to be critical to maintain homologous interactions. Mutations in the remaining helicase motifs did not inhibit TGB1 homologous interactions. In the absence of homologous interaction of TGB1, subcellular localization of helicase domain I mutants showed distinctively different patterns from that of WT TGB1. These results provide important information to study viral movement and replication of AltMV.
Collapse
Affiliation(s)
- Jiryun Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
- Department of Bioscience II, Bio-Medical Science, Daejeon 305-301, Korea
| | - Moon Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Hanhong Bae
- Department of Biological Science, Youngnam University, Gyeongsan 712-749, Korea
| | - Cheolho Lee
- Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704, Korea
| | - Bong-Chun Lee
- Crop Environment Research Division, National Institute of Crop Science, RDA, Suwon 441-100, Korea
| | - John Hammond
- USDA-ARS, US National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705, USA
- Corresponding authors. Phone) +82-42-821-5766, FAX) +82-42-823-8679, E-mail) Phone) +301-504-5313, FAX) +301-504-5096, E-mail) John.
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
- Corresponding authors. Phone) +82-42-821-5766, FAX) +82-42-823-8679, E-mail) Phone) +301-504-5313, FAX) +301-504-5096, E-mail) John.
| |
Collapse
|
41
|
Park MR, Seo JK, Kim KH. Viral and nonviral elements in potexvirus replication and movement and in antiviral responses. Adv Virus Res 2013; 87:75-112. [PMID: 23809921 DOI: 10.1016/b978-0-12-407698-3.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Potato virus X, a member of the genus Potexvirus, special sequences and structures at the 5' and 3' ends of the nontranslated region function as cis-acting elements for viral replication. These elements greatly affect interactions between viral RNAs and those between viral RNAs and host factors. The potexvirus genome encodes five open-reading frames. Viral replicase, which is required for the synthesis of viral RNA, binds viral RNA elements and host factors to form a viral replication complex at the host cellular membrane. The coat protein (CP) and three viral movement proteins (TGB1, TGB2, and TGB3) have critical roles in mediating cell-to-cell viral movement through plasmodesmata by virion formation or by nonvirion ribonucleoprotein (RNP) complex formation with viral movement proteins (TGBs). The RNP complex, like TGB1-CP-viral RNA, is associated with viral replicase and used for immediate reinitiation of viral replication in newly invaded cells. Higher plants have defense mechanisms against potexviruses such as Rx-mediated resistance and RNA silencing. The CP acts as an avirulence effector for plant defense mechanisms, while TGB1 functions as a viral suppressor of RNA silencing, which is the mechanism of innate immune resistance. Here, we describe recent findings concerning the involvement of viral and host factors in potexvirus replication and in antiviral responses to potexvirus infection.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
42
|
Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 2013; 201:981-95. [PMID: 23798728 PMCID: PMC3691464 DOI: 10.1083/jcb.201304003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/16/2013] [Indexed: 02/04/2023] Open
Abstract
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum-derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5' end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Complete nucleotide sequence of a virus associated with rusty mottle disease of sweet cherry (Prunus avium). Arch Virol 2013; 158:1805-10. [PMID: 23525699 PMCID: PMC3723981 DOI: 10.1007/s00705-013-1668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/06/2013] [Indexed: 12/04/2022]
Abstract
Cherry rusty mottle is a disease of sweet cherries first described in 1940 in western North America. Because of the graft-transmissible nature of the disease, a viral nature of the disease was assumed. Here, the complete genomic nucleotide sequences of virus isolates from two trees expressing cherry rusty mottle disease symptoms are characterized; the virus is designated cherry rusty mottle associated virus (CRMaV). The biological and molecular characteristics of this virus in comparison to those of cherry necrotic rusty mottle virus (CNRMV) and cherry green ring mottle virus (CGRMV) are described. CRMaV was subsequently detected in additional sweet cherry trees expressing symptoms of cherry rusty mottle disease.
