1
|
Hewitt TC, Sharma K, Zhang J, Chen C, Bajgain P, Bhatt D, Singh S, Olivera Firpo PD, Yang J, Wang Q, Upadhyaya N, Pozniak C, McIntosh R, Lagudah E, Zhang P, Rouse MN. Divergent molecular pathways govern temperature-dependent wheat stem rust resistance genes. Nat Commun 2025; 16:4905. [PMID: 40436869 PMCID: PMC12119863 DOI: 10.1038/s41467-025-60030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 05/13/2025] [Indexed: 06/01/2025] Open
Abstract
The wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt) causes severe crop losses worldwide. Several stem rust resistance (Sr) genes exhibit temperature-dependent immune responses. Sr6-mediated resistance is enhanced at lower temperatures, whereas Sr13 and Sr21 resistances are enhanced at higher temperatures. Here, we clone Sr6 using mutagenesis and resistance gene enrichment and sequencing (MutRenSeq), identifying it to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an integrated BED domain. Sr6 temperature sensitivity is also transferred to wheat plants transformed with the Sr6 gene. Differential gene expression analysis of near-isogenic lines inoculated with Pgt at varying temperatures reveals that genes upregulated in the low-temperature-effective Sr6 response differ from those upregulated in the high-temperature-effective responses associated with Sr13 and Sr21. These findings highlight divergent molecular pathways involved in temperature-sensitive immunity and inform future strategies for deployment and engineering of genetic resistance in response to a changing climate.
Collapse
Affiliation(s)
- Tim C Hewitt
- CSIRO Agriculture & Food, Canberra, ACT, Australia
- Immunology & Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Keshav Sharma
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN, USA
| | - Jianping Zhang
- University of Sydney, Plant Breeding Institute, School of Life and Environmental Sciences, Cobbitty, NSW, Australia
- Centre for Crop Genome Engineering and College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | | | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Dhara Bhatt
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Smriti Singh
- University of Sydney, Plant Breeding Institute, School of Life and Environmental Sciences, Cobbitty, NSW, Australia
| | - Pablo D Olivera Firpo
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Jun Yang
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Qiaoli Wang
- Centre for Crop Genome Engineering and College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | | | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert McIntosh
- University of Sydney, Plant Breeding Institute, School of Life and Environmental Sciences, Cobbitty, NSW, Australia.
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT, Australia.
- University of Sydney, Plant Breeding Institute, School of Life and Environmental Sciences, Cobbitty, NSW, Australia.
| | - Peng Zhang
- University of Sydney, Plant Breeding Institute, School of Life and Environmental Sciences, Cobbitty, NSW, Australia.
| | - Matthew N Rouse
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN, USA.
- USDA-ARS, Sugarcane Field Station, Canal Point, FL, USA.
| |
Collapse
|
2
|
Yang H, Yu G, Lv Z, Li T, Wang X, Fu Y, Zhu Z, Guo G, He H, Wang M, Qin G, Liu F, Zhong Z, Xue Y. Epigenome profiling reveals distinctive regulatory features and cis-regulatory elements in pepper. Genome Biol 2025; 26:121. [PMID: 40341060 PMCID: PMC12063414 DOI: 10.1186/s13059-025-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Pepper (Capsicum annuum) is one of the earliest and most widely cultivated vegetable crops worldwide. While the large and complex genome of pepper severely hampered the understanding of its functional genome, it also indicates a rich yet unexplored reservoir of regulatory elements (REs). In fact, variations in the REs represent a major driving force in evolution and domestication in both plants and animals. However, identification of the REs remains difficult especially for plants with complex genomes. RESULTS Here, we present a comprehensive epigenomic landscape of Capsicum annuum, Zhangshugang (ST-8), including chromatin accessibility, histone modifications, DNA methylation, and transcriptome. We also develop comparative crosslinked immunoprecipitation mass spectrometry to reveal the proteome associated with certain chromatin features. Through integrated analysis of these epigenetic features, we profile promoters and enhancers involved in development, heat stress and cucumber mosaic virus challenges. We generate stress responsive expression networks composed of potential transcription activators and their target genes. Through population genetics analysis, we demonstrate that some regulatory elements show lower nucleotide diversity compare to other genomic regions during evolution. CONCLUSIONS We demonstrate that variations in the REs may contribute to more diversified and agronomically desired phenotypes. Our study provides a foundation not only for studying gene regulation, but also for targeted genetic and epigenetic manipulation for pepper improvement.
Collapse
Affiliation(s)
- Hongji Yang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Guorong Yu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhidong Lv
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tonghui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Xi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Hunan, China
| | - Ying Fu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhangsheng Zhu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Guangjun Guo
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang He
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Ming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guochen Qin
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Hunan, China.
- Yuelushan Laboratory, Hunan, China.
| | - Zhenhui Zhong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China.
| |
Collapse
|
3
|
Ahmad N, Hussain H, Naeem M, Rahman SU, Khan KA, Iqbal B, Umar AW. Metabolites-induced co-evolutionary warfare between plants, viruses, and their associated vectors: So close yet so far away. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112165. [PMID: 38925477 DOI: 10.1016/j.plantsci.2024.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Agriculture and global food security encounter significant challenges due to viral threats. In the following decades, several molecular studies have focused on discovering biosynthetic pathways of numerous defensive and signaling compounds, as key regulators of plant interactions, either with viruses or their associated vectors. Nevertheless, the complexities of specialized metabolites mediated plant-virus-vector tripartite viewpoint and the identification of their co-evolutionary crossroads toward antiviral defense system, remain elusive. The current study reviews the various roles of plant-specialized metabolites (PSMs) and how plants use these metabolites to defend against viruses. It discusses recent examples of specialized metabolites that have broad-spectrum antiviral properties. Additionally, the study presents the co-evolutionary basis of metabolite-mediated plant-virus-insect interactions as a potential bioinspired approach to combat viral threats. The prospects also show promising metabolic engineering strategies aimed at discovering a wide range of PSMs that are effective in fending off viruses and their related vectors. These advances in understanding the potential role of PSMs in plant-virus interactions not only serve as a cornerstone for developing plant antiviral systems, but also highlight essential principles of biological control.
Collapse
Affiliation(s)
- Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Hamad Hussain
- Department of Agriculture, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23390, Pakistan.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, People's Republic of China.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, People's Republic of China.
| |
Collapse
|
4
|
Xu Y, Zhang S, Zhang M, Jiao S, Guo Y, Jiang T. The role of reactive oxygen species in plant-virus interactions. PLANT CELL REPORTS 2024; 43:197. [PMID: 39014054 DOI: 10.1007/s00299-024-03280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.
Collapse
Affiliation(s)
- Yao Xu
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Sutong Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mengyuan Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Sibo Jiao
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yifan Guo
- A School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Tong Jiang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
5
|
Mishra S, Duarte GT, Horemans N, Ruytinx J, Gudkov D, Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171567. [PMID: 38460702 DOI: 10.1016/j.scitotenv.2024.171567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia
| | - Gustavo Turqueto Duarte
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Nele Horemans
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Joske Ruytinx
- Department of Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia.
| |
Collapse
|
6
|
Sharma V, Mohammed SA, Devi N, Vats G, Tuli HS, Saini AK, Dhir YW, Dhir S, Singh B. Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. STRESS BIOLOGY 2024; 4:10. [PMID: 38311681 PMCID: PMC10838894 DOI: 10.1007/s44154-023-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024]
Abstract
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Shakeel A Mohammed
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Nisha Devi
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Gourav Vats
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Hardeep S Tuli
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Yashika W Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Sunny Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Bharat Singh
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
7
|
Zhang H, Yang Z, Cheng G, Luo T, Zeng K, Jiao W, Zhou Y, Huang G, Zhang J, Xu J. Sugarcane mosaic virus employs 6K2 protein to impair ScPIP2;4 transport of H2O2 to facilitate virus infection. PLANT PHYSIOLOGY 2024; 194:715-731. [PMID: 37930811 DOI: 10.1093/plphys/kiad567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Sugarcane mosaic virus (SCMV), one of the main pathogens causing sugarcane mosaic disease, is widespread in sugarcane (Saccharum spp. hybrid) planting areas and causes heavy yield losses. RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) NADPH oxidases and plasma membrane intrinsic proteins (PIPs) have been associated with the response to SCMV infection. However, the underlying mechanism is barely known. In the present study, we demonstrated that SCMV infection upregulates the expression of ScRBOHs and the accumulation of hydrogen peroxide (H2O2), which inhibits SCMV replication. All eight sugarcane PIPs (ScPIPs) interacted with SCMV-encoded protein 6K2, whereby two PIP2s (ScPIP2;1 and ScPIP2;4) were verified as capable of H2O2 transport. Furthermore, we revealed that SCMV-6K2 interacts with ScPIP2;4 via transmembrane domain 5 to interfere with the oligomerization of ScPIP2;4, subsequently impairing ScPIP2;4 transport of H2O2. This study highlights a mechanism adopted by SCMV to employ 6K2 to counteract the host resistance mediated by H2O2 to facilitate virus infection and provides potential molecular targets for engineering sugarcane resistance against SCMV.