Collapse
|
44
|
Linnik O, Liesche J, Tilsner J, Oparka KJ. Unraveling the structure of viral replication complexes at super-resolution. FRONTIERS IN PLANT SCIENCE 2013; 4:6. [PMID: 23386855 PMCID: PMC3560349 DOI: 10.3389/fpls.2013.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/09/2013] [Indexed: 05/20/2023]
Abstract
During infection, many RNA viruses produce characteristic inclusion bodies that contain both viral and host components. These structures were first described over a century ago and originally termed "X-bodies," as their function was not immediately appreciated. Whilst some inclusion bodies may represent cytopathic by-products of viral protein over-accumulation, X-bodies have emerged as virus "factories," quasi-organelles that coordinate diverse viral infection processes such as replication, protein expression, evasion of host defenses, virion assembly, and intercellular transport. Accordingly, they are now generally referred to as viral replication complexes (VRCs). We previously used confocal fluorescence microscopy to unravel the complex structure of X-bodies produced by Potato virus X (PVX). Here we used 3D-structured illumination (3D-SIM) super-resolution microscopy to map the PVX X-body at a finer scale. We identify a previously unrecognized membrane structure induced by the PVX "triple gene block" (TGB) proteins, providing new insights into the complex interplay between virus and host within the X-body.
Collapse
Affiliation(s)
- Olga Linnik
- Institute of Molecular Plant Sciences, University of EdinburghEdinburgh, UK
| | - Johannes Liesche
- Faculty of Life Sciences, University of CopenhagenFrederiksberg C, Denmark
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St AndrewsFife, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Karl J. Oparka
- Institute of Molecular Plant Sciences, University of EdinburghEdinburgh, UK
- *Correspondence: Karl J. Oparka, Institute of Molecular Plant Sciences, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK. e-mail:
| |
Collapse
|
45
|
Gómez P, Sempere R, Aranda MA. Pepino mosaic virus and Tomato torrado virus: two emerging viruses affecting tomato crops in the Mediterranean basin. Adv Virus Res 2012; 84:505-32. [PMID: 22682177 DOI: 10.1016/b978-0-12-394314-9.00014-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular biology, epidemiology, and evolutionary dynamics of Pepino mosaic virus (PepMV) are much better understood than those of Tomato torrado virus (ToTV). The earliest descriptions of PepMV suggest a recent jump from nontomato species (e.g., pepino; Solanum muricatum) to tomato (Solanum lycopersicum). Its stability in contaminated plant tissues, its transmission through seeds, and the global trade of tomato seeds and fruits may have facilitated the global spread of PepMV. Stability and seed transmission also probably account for the devastating epidemics caused by already-established PepMV strains, although additional contributing factors may include the efficient transmission of PepMV by contact and the often-inconspicuous symptoms in vegetative tomato tissues. The genetic variability of PepMV is likely to have promoted the first phase of emergence (i.e., the species jump) and it continues to play an important role as the virus becomes more pervasive, progressing from regional outbreaks to pandemics. In contrast, the long-term progression of ToTV outbreaks is not yet clear and this may reflect factors such as the limited accumulation of the virus in infected plants, which has been shown to be approximately two orders of magnitude less than PepMV. The efficient dispersion of ToTV may therefore depend on dense populations of its principal vectors, Bemisia tabaci and Trialeurodes vaporariorum, as has been proposed for the necrogenic satellite RNA of Cucumber mosaic virus.
Collapse
Affiliation(s)
- Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-CEBAS, Consejo Superior de Investigaciones Científicas-CSIC, Campus Universitario de Espinardo, Espinardo, Murcia, Spain
| | | | | |
Collapse
|
46
|
Yang S, Wang T, Bohon J, Gagné MÈ, Bolduc M, Leclerc D, Li H. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus. J Mol Biol 2012; 422:263-73. [PMID: 22659319 PMCID: PMC3418392 DOI: 10.1016/j.jmb.2012.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/01/2012] [Accepted: 05/21/2012] [Indexed: 02/04/2023]
Abstract
Papaya mosaic virus (PapMV) is a filamentous plant virus that belongs to the Alphaflexiviridae family. Flexible filamentous viruses have defied more than two decades of effort in fiber diffraction, and no high-resolution structure is available for any member of the Alphaflexiviridae family. Here, we report our structural characterization of PapMV by X-ray crystallography and cryo-electron microscopy three-dimensional reconstruction. We found that PapMV is 135Å in diameter with a helical symmetry of ~10 subunits per turn. Crystal structure of the C-terminal truncated PapMV coat protein (CP) reveals a novel all-helix fold with seven α-helices. Thus, the PapMVCP structure is different from the four-helix-bundle fold of tobacco mosaic virus in which helix bundling dominates the subunit interface in tobacco mosaic virus and conveys rigidity to the rod virus. PapMV CP was crystallized as an asymmetrical dimer in which one protein lassoes the other by the N-terminal peptide. Mutation of residues critical to the inter-subunit lasso interaction abolishes CP polymerization. The crystal structure suggests that PapMV may polymerize via the consecutive N-terminal loop lassoing mechanism. The structure of PapMV will be useful for rational design and engineering of the PapMV nanoparticles into innovative vaccines.