Collapse
Affiliation(s)
- Hai Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zongtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Guangyuan Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Tingxu Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Kang Zeng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Wendi Jiao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yingshuan Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Guoqiang Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, P. R. China
| | - Jingsheng Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
8
|
Huh SU. Optimization of immune receptor-related hypersensitive cell death response assay using agrobacterium-mediated transient expression in tobacco plants. PLANT METHODS 2022; 18:57. [PMID: 35501866 PMCID: PMC9063123 DOI: 10.1186/s13007-022-00893-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND The study of the regulatory mechanisms of evolutionarily conserved Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins in animals and plants is of increasing importance due to understanding basic immunity and the value of various crop engineering applications of NLR immune receptors. The importance of temperature is also emerging when applying NLR to crops responding to global climate change. In particular, studies of pathogen effector recognition and autoimmune activity of NLRs in plants can quickly and easily determine their function in tobacco using agro-mediated transient assay. However, there are conditions that should not be overlooked in these cell death-related assays in tobacco. RESULTS Environmental conditions play an important role in the immune response of plants. The system used in this study was to establish conditions for optimal hypertensive response (HR) cell death analysis by using the paired NLR RPS4/RRS1 autoimmune and AvrRps4 effector recognition system. The most suitable greenhouse temperature for growing plants was fixed at 22 °C. In this study, RPS4/RRS1-mediated autoimmune activity, RPS4 TIR domain-dependent cell death, and RPS4/RRS1-mediated HR cell death upon AvrRps4 perception significantly inhibited under conditions of 65% humidity. The HR is strongly activated when the humidity is below 10%. Besides, the leaf position of tobacco is important for HR cell death. Position #4 of the leaf from the top in 4-5 weeks old tobacco plants showed the most effective HR cell death. CONCLUSIONS As whole genome sequencing (WGS) or resistance gene enrichment sequencing (RenSeq) of various crops continues, different types of NLRs and their functions will be studied. At this time, if we optimize the conditions for evaluating NLR-mediated HR cell death, it will help to more accurately identify the function of NLRs. In addition, it will be possible to contribute to crop development in response to global climate change through NLR engineering.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biological Science, Kunsan National University, Gunsan, 54150, Republic of Korea.
| |
Collapse
|
9
|
Kolozsváriné Nagy J, Schwarczinger I, Király L, Bacsó R, Ádám AL, Künstler A. Near-Isogenic Barley Lines Show Enhanced Susceptibility to Powdery Mildew Infection Following High-Temperature Stress. PLANTS 2022; 11:plants11070903. [PMID: 35406883 PMCID: PMC9003484 DOI: 10.3390/plants11070903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Barley cultivation is adversely affected by high-temperature stress, which may modulate plant defense responses to pathogens such as barley powdery mildew (Blumeria graminis f. sp. hordei, Bgh). Earlier research focused mainly on the influence of short-term heat stress (heat shock) of barley on Bgh infection. In this study, our aim was to investigate the effects of both short- and long-term heat stress (35 °C from 30 s to 5 days) on Bgh infection in the barley cultivar Ingrid and its near-isogenic lines containing different powdery mildew resistance genes (Mla12, Mlg, and mlo5) by analyzing symptom severity and Bgh biomass with RT-qPCR. The expression of selected barley defense genes (BAX inhibitor-1, Pathogenesis- related protein-1b, Respiratory burst oxidase homologue F2, and Heat shock protein 90-1) was also monitored in plants previously exposed to heat stress followed by inoculation with Bgh. We demonstrated that pre-exposure to short- and long-term heat stress negatively affects the resistance of all resistant lines manifested by the appearance of powdery mildew symptoms and increased Bgh biomass. Furthermore, prolonged heat stress (48 and 120 h) enhanced both Bgh symptoms and biomass in susceptible wild-type Ingrid. Heat stress suppressed and delayed early defense gene activation in resistant lines, which is a possible reason why resistant barley became partially susceptible to Bgh.
Collapse
|
10
|
Zhu F, Zhang Q, Che Y, Zhu P, Zhang Q, Ji Z. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2021; 22:1668-1687. [PMID: 34553471 PMCID: PMC8578835 DOI: 10.1111/mpp.13138] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l-2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qi‐Ping Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qin‐Qin Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
11
|
Király L, Albert R, Zsemberi O, Schwarczinger I, Hafez YM, Künstler A. Reactive Oxygen Species Contribute to Symptomless, Extreme Resistance to Potato virus X in Tobacco. PHYTOPATHOLOGY 2021; 111:1870-1884. [PMID: 33593113 DOI: 10.1094/phyto-12-20-0540-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we show that in tobacco (Nicotiana tabacum cultivar Samsun NN Rx1) the development of Rx1 gene-mediated, symptomless, extreme resistance to Potato virus X (PVX) is preceded by an early, intensive accumulation of the reactive oxygen species (ROS) superoxide (O2·-), evident between 1 and 6 h after inoculation and associated with increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities. This suggests a direct contribution of this ROS to virus restriction during symptomless, extreme resistance. Superoxide inhibition in PVX-inoculated leaves by infiltration of antioxidants (superoxide dismutase [SOD] and catalase [CAT]) partially suppresses extreme resistance in parallel with the appearance of localized leaf necrosis resembling a hypersensitive resistance (HR) response. F1 progeny from crosses of Rx1 and ferritin overproducer (deficient in production of the ROS OH·) tobaccos also display a suppressed extreme resistance to PVX, because significantly increased virus levels are coupled to HR, suggesting a role of the hydroxyl radical (OH·) in this symptomless antiviral defense. In addition, treatment of PVX-susceptible tobacco with a superoxide-generating agent (riboflavin/methionine) results in HR-like symptoms and reduced PVX titers. Finally, by comparing defense responses during PVX-elicited symptomless, extreme resistance and HR-type resistance elicited by Tobacco mosaic virus, we conclude that defense reactions typical of an HR (e.g., induction of cell death/ROS-regulator genes and antioxidants) are early and transient in the course of extreme resistance. Our results demonstrate the contribution of early accumulation of ROS (superoxide, OH·) in limiting PVX replication during symptomless extreme resistance and support earlier findings that virus-elicited HR represents a delayed, slower resistance response than symptomless, extreme resistance.
Collapse
Affiliation(s)
- Lóránt Király
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| | - Réka Albert
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| | - Orsolya Zsemberi
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Ildikó Schwarczinger
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| | - Yaser Mohamed Hafez
- EPCRS Excellence Center & Plant Pathology and Biotechnology Lab, Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr-El-Sheikh, Egypt
| | - András Künstler
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| |
Collapse
|
12
|
Combined Abiotic Stresses Repress Defense and Cell Wall Metabolic Genes and Render Plants More Susceptible to Pathogen Infection. PLANTS 2021; 10:plants10091946. [PMID: 34579478 PMCID: PMC8473397 DOI: 10.3390/plants10091946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023]
Abstract
Plants are frequently exposed to simultaneous abiotic and biotic stresses, a condition that induces complex responses, negatively affects crop productivity and is becoming more exacerbated with current climate change. In this study, we investigated the effects of individual and combined heat and osmotic stresses on Arabidopsis susceptibility to the biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic pathogen Botrytiscinerea (Bc). Our data showed that combined abiotic and biotic stresses caused an enhanced negative impact on plant disease resistance in comparison with individual Pst and Bc infections. Pretreating plants with individual heat or combined osmotic-heat stress strongly reduced the expression of many defense genes including pathogenesis-related proteins (PR-1 and PR-5) and the TN-13 gene encoding the TIR-NBS protein, which are involved in disease resistance towards Pst. We also found that combined osmotic-heat stress caused high plant susceptibility to Bc infection and reduced expression of a number of defense genes, including PLANT DEFENSIN 1.3 (PDF1.3), BOTRYTIS SUSCEPTIBLE 1 (BOS1) and THIONIN 2.2 (THI2.2) genes, which are important for disease resistance towards Bc. The impaired disease resistance against both Pst and Bc under combined abiotic stress is associated with reduced expression of cell wall-related genes. Taken together, our data emphasize that the combination of global warming-associated abiotic stresses such as heat and osmotic stresses makes plants more susceptible to pathogen infection, thus threatening future global food security.
Collapse
|
13
|
Ahamedemujtaba V, Atheena PV, Bhat AI, Krishnamurthy KS, Srinivasan V. Symptoms of piper yellow mottle virus in black pepper as influenced by temperature and relative humidity. Virusdisease 2021; 32:305-313. [PMID: 34423100 DOI: 10.1007/s13337-021-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022] Open
Abstract
Masking of symptoms in winter and their re-appearance in black pepper (Piper nigrum L.) infected with piper yellow mottle virus (PYMoV) in summer is common, especially on new flushes that appear after pre-monsoon showers. Plants of nineteen cultivars of black pepper infected with PYMoV but without any visible symptoms were grown in a polyhouse under natural conditions and in a greenhouse under controlled conditions from January 2019 to January 2020. The number of plants expressing symptoms in the polyhouse increased gradually from 1% during the 3rd standard meteorological week (SMW) (16 January) to 41% during the 21st SMW (22 May), when the afternoon temperature was 30-40 °C and relative humidity (RH) was 75-93%, but began declining thereafter until the 53rd SMW (1 January), when the afternoon temperature was 30-36 °C and RH was 65-86%. The proportion of plants expressing symptoms varied with the cultivar. However, in the greenhouse, in which temperature and RH were maintained at approximately 26 °C and 80%, respectively, not more than 2% of the plants expressed symptoms. The number of symptomatic plants was positively correlated to maximum temperature (T Max) and maximum relative humidity (RH Max) in the afternoon. Based on this observation, a model for predicting the percentage of symptomatic plants was developed using stepwise regression analysis. Plants at the two sites did not differ significantly in the concentration of virus (virus titre) but differed significantly in the content of total carbohydrates, lipid peroxidase, and phenols. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00686-3.
Collapse
Affiliation(s)
- V Ahamedemujtaba
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - P V Atheena
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - A I Bhat
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - K S Krishnamurthy
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| |
Collapse
|
14
|
Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ, Molina-Moya E, Sandalio LM. An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5857-5875. [PMID: 34111283 PMCID: PMC8355756 DOI: 10.1093/jxb/erab271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 05/09/2023]
Abstract
Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Laura C Terrón-Camero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), Granada, Spain
| | - M Ángeles Peláez-Vico
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| |
Collapse
|
15
|
Abebe DA, van Bentum S, Suzuki M, Ando S, Takahashi H, Miyashita S. Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism. Commun Biol 2021; 4:947. [PMID: 34373580 PMCID: PMC8352862 DOI: 10.1038/s42003-021-02482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/23/2021] [Indexed: 11/15/2022] Open
Abstract
Land plant genomes carry tens to hundreds of Resistance (R) genes to combat pathogens. The induction of antiviral R-gene-mediated resistance often results in a hypersensitive response (HR), which is characterized by virus containment in the initially infected tissues and programmed cell death (PCD) of the infected cells. Alternatively, systemic HR (SHR) is sometimes observed in certain R gene-virus combinations, such that the virus systemically infects the plant and PCD induction follows the spread of infection, resulting in systemic plant death. SHR has been suggested to be the result of inefficient resistance induction; however, no quantitative comparison has been performed to support this hypothesis. In this study, we report that the average number of viral genomes that establish cell infection decreased by 28.7% and 12.7% upon HR induction by wild-type cucumber mosaic virus and SHR induction by a single-amino acid variant, respectively. These results suggest that a small decrease in the level of resistance induction can change an HR to an SHR. Although SHR appears to be a failure of resistance at the individual level, our simulations imply that suicidal individual death in SHR may function as an antiviral mechanism at the population level, by protecting neighboring uninfected kin plants.
Collapse
Affiliation(s)
- Derib A Abebe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sietske van Bentum
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Machi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
16
|
Schwarczinger I, Kolozsváriné Nagy J, Király L, Mészáros K, Bányai J, Kunos V, Fodor J, Künstler A. Heat Stress Pre-Exposure May Differentially Modulate Plant Defense to Powdery Mildew in a Resistant and Susceptible Barley Genotype. Genes (Basel) 2021; 12:genes12050776. [PMID: 34069722 PMCID: PMC8160753 DOI: 10.3390/genes12050776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Heat stress negatively affects barley production and under elevated temperatures defense responses to powdery mildew (Blumeria graminis f. sp. hordei, Bgh) are altered. Previous research has analyzed the effects of short-term (30 s to 2 h) heat stress, however, few data are available on the influence of long-term exposure to heat on powdery mildew infections. We simultaneously assessed the effects of short and long term heat pre-exposure on resistance/susceptibility of barley to Bgh, evaluating powdery mildew infection by analyzing symptoms and Bgh biomass with RT-qPCR in barley plants pre-exposed to high temperatures (28 and 35 °C from 30 s to 5 days). Plant defense gene expression after heat stress pre-exposure and inoculation was also monitored. Our results show that prolonged heat stress (24, 48 and 120 h) further enhanced Bgh susceptibility in a susceptible barley line (MvHV118-17), while a resistant line (MvHV07-17) retained its pathogen resistance. Furthermore, prolonged heat stress significantly repressed the expression of several defense-related genes (BAX inhibitor-1, Pathogenesis related-1b and Respiratory burst oxidase homologue F2) in both resistant and susceptible barley lines. Remarkably, heat-suppressed defense gene expression returned to normal levels only in MvHV07-17, a possible reason why this barley line retains Bgh resistance even at high temperatures.
Collapse
Affiliation(s)
- Ildikó Schwarczinger
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - Judit Kolozsváriné Nagy
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
- Correspondence: ; Tel.: +36-1-487-7527
| | - Klára Mészáros
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - Judit Bányai
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - Viola Kunos
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - József Fodor
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| |
Collapse
|
17
|
Differential Tropism in Roots and Shoots of Resistant and Susceptible Cassava ( Manihot esculenta Crantz) Infected by Cassava Brown Streak Viruses. Cells 2021; 10:cells10051221. [PMID: 34067728 PMCID: PMC8156387 DOI: 10.3390/cells10051221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Cassava brown streak disease (CBSD) is a destructive disease of cassava in Eastern and Central Africa. Because there was no source of resistance in African varieties to provide complete protection against the viruses causing the disease, we searched in South American germplasm and identified cassava lines that did not become infected with the cassava brown streak viruses. These findings motivated further investigations into the mechanism of virus resistance. We used RNAscope® in situ hybridization to localize cassava brown streak virus in cassava germplasm lines that were highly resistant (DSC 167, immune) or that restricted virus infections to stems and roots only (DSC 260). We show that the resistance in those lines is not a restriction of long-distance movement but due to preventing virus unloading from the phloem into parenchyma cells for replication, thus restricting the virus to the phloem cells only. When DSC 167 and DSC 260 were compared for virus invasion, only a low CBSV signal was found in phloem tissue of DSC 167, indicating that there is no replication in this host, while the presence of intense hybridization signals in the phloem of DSC 260 provided evidence for virus replication in companion cells. In neither of the two lines studied was there evidence of virus replication outside the phloem tissues. Thus, we conclude that in resistant cassava lines, CBSV is confined to the phloem tissues only, in which virus replication can still take place or is arrested.
Collapse
|
18
|
Saadani M, Hönig L, Bien S, Koehler M, Rutten G, Wubet T, Braun U, Bruelheide H. Local Tree Diversity Suppresses Foliar Fungal Infestation and Decreases Morphological But Not Molecular Richness in a Young Subtropical Forest. J Fungi (Basel) 2021; 7:173. [PMID: 33673628 PMCID: PMC7997179 DOI: 10.3390/jof7030173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Leaf fungal pathogens alter their host species' performance and, thus, changes in fungal species composition can translate into effects at the tree community scale. Conversely, the functional diversity of tree species in a host tree's local neighbourhood can affect the host's foliar fungal infestation. Therefore, understanding the factors that affect fungal infestations is important to advance our understanding of biodiversity-ecosystem functioning (BEF) relationships. Here we make use of the largest BEF tree experiment worldwide, the BEF-China experiment, where we selected tree host species with different neighbour species. Identifying fungal taxa by microscopy and by high-throughput DNA sequencing techniques based on the internal transcribed spacer (ITS) rDNA region, we analysed the fungal richness and infestation rates of our target trees as a function of local species richness. Based on the visual microscopic assessment, we found that a higher tree diversity reduced fungal richness and host-specific fungal infestation in the host's local neighbourhood, while molecular fungal richness was unaffected. This diversity effect was mainly explained by the decrease in host proportion. Thus, the dilution of host species in the local neighbourhood was the primary mechanism in reducing the fungal disease severity. Overall, our study suggests that diverse forests will suffer less from foliar fungal diseases compared to those with lower diversity.
Collapse
Affiliation(s)
- Mariem Saadani
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Steffen Bien
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Michael Koehler
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Gemma Rutten
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle, Germany
| | - Uwe Braun
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| |
Collapse
|
19
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
20
|
Respiratory Burst Oxidase Homologs RBOHD and RBOHF as Key Modulating Components of Response in Turnip Mosaic Virus- Arabidopsis thaliana (L.) Heyhn System. Int J Mol Sci 2020; 21:ijms21228510. [PMID: 33198167 PMCID: PMC7696843 DOI: 10.3390/ijms21228510] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Turnip mosaic virus (TuMV) is one of the most important plant viruses worldwide. It has a very wide host range infecting at least 318 species in over 43 families, such as Brassicaceae, Fabaceae, Asteraceae, or Chenopodiaceae from dicotyledons. Plant NADPH oxidases, the respiratory burst oxidase homologues (RBOHs), are a major source of reactive oxygen species (ROS) during plant–microbe interactions. The functions of RBOHs in different plant–pathogen interactions have been analyzed using knockout mutants, but little focus has been given to plant–virus responses. Therefore, in this work we tested the response after mechanical inoculation with TuMV in ArabidopsisrbohD and rbohF transposon knockout mutants and analyzed ultrastructural changes after TuMV inoculation. The development of the TuMV infection cycle was promoted in rbohD plants, suggesting that RbohD plays a role in the Arabidopsis resistance response to TuMV. rbohF and rbohD/F mutants display less TuMV accumulation and a lack of virus cytoplasmic inclusions were observed; these observations suggest that RbohF promotes viral replication and increases susceptibility to TuMV. rbohD/F displayed a reduction in H2O2 but enhanced resistance similarly to rbohF. This dominant effect of the rbohF mutation could indicate that RbohF acts as a susceptibility factor. Induction of hydrogen peroxide by TuMV was partially compromised in rbohD mutants whereas it was almost completely abolished in rbohD/F, indicating that these oxidases are responsible for most of the ROS produced in this interaction. The pattern of in situ H2O2 deposition after infection of the more resistant rbohF and rbohD/F genotypes suggests a putative role of these species on systemic signal transport. The ultrastructural localization and quantification of pathogenesis-related protein 1 (PR1) indicate that ROS produced by these oxidases also influence PR1 distribution in the TuMV-A.thaliana pathosystem. Our results revealed the highest activation of PR1 in rbohD and Col-0. Thus, our findings indicate a correlation between PR1 accumulation and susceptibility to TuMV. The specific localization of PR1 in the most resistant genotypes after TuMV inoculation may indicate a connection of PR1 induction with susceptibility, which may be characteristic for this pathosystem. Our results clearly indicate the importance of NADPH oxidases RbohD and RbohF in the regulation of the TuMV infection cycle in Arabidopsis. These findings may help provide a better understanding of the mechanisms modulating A.thaliana–TuMV interactions.
Collapse
|
21
|
Lastochkina O, Garshina D, Allagulova C, Fedorova K, Koryakov I, Vladimirova A. Application of Endophytic Bacillus subtilis and Salicylic Acid to Improve Wheat Growth and Tolerance under Combined Drought and Fusarium Root Rot Stresses. AGRONOMY 2020; 10:1343. [DOI: 10.3390/agronomy10091343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
In nature, plants are constantly exposed to a varied abiotic and biotic stresses or their combinations, limiting the productivity of major crops, including wheat. Combinations of drought and soil-borne Fusarium-instigated diseases are the most common combinations of stresses, significantly reducing wheat yield around the world. Here, were analyzed the potential of application of endophytic bacteria Bacillus subtilis (strain 10–4) together with the natural signal molecule salicylic acid (SA) to improve growth and tolerance of Triticum aestivum L. (wheat) plants under combined drought and Fusarium culmorum-instigated root rot (FRR) stresses. It was revealed that pre-sowing treatment with B. subtilis 10–4, SA, and B. subtilis 10–4 + SA, both under normal and combined drought conditions, notably reduced (by 50–80% or more) the incidence of FRR development in wheat plants, with the most notable effect for B. subtilis 10–4 + SA (wherein disease symptoms were almost absent). Moreover, B. subtilis 10–4, SA, and especially B. subtilis 10–4 + SA increased plant growth (root and shoot length, fresh and dry biomass) under normal (up to 20–50%), drought (up to 15–40%), FRR (up to 15–30%), and combined drought + FRR stresses (up to 20%), with the maximum effect for B. subtilis 10–4 + SA. Additionally, B. subtilis 10–4, SA, and B. subtilis 10–4 + SA decreased stress (drought, FRR, and combined drought + FRR)-instigated lipid peroxidation and osmotic damages of plant cells. The findings indicate that endophytic bacteria B. subtilis 10–4 alone and in a mixture with SA may be used as an effective eco-friendly agent to improve wheat growth and tolerance under the influence of drought, FRR, and combinations of these stresses.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Darya Garshina
- Bashkir Research Institute of Agriculture—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; 450059 Ufa, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Igor Koryakov
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Anastasiya Vladimirova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
22
|
Zhu F, Zhu P, Xu F, Che Y, Ma Y, Ji Z. Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2020; 21:1212-1226. [PMID: 32713165 PMCID: PMC7411664 DOI: 10.1111/mpp.12974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 05/21/2023]
Abstract
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Fei Xu
- Applied Biotechnology CenterWuhan Institute of BioengineeringWuhanChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yi‐Ming Ma
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
23
|
Tenllado F, Canto T. Effects of a changing environment on the defenses of plants to viruses. Curr Opin Virol 2020; 42:40-46. [PMID: 32531746 DOI: 10.1016/j.coviro.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Since their appearance, plants have lived and evolved within changing environments that were determined by a host of abiotic and biotic factors. It is in this evolutionary context that both, the mechanisms of defense by plants against viruses and the viral reprogramming of plant routes were established, which combined define the outcomes of compatible infections. Current alterations in the chemistry of the atmosphere are causing changes in the global context in which plants and viruses interact that are unprecedented not in their nature but in their pace. We discuss here the potential reach of environment changes taking place now, and how the main abiotic parameters that are driving them can affect defense responses of plants to viruses in compatible infections.
Collapse
Affiliation(s)
- Francisco Tenllado
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomas Canto
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
24
|
Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, Tai L, Liu WT, Li WQ, Chen KM. NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells 2020; 9:E437. [PMID: 32069961 PMCID: PMC7072856 DOI: 10.3390/cells9020437] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases (NOXs), mostly known as respiratory burst oxidase homologs (RBOHs), are the key producers of reactive oxygen species (ROS) in plants. A lot of literature has addressed ROS signaling in plant development regulation and stress responses as well as on the enzyme's structure, evolution, function, regulation and associated mechanisms, manifesting the role of NOXs/RBOHs as the vital performers and center hubs during plant growth and signaling. This review focuses on recent advances of NOXs/RBOHs on cell growth, hormone interaction, calcium signaling, abiotic stress responses, and immunity. Several primary particles, including Ca2+, CDPKs, BIK1, ROPs/RACs, CERK, FER, ANX, SnRK and SIK1-mediated regulatory mechanisms, are fully summarized to illustrate the signaling behavior of NOXs/RBOHs and their sophisticated and dexterous crosstalks. Diverse expression and activation regulation models endow NOXs/RBOHs powerful and versatile functions in plants to maintain innate immune homeostasis and development integrity. NOXs/RBOHs and their related regulatory items are the ideal targets for crop improvement in both yield and quality during agricultural practices.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, Henan, China
| | - Peng-Qi Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
25
|
Dossa GS, Quibod I, Atienza-Grande G, Oliva R, Maiss E, Vera Cruz C, Wydra K. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Sci Rep 2020; 10:683. [PMID: 31959799 PMCID: PMC6971257 DOI: 10.1038/s41598-020-57499-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023] Open
Abstract
Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide. Increasing temperature often turns into inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by increasing temperature has been reported. Influence of high temperature on both R genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions and transcriptomic analysis performed. The pyramided line IRBB67 showed no differences in lesion length between both temperature regimes, demonstrating that non-effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area under both temperature regimes in IRBB67. Time course transcriptomic analysis revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our findings highlight altered cellular compartments and point at a role of the cell wall involved in Xoo resistance and heat stress tolerance in both susceptible (IR24) and the resistant (IRBB67) NILs. Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high temperature which may have enhanced its resistance. The interplay of both heat stress and Xoo responses as determined by up-regulated and down-regulated genes demonstrates how resistant plants cope with combined biotic and abiotic stresses.
Collapse
Affiliation(s)
- Gerbert Sylvestre Dossa
- International Rice Research Institute, Los Baños, Philippines.
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany.
- Food and Agriculture Organization, Sub Regional Office for Central Africa, PO. Box 2643, Libreville, Gabon.
| | - Ian Quibod
- International Rice Research Institute, Los Baños, Philippines
| | - Genelou Atienza-Grande
- International Rice Research Institute, Los Baños, Philippines
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
| | - Ricardo Oliva
- International Rice Research Institute, Los Baños, Philippines
| | - Edgar Maiss
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany
| | | | - Kerstin Wydra
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany
- Plant Production and Climate Change, Erfurt University of Applied Sciences, Erfurt, Germany
| |
Collapse
|
26
|
Alternative Pathway is Involved in Nitric Oxide-Enhanced Tolerance to Cadmium Stress in Barley Roots. PLANTS 2019; 8:plants8120557. [PMID: 31795459 PMCID: PMC6963264 DOI: 10.3390/plants8120557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
Abstract
Alternative pathway (AP) has been widely accepted to be involved in enhancing tolerance to various environmental stresses. In this study, the role of AP in response to cadmium (Cd) stress in two barley varieties, highland barley (Kunlun14) and barley (Ganpi6), was investigated. Results showed that the malondialdehyde (MDA) content and electrolyte leakage (EL) level under Cd stress increased in two barley varieties. The expressions of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein amount were clearly induced more in Kunlun14 under Cd stress, and these parameters were further enhanced by applying sodium nitroprussid (SNP, a NO donor). Moreover, H2O2 and O2− contents were raised in the Cd-treated roots of two barley varieties, but they were markedly relieved by exogenous SNP. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting that AP contributes to NO-enhanced Cd stress tolerance. Further study demonstrated that the effect of SHAM application on reactive oxygen species (ROS)-related scavenging enzymes and antioxidants was minimal. These observations showed that AP exerts an indispensable function in NO-enhanced Cd stress tolerance in two barley varieties. AP was mainly responsible for regulating the ROS accumulation to maintain the homeostasis of redox state.
Collapse
|
27
|
Künstler A, Király L, Kátay G, Enyedi AJ, Gullner G. Glutathione Can Compensate for Salicylic Acid Deficiency in Tobacco to Maintain Resistance to Tobacco Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2019; 10:1115. [PMID: 31608082 PMCID: PMC6769422 DOI: 10.3389/fpls.2019.01115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/14/2019] [Indexed: 05/12/2023]
Abstract
Earlier studies showed that the artificial elevation of endogenous glutathione (GSH) contents can markedly increase the resistance of plants against different viruses. On the other hand, salicylic acid (SA)-deficient NahG plants display enhanced susceptibility to viral infections. In the present study, the biochemical mechanisms underlying GSH-induced resistance were investigated in various tobacco biotypes displaying markedly different GSH and SA levels. The endogenous GSH levels of Nicotiana tabacum cv. Xanthi NN and N. tabacum cv. Xanthi NN NahG tobacco leaves were increased by infiltration of exogenous GSH or its synthetic precursor R-2-oxo-4-thiazolidine-carboxylic acid (OTC). Alternatively, we also used tobacco lines containing high GSH levels due to transgenes encoding critical enzymes for cysteine and GSH biosynthesis. We crossed Xanthi NN and NahG tobaccos with the GSH overproducer transgenic tobacco lines in order to obtain F1 progenies with increased levels of GSH and decreased levels of SA. We demonstrated that in SA-deficient NahG tobacco the elevation of in planta GSH and GSSG levels either by exogenous GSH or by crossing with glutathione overproducing plants confers enhanced resistance to Tobacco mosaic virus (TMV) manifested as both reduced symptoms (i.e. suppression of hypersensitive-type localized necrosis) and lower virus titers. The beneficial effects of elevated GSH on TMV resistance was markedly stronger in NahG than in Xanthi NN leaves. Infiltration of exogenous GSH and OTC or crossing with GSH overproducer tobacco lines resulted in a substantial rise of bound SA and to a lesser extent of free SA levels in tobacco, especially following TMV infection. Significant increases in expression of pathogenesis related (NtPR-1a, and NtPRB-1b), and glutathione S-transferase (NtGSTtau, and NtGSTphi) genes were evident in TMV-inoculated leaves in later stages of pathogenesis. However, the highest levels of defense gene expression were associated with SA-deficiency, rather than enhanced TMV resistance. In summary, elevated levels of glutathione in TMV-infected tobacco can compensate for SA deficiency to maintain virus resistance. Our results suggest that glutathione-induced redox changes are important components of antiviral signaling in tobacco.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexander J Enyedi
- Office of Academic Affairs, Humboldt State University, Arcata, CA, United States
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
28
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
29
|
Luan H, Niu H, Luo J, Zhi H. Soybean Cytochrome b5 Is a Restriction Factor for Soybean Mosaic Virus. Viruses 2019; 11:E546. [PMID: 31212671 PMCID: PMC6631803 DOI: 10.3390/v11060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybeans (Glycine max). In this study, an interaction between the SMV P3 protein and cytochrome b5 was detected by yeast two-hybrid assay, and bimolecular fluorescence complementation assay showed that the interaction took place at the cell periphery. Further, the interaction was confirmed by co-immunoprecipitation analysis. Quantitative real-time polymerase chain reaction analysis revealed that GmCYB5 gene was differentially expressed in resistant and susceptible soybean plants after inoculation with SMV-SC15 strain. To test the involvement of this gene in SMV resistance, the GmCYB5 was silenced using a bean pod mottle virus (BPMV)-based vector construct. Results showed that GmCYB5-1 was 83% and 99% downregulated in susceptible (NN1138-2) and resistant (RN-9) cultivars, respectively, compared to the empty vector-treated plants. Silencing of GmCYB5 gene promotes SMV replication in soybean plants. Our results suggest that during SMV infection, the host CYB5 protein targets P3 protein to inhibit its proliferation. Taken together, these results suggest that CYB5 is an important factor in SMV infection and replication in soybeans, which could help soybean breeders develop SMV resistant soybean cultivars.
Collapse
Affiliation(s)
- Hexiang Luan
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haopeng Niu
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinyan Luo
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
30
|
Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum. Genes Genomics 2019; 41:1027-1043. [PMID: 31140145 DOI: 10.1007/s13258-019-00821-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Membrane-bound NADPH oxidases (Nicotinamide adenine ainucleotide phosphate oxidase) also called respiratory burst oxidase homologs (Rboh) play an essential role in ROS production under normal as well as environmental stress conditions in plants. OBJECTIVE To identify and study respiratory burst homologs (Rboh) from the wheat genome as well as characterize their role in various biological and molecular processes along with expression in response to biotic and abiotic stresses. METHODS The Rboh homologs in the wheat genome were predicted based on data processing, alignment of sequences and phylogenetic analysis of sequences in numerous plant species and wheat. The conserved motifs were known followed by domain design study. The 3-D structure prediction and similarity modeling were administered for NADPH enzyme domain. Gene ontology and a functional study were done in addition to expression analysis of Triticum aestivum respiratory burst oxidase (TaRboh) gene family in response to biotic as well as abiotic stress. RESULTS Phylogenetic analysis of Rboh gene family members among seven plant species including wheat, classified the family into four subfamilies. Rboh genes are mainly involved in various biological processes such as Response to oxidative stress, Superoxide anion generation, Hydrogen peroxide biosynthetic process. Among the molecular functions, calcium ion binding, peroxidase activity, oxidoreductase activity, superoxide-generating NADPH oxidase activity are essential. Enzyme annotation of the family and superfamily revealed that it encodes to five structural clusters and coding to enzymes NAD(P)H oxidase (H2O2-forming) (EC:1.6.3.1), Ferric-chelate reductase (NADH) (EC: 1.16.1.7), Peroxidase (EC: 1.11.1.7), Ribose-phosphate diphosphokinase (EC: 2.7.6.1). The enzymes contain six membrane-spanning domains, two hemes, and conserved motifs associated with NADPH, EF-hand and FAD binding. The outcomes additionally reflect a distinct role of this enzyme in different molecular functions which are responsible for the stress signaling. Further, the transcripts of TaRboh found expressed in various plant parts such as stem, leaves, spike, seed, and roots. We also observed expression of these gene family members under drought/combination of drought + heat and important wheat pathogens such as Puccinia striformis, Blumeria graminis f.sp. tritici, Fusarium graminiarum, F. pseudograminiarum, and Zymoseptoria tritici. CONCLUSIONS The investigation demonstrated that identified respiratory burst homologs (Rboh) in T. aestivum were involved in pathogen activated ROS production and have regulatory functions in cell death and defense responses.
Collapse
|
31
|
Chojak-Koźniewska J, Kuźniak E, Zimny J. The Effects of Combined Abiotic and Pathogen Stress in Plants: Insights From Salinity and Pseudomonas syringae pv lachrymans Interaction in Cucumber. FRONTIERS IN PLANT SCIENCE 2018; 9:1691. [PMID: 30524462 PMCID: PMC6256280 DOI: 10.3389/fpls.2018.01691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/31/2018] [Indexed: 05/13/2023]
Abstract
Plants are often challenged by abiotic and biotic stresses acting in combination and the response to combinatorial stress differs from that triggered by each factor individually. Although salinity and pathogens are major stressors limiting plant growth and productivity worldwide, their interaction is poorly understood. The reactions to pathogens overlap with those to abiotic stresses, and reactive oxygen species (ROS) and stress hormones represent central nodes in the interacting signaling pathways. Usually, abiotic stress negatively affects plant susceptibility to disease. Specific focus of this review is on cucumber plants exposed to salt stress and thereafter infected with Pseudomonas syringae pv lachrymans (Psl). We addressed this problem by discussing the changes in photochemistry, the antioxidant system, primary carbon metabolism, salicylic acid (SA) and abscisic acid (ABA) contents. Salt-treated plants were more prone to infection and this effect was determined by changes in the hormonal and redox balance as well as the carboxylate metabolism and activities of some NADPH-generating enzymes. Our detailed understanding of the interactive effects of biotic and abiotic stresses is fundamental to achieve enhanced tolerance to combination stress in agronomically important crops.
Collapse
Affiliation(s)
- Joanna Chojak-Koźniewska
- Genetically Modified Organisms Controlling Laboratory, Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lódź, Lódź, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland
| |
Collapse
|
32
|
Abdelaal KAA, Hafez YM, El-Afry MM, Tantawy DS, Alshaal T. Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30199-30211. [PMID: 30155630 DOI: 10.1007/s11356-018-3023-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Water deficit stress is an abiotic stress that causes reductions in growth and yield of many field crops around the world. The present research was aimed to elucidate the mitigating efficiency of exogenous application of select osmoregulators and biostimulants, i.e., potassium dihydrogen phosphate, actosol® (humic acid), Amino more (amino acids), and Compound fertilizer, applied as a spray that reached both foliage and the soil, on growth characteristics, antioxidant capacity, and productivity of barley (Hordeum vulgare L. Giza123) under water deficit stress during two successive growing seasons of field experiments in Egypt. Water deficit resulted in stress as estimated by stress indicators and decreased growth and poor health and development as reflected in statistically significant decreases in chlorophyll a and b and major nutrient (NPK) levels in tissues, stem length, number of leaves, and fresh and dry mass as well as yield components such as spike length, grains per spike, biological yield, grain yield, and 1000-grain weight. As a response to water deficit stress, reactive oxygen species (ROS, i.e., superoxide and hydrogen peroxide) levels increased significantly resulting in lipid peroxidation and decreased membrane integrity and significant increases in antioxidant enzymes such as catalase (CAT), polyphenol oxidase (PPO), and peroxidase (POX). All four treatments alleviated the detrimental impacts of water deficit stress as evidenced by statistically significantly increased photosynthetic pigment concentration, tissue NPK levels, growth, and yield parameters compared to the water deficit-stressed control, while the stress responses were significantly reduced. The osmoregulators used either partially restored the growth and yield of osmotic-stressed barley plants or certain treatments enhanced them. All osmoregulators tested mitigated the adverse impacts of water deficit stress on barley plants, but the highest induction was found when plants were treated with actosol®. The beneficial effects of the osmoregulators tested were the strongest overall in the order actosol® ˃ potassium dihydrogen phosphate ˃ Amino more ˃ Compound fertilizer.
Collapse
Affiliation(s)
- Khaled A A Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Yaser M Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Mohamed M El-Afry
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Dalia S Tantawy
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Tarek Alshaal
- Soil and Water Sciences Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
- Department of Agricultural Botany, Plant Physiology and Biotechnology, Institute of Crop Sciences, University of Debrecen - AGTC, Böszörményi út 138, Debrecen, 4032, Hungary.
| |
Collapse
|
33
|
Künstler A, Bacsó R, Albert R, Barna B, Király Z, Hafez YM, Fodor J, Schwarczinger I, Király L. Superoxide (O 2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:115-125. [PMID: 29775863 DOI: 10.1016/j.plaphy.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O2.-) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49 °C, 45 s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Renáta Bacsó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Réka Albert
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Zoltán Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Yaser Mohamed Hafez
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary.
| |
Collapse
|
34
|
Lukan T, Baebler Š, Pompe-Novak M, Guček K, Zagorščak M, Coll A, Gruden K. Cell Death Is Not Sufficient for the Restriction of Potato Virus Y Spread in Hypersensitive Response-Conferred Resistance in Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:168. [PMID: 29497431 PMCID: PMC5818463 DOI: 10.3389/fpls.2018.00168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 05/25/2023]
Abstract
Hypersensitive response (HR)-conferred resistance to viral infection restricts the virus spread and is accompanied by the induction of cell death, manifested as the formation of necrotic lesions. While it is known that salicylic acid is the key component in the orchestration of the events restricting viral spread in HR, the exact function of the cell death in resistance is still unknown. We show that potato virus Y (PVY) can be detected outside the cell death zone in Ny-1-mediated HR in potato plants (cv. Rywal), observed as individual infected cells or small clusters of infected cells outside the cell death zone. By exploiting the features of temperature dependent Ny-1-mediated resistance, we confirmed that the cells at the border of the cell death zone are alive and harbor viable PVY that is able to reinitiate infection. To get additional insights into this phenomenon we further studied the dynamics of both cell death zone expansion and occurrence of viral infected cell islands outside it. We compared the response of Rywal plants to their transgenic counterparts, impaired in SA accumulation (NahG-Rywal), where the lesions occur but the spread of the virus is not restricted. We show that the virus is detected outside the cell death zone in all lesion developmental stages of HR lesions. We also measured the dynamics of lesions expansion in both genotypes. We show that while rapid lesion expansion is observed in SA-depleted plants, virus spread is even faster. On the other hand the majority of analyzed lesions slowly expand also in HR-conferred resistance opening the possibility that the infected cells are eventually engulfed by cell death zone. Taken altogether, we suggest that the HR cell death is separated from the resistance mechanisms which lead to PVY restriction in Ny-1 genetic background. We propose that HR should be regarded as a process where the dynamics of events is crucial for effectiveness of viral arrest albeit the exact mechanism conferring this resistance remains unknown.
Collapse
Affiliation(s)
- Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Guček
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
35
|
Onaga G, Wydra K, Koopmann B, Chebotarov D, Séré Y, Von Tiedemann A. High temperature effects on Pi54 conferred resistance to Magnaporthe oryzae in two genetic backgrounds of Oryza sativa. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:80-93. [PMID: 28282527 DOI: 10.1016/j.jplph.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
The global temperatures are predicted to rise due to climate change. However, knowledge on the mechanisms underlying the effect of high temperature (HT) on plant pathogen interaction is limited. We investigated the effect of elevated temperature on host phenotypic, biochemical and gene expression patterns in the rice-Magnaporthe oryzae (Mo) pathosystem using two genetic backgrounds, Co39 (Oryzae sativa-indica) and LTH (O. sativa-japonica) with (CO and LT) and without (Co39 and LTH) R gene (Pi54). After exposure to 28°C and 35°C the two genetic backgrounds showed contrasting responses to Mo. At 28°C, CO, Co39 and LTH displayed a more severe disease phenotype than LT. Surprisingly, CO became resistant to Mo after exposure to 35°C. CO and LT were used for further analysis to determine the defence related biochemical and transcriptome changes associated with HT induced resistance. Pre-exposure to 35°C triggered intense callose deposits and cell wall fluorescence of the attacked epidermal cells, as well as, increased hydrogen peroxide (H2O2) and salicylic acid (SA) levels. Transcriptional changes due to combined stress (35°C+Mo) were largely overridden by pathogen infection in both backgrounds, suggesting that the plants tended to shift their response to the pathogen. However, significant differences in global gene expression patterns occurred between CO and LT in response to both single (35°C and Mo) and double stress (35°C+Mo). Collectively, our results suggest that rice lines carrying Pi54 respond to Mo by rapid induction of callose and H2O2, and that these resistance mechanisms are amplified at HT. The relative difference in disease severity between CO and LT at 28°C suggests that the genetic background of japonica rice facilitates the function of Pi54 more than the background of indica rice. The phenotypic plasticity and gene expression differences between CO and LT reveal the presence of intricate background specific molecular signatures that may potentially influence adaptation to plant stresses.
Collapse
Affiliation(s)
- Geoffrey Onaga
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Germany; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.
| | - Kerstin Wydra
- Erfurt University of Applied Sciences, Horticulture - Plant Production and Climate Change, Leipziger Str. 77, 90085 Erfurt, Germany
| | - Birger Koopmann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Germany
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Yakouba Séré
- Africa Rice Center, P.O. Box 33581, Dar es Salaam, Tanzania
| | - Andreas Von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Germany
| |
Collapse
|
36
|
Wosula EN, Tatineni S, Wegulo SN, Hein GL. Effect of Temperature on Wheat Streak Mosaic Disease Development in Winter Wheat. PLANT DISEASE 2017; 101:324-330. [PMID: 30681928 DOI: 10.1094/pdis-07-16-1053-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-inoculated plants were first incubated at 10, 15, 20, and 25°C for 21 days, followed by 27°C for 14 days; and, in a second experiment, virus-inoculated plants were initially incubated at 27°C for 3 days, followed by 10, 15, 20, and 25°C for 21 days. In the first experiment, WSMV-GFP in susceptible 'Tomahawk' wheat at 10°C was restricted at the point of inoculation whereas, at 15°C, the virus moved systemically, accompanied with mild symptoms, and, at 20 and 25°C, WSMV elicited severe WSMV symptoms. In resistant 'Mace' wheat (PI 651043), WSMV-GFP was restricted at the point of inoculation at 10 and 15°C but, at 20 and 25°C, the virus infected systemically with no visual symptoms. Some plants that were not systemically infected at low temperatures expressed WSMV-GFP in regrowth shoots when later held at 27°C. In the second experiment, Tomahawk plants (100%) expressed systemic WSMV-GFP after 21 days at all four temperature levels; however, systemic WSMV expression in Mace was delayed at the lower temperatures. These results indicate that temperature played an important role in WSMV replication, movement, and symptom development in resistant and susceptible wheat cultivars. This study also demonstrates that suboptimal temperatures impair WSMV movement but the virus rapidly begins to replicate and spread in planta under optimal temperatures.
Collapse
Affiliation(s)
- E N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - S Tatineni
- United States Department of Agriculture-Agricultural Research Service, and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583
| | - S N Wegulo
- Department of Plant Pathology, University of Nebraska-Lincoln
| | - G L Hein
- Department of Entomology, University of Nebraska-Lincoln
| |
Collapse
|
37
|
Yang T, Meng Y, Chen LJ, Lin HH, Xi DH. The Roles of Alpha-Momorcharin and Jasmonic Acid in Modulating the Response of Momordica charantia to Cucumber Mosaic Virus. Front Microbiol 2016; 7:1796. [PMID: 27881976 PMCID: PMC5101195 DOI: 10.3389/fmicb.2016.01796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/25/2016] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein with a molecular weight of 29 kDa that is found in Momordica charantia, and has been shown to be effective against a broad range of human viruses as well as having anti-tumor activities. However, the role of endogenous α-MMC under viral infection and the mechanism of the anti-viral activities of α-MMC in plants are still unknown. To study the effect of α-MMC on plant viral defense and how α-MMC increases plant resistance to virus, the M. charantia–cucumber mosaic virus (CMV) interaction system was investigated. The results showed that the α-MMC level was positively correlated with the resistance of M. charantia to CMV. α-MMC treatment could alleviate photosystem damage and enhance the ratio of glutathione/glutathione disulfide in M. charantia under CMV infection. The relationship of α-MMC and defense related phytohormones, and their roles in plant defense were further investigated. α-MMC treatment led to a significant increase of jasmonic acid (JA) and vice versa, while there was no obvious relevance between salicylic acid and α-MMC. In addition, reactive oxygen species (ROS) were induced in α-MMC-pretreated plants, in a similar way to the ROS burst in JA-pretreated plants. The production of ROS in both ibuprofen (JA inhibitor) and (α-MMC+ibuprofen)-pretreated plants was reduced markedly, leading to a greater susceptibility of M. charantia to CMV. Our results indicate that the anti-viral activities of α-MMC in M. charantia may be accomplished through the JA related signaling pathway.
Collapse
Affiliation(s)
- Ting Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - Yao Meng
- School of Medical Laboratory Science, Chengdu Medical College Chengdu, China
| | - Li-Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| |
Collapse
|
38
|
Sempere RN, Gómez-Aix C, Ruíz-Ramón F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates. PHYTOPATHOLOGY 2016; 106:395-406. [PMID: 26667188 DOI: 10.1094/phyto-10-15-0277-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.
Collapse
Affiliation(s)
- Raquel N Sempere
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Cristina Gómez-Aix
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Fabiola Ruíz-Ramón
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Pedro Gómez
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Beata Hasiów-Jaroszewska
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - María Amelia Sánchez-Pina
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Miguel A Aranda
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| |
Collapse
|
39
|
Jian W, Zhang DW, Zhu F, Wang SX, Pu XJ, Deng XG, Luo SS, Lin HH. Alternative oxidase pathway is involved in the exogenous SNP-elevated tolerance of Medicago truncatula to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:79-87. [PMID: 26962709 DOI: 10.1016/j.jplph.2016.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/06/2015] [Accepted: 01/22/2016] [Indexed: 05/04/2023]
Abstract
Exogenous application of sodium nitroprusside (SNP) would enhance the tolerance of plants to stress conditions. Some evidences suggested that nitric oxide (NO) could induce the expression of alternative oxidase (AOX). In this study, Medicago truncatula (Medicago) was chosen to study the role of AOX in the SNP-elevated resistance to salt stress. Our results showed that the expression of AOX genes (especially AOX1 and AOX2b1) and cyanide-resistant respiration rate (Valt) could be significantly induced by salt stress. Exogenous application of SNP could further enhance the expression of AOX genes and Valt. Exogenous application of SNP could alleviate the oxidative damage and photosynthetic damage caused by salt stress. However, the stress resistance was significantly decreased in the plants which were pretreated with n-propyl gallate (nPG). More importantly, the damage in nPG-pretreated plants could not be alleviated by application of SNP. Further study showed that effects of nPG on the activities of antioxidant enzymes were minor. These results showed that AOX pathway played an important role in the SNP-elevated resistance of Medicago to salt stress. AOX could contribute to regulating the accumulation of reactive oxygen (ROS) and protect of photosystem, and we proposed that all these were depend on the ability of maintaining the homeostasis of redox state.
Collapse
Affiliation(s)
- Wei Jian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Da-wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Shuo-xun Wang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Xiao-jun Pu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Xing-guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Shi-shuai Luo
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Hong-hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China.
| |
Collapse
|
40
|
Huber AE, Bauerle TL. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2063-79. [PMID: 26944636 DOI: 10.1093/jxb/erw099] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants require the capacity for quick and precise recognition of external stimuli within their environment for survival. Upon exposure to biotic (herbivores and pathogens) or abiotic stressors (environmental conditions), plants can activate hydraulic, chemical, or electrical long-distance signals to initiate systemic stress responses. A plant's stress reactions can be highly precise and orchestrated in response to different stressors or stress combinations. To date, an array of information is available on plant responses to single stressors. However, information on simultaneously occurring stresses that represent either multiple, within, or across abiotic and biotic stress types is nascent. Likewise, the crosstalk between hydraulic, chemical, and electrical signaling pathways and the importance of each individual signaling type requires further investigation in order to be fully understood. The overlapping presence and speed of the signals upon plant exposure to various stressors makes it challenging to identify the signal initiating plant systemic stress/defense responses. Furthermore, it is thought that systemic plant responses are not transmitted by a single pathway, but rather by a combination of signals enabling the transmission of information on the prevailing stressor(s) and its intensity. In this review, we summarize the mode of action of hydraulic, chemical, and electrical long-distance signals, discuss their importance in information transmission to biotic and abiotic stressors, and suggest future research directions.
Collapse
Affiliation(s)
- Annika E Huber
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| | - Taryn L Bauerle
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| |
Collapse
|
41
|
Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep 2016; 6:19715. [PMID: 26792235 PMCID: PMC4726131 DOI: 10.1038/srep19715] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022] Open
Abstract
Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency.
Collapse
|
42
|
Qian Y, Hou H, Shen Q, Cai X, Sunter G, Zhou X. RepA Protein Encoded by Oat dwarf virus Elicits a Temperature-Sensitive Hypersensitive Response-Type Cell Death That Involves Jasmonic Acid-Dependent Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:5-21. [PMID: 26720685 DOI: 10.1094/mpmi-07-15-0149-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hypersensitive response (HR) is a component of disease resistance that is often induced by pathogen infection, but essentially no information is available for members of the destructive mastreviruses. We have investigated an HR-type response elicited in Nicotiana species by Oat dwarf virus (ODV) and have found that expression of the ODV RepA protein but not other ODV-encoded proteins elicits the HR-type cell death associated with a burst of H2O2. Deletion mutagenesis indicates that the first nine amino acids (aa) at the N terminus of RepA and the two regions located between aa residues 173 and 195 and between aa residues 241 and 260 near the C terminus are essential for HR-type cell-death elicitation. Confocal and electron microscopy showed that the RepA protein is localized in the nuclei of plant cells and might contain bipartite nuclear localization signals. The HR-like lesions mediated by RepA were inhibited by temperatures above 30°C and involvement of jasmonic acid (JA) in HR was identified by gain- and loss-of-function experiments. To our knowledge, this is the first report of an elicitor of HR-type cell death from mastreviruses.
Collapse
Affiliation(s)
- Yajuan Qian
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Huwei Hou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
- 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qingtang Shen
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Xinzhong Cai
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Garry Sunter
- 3 Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A
| | - Xueping Zhou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
- 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
43
|
Aguilar E, Allende L, Del Toro FJ, Chung BN, Canto T, Tenllado F. Effects of Elevated CO₂and Temperature on Pathogenicity Determinants and Virulence of Potato virus X/Potyvirus-Associated Synergism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1364-1373. [PMID: 26422405 DOI: 10.1094/mpmi-08-15-0178-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Infections of plants by multiple viruses are common in nature and may result in synergisms in pathologies. Several environmental factors influence plant-virus interactions and act on virulence and host defense responses. Mixed viral infections may be more frequent under environmental conditions associated with global warming. Here, we address how changes in the two main parameters behind global warming, carbon dioxide concentrations ([CO₂]) and temperature, may affect virulence of Potato virus X (PVX)/potyvirus-associated synergism compared with single infections in Nicotiana benthamiana. Elevated [CO₂] resulted in attenuated virulence of single infection by PVX, which correlated with a lower accumulation of virus. In contrast, virulence of PVX/potyvirus-associated synergism was maintained at elevated [CO₂]. On the other hand, elevated temperature decreased markedly both virulence and virus titers in the synergistic infection. We also show that the HR-like response elicited by transient coexpression of PVX P25 together with the potyviral helper component-proteinase protein was significantly enhanced by elevated temperature, whereas it was reduced by elevated [CO₂]. Both proteins are main pathogenicity determinants in PVX-associated synergisms. These findings indicate that, under environmental conditions associated with global warming, virulence of PVX/potyvirus-associated synergisms is expected to vary relative to single infections and, thus, may have pathological consequences in the future.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Lucía Allende
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Francisco J Del Toro
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Bong-Nam Chung
- 2 National Institute of Horticultural & Herbal Science. Agricultural Research Center for Climate Change. 281, Ayeon-ro, Jeju, 690-150, Jeju Island, Republic of Korea
| | - Tomás Canto
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Francisco Tenllado
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| |
Collapse
|
44
|
Zhu F, Deng XG, Xu F, Jian W, Peng XJ, Zhu T, Xi DH, Lin HH. Mitochondrial alternative oxidase is involved in both compatible and incompatible host-virus combinations in Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:26-35. [PMID: 26398788 DOI: 10.1016/j.plantsci.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) functions in the resistance to biotic stress. However, the mechanisms of AOX in the systemic antiviral defense response and N (a typical resistance gene)-mediated resistance to Tobacco mosaic virus (TMV) are elusive. A chemical approach was undertaken to investigate the role of NbAOX in the systemic resistance to RNA viruses. Furthermore, we used a virus-induced gene-silencing (VIGS)-based genetics approach to investigate the function of AOX in the N-mediated resistance to TMV. The inoculation of virus significantly increased the NbAOX transcript and protein levels and the cyanide-resistant respiration in the upper un-inoculated leaves. Pretreatment with potassium cyanide greatly increased the plant's systemic resistance, whereas the application of salicylhydroxamic acid significantly compromised the plant's systemic resistance. Additionally, in NbAOX1a-silenced N-transgenic Nicotiana benthamiana plants, the inoculated leaf collapsed and the movement of TMV into the systemic tissue eventually led to the spreading of HR-PCD and the death of the whole plant. The hypersensitive response marker gene HIN1 was significantly increased in the NbAOX1a-silenced plants. Significant amounts of TMV-CP mRNA and protein were detected in the NbAOX1a-silenced plants but not in the control plants. Overall, evidence is provided that AOX plays important roles in both compatible and incompatible plant-virus combinations.
Collapse
Affiliation(s)
- Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan Bioengineering Insititute, 430415, China
| | - Wei Jian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xing-Ji Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
45
|
Pandey P, Ramegowda V, Senthil-Kumar M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:723. [PMID: 26442037 PMCID: PMC4584981 DOI: 10.3389/fpls.2015.00723] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/28/2015] [Indexed: 05/18/2023]
Abstract
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat-drought stress as a major abiotic stress combination and, drought-pathogen and heat-pathogen as examples of abiotic-biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | | |
Collapse
|
46
|
Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:47-54. [PMID: 25546584 DOI: 10.1016/j.jplph.2014.11.008] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/29/2014] [Accepted: 11/29/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants are simultaneously exposed to a combination of biotic and abiotic stresses that limit crop yields. Only recently, researchers have started understanding the molecular basis of combined biotic and abiotic stress interactions. Evidences suggest that under combined stress plants exhibit tailored physiological and molecular responses, in addition to several shared responses as part of their stress tolerance strategy. These tailored responses are suggested to occur only in plants exposed to simultaneous stresses and this information cannot be inferred from individual stress studies. In this review article, we provide update on the responses of plants to simultaneous biotic and abiotic stresses, in particular drought and pathogen. Simultaneous occurrence of drought and pathogen during plant growth provokes complex pathways controlled by different signaling events resulting in positive or negative impact of one stress over the other. Here, we summarize the effect of combined drought and pathogen infection on plants and highlight the tailored strategies adapted by plants. Besides, we enumerate the evidences from pathogen derived elicitors and ABA response studies for understanding simultaneous drought and pathogen tolerance.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, 560065, India.
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
47
|
Liao Y, Tian M, Zhang H, Li X, Wang Y, Xia X, Zhou J, Zhou Y, Yu J, Shi K, Klessig DF. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. THE NEW PHYTOLOGIST 2015; 205:1296-1307. [PMID: 25365924 DOI: 10.1111/nph.13137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.
Collapse
Affiliation(s)
- Yangwenke Liao
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Huan Zhang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xin Li
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yu Wang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Daniel F Klessig
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
48
|
Obrępalska-Stęplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. FRONTIERS IN PLANT SCIENCE 2015; 6:903. [PMID: 26579153 PMCID: PMC4625170 DOI: 10.3389/fpls.2015.00903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at C27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day) on the accumulation rate of the virus and satellite RNA (satRNA) in Nicotiana benthamiana plants infected by peanut stunt virus (PSV) with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV plus satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV plus satRNA-infected plants the shift in the temperature barely increased the level of stress-related proteins.
Collapse
Affiliation(s)
- Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
- *Correspondence: Aleksandra Obrępalska-Stęplowska
| | - Jenny Renaut
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Sebastien Planchon
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Arnika Przybylska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz UniversityPoznań, Poland
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women UniversitySeoul, South Korea
| |
Collapse
|
49
|
Ramalho T, Figueira A, Sotero A, Wang R, Geraldino Duarte P, Farman M, Goodin M. Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality. Virology 2014; 464-465:385-396. [DOI: 10.1016/j.virol.2014.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/24/2014] [Accepted: 07/19/2014] [Indexed: 10/24/2022]
|
50
|
Byth-Illing HA, Bornman L. Heat shock, with recovery, promotes protection of Nicotiana tabacum during subsequent exposure to Ralstonia solanacearum. Cell