Collapse
Affiliation(s)
- Shaoqing Yang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tao Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jen Bohon
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Marilène Bolduc
- Infectious Disease Research Centre, Laval University, Quebec, Canada
| | - Denis Leclerc
- Infectious Disease Research Centre, Laval University, Quebec, Canada
| | - Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
47
|
Yan F, Lu Y, Lin L, Zheng H, Chen J. The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing. PLoS One 2012; 7:e43242. [PMID: 22916231 PMCID: PMC3420909 DOI: 10.1371/journal.pone.0043242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/18/2012] [Indexed: 12/29/2022] Open
Abstract
The p25 triple gene block protein of Potato virus X (PVX) is multifunctional, participating in viral movement and acting as a suppressor of RNA silencing. The cell-to-cell movement of PVX is known to depend on the suppression function of p25. GFP-fused p25 accumulates in rod-like (RL) structures with intense fluorescence in cells. By monitoring the location of fluorescence at different times, we have now shown that the RL structure is composed of filaments. P25 mutants without the conditional ability to recover movement function could not form RL structures while the mutants that had the ability did form the structure, suggesting that the ability of p25 to form RL structures is necessary for its function in cell-to-cell movement, but not for its suppressor function. Moreover, chemical inhibition of microfilaments in cells destroyed the formation of the complete RL structure. Additionally, TGBp2 and TGBp3 were recruited into the RL structure, suggesting a relationship between the TGBps in virus movement.
Collapse
Affiliation(s)
- Fei Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
48
|
Komatsu K, Hirata H, Fukagawa T, Yamaji Y, Okano Y, Ishikawa K, Adachi T, Maejima K, Hashimoto M, Namba S. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Res 2012; 167:8-15. [DOI: 10.1016/j.virusres.2012.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 11/16/2022]
|
49
|
Rioux G, Majeau N, Leclerc D. Mapping the surface-exposed regions of papaya mosaic virus nanoparticles. FEBS J 2012; 279:2004-11. [PMID: 22524169 DOI: 10.1111/j.1742-4658.2012.08583.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In general, the structure of the papaya mosaic virus (PapMV) and other members of the potexviruses is poorly understood. Production of PapMV coat proteins in a bacterial expression system and their self-assembly in vitro into nanoparticles is a very useful tool to study the structure of this virus. Using recombinant PapMV nanoparticles that are similar in shape and appearance to the plant virus, we evaluated surface-exposed regions by two different methods, immunoblot assay and chemical modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide or diethyl-pyrocarbonate followed by mass spectrometry. Three regions were targeted by the two techniques. The N- and C-termini were shown to be surfaced exposed as expected. However, the region 125-136 was revealed for the first time as the major surface-exposed region of the nanoparticles. The presence of linear peptides at the surface was finally confirmed using antibodies directed to those peptides. It is likely that region 125-136 plays a key role in the lifecycle of PapMV and other members of the potexvirus group.
Collapse
Affiliation(s)
- Gervais Rioux
- Department of Microbiology Infectiology and Immunology, Infectious Disease Research Centre, Laval University, Quebec City, Canada
| | | | | |
Collapse
|
50
|
Abstract
Virtually all studies of structure and assembly of viral filaments have been made on plant and bacterial viruses. Structures have been determined using fiber diffraction methods at high enough resolution to construct reliable molecular models or several of the rigid plant tobamoviruses (related to tobacco mosaic virus, TMV) and the filamentous bacteriophages including Pf1 and fd. Lower-resolution structures have been determined for a number of flexible filamentous plant viruses using fiber diffraction and cryo-electron microscopy. Virions of filamentous viruses have numerous mechanical functions, including cell entry, viral disassembly, viral assembly, and cell exit. The plant viruses, which infect multicellular organisms, also use virions or virion-like assemblies for transport within the host. Plant viruses are generally self-assembling; filamentous bacteriophage assembly is combined with secretion from the host cell, using a complex molecular machine. Tobamoviruses and other plant viruses disassemble concomitantly with translation, by various mechanisms and involving various viral and host assemblies. Plant virus movement within the host also makes use of a variety of viral proteins and modified host assemblies.
Collapse
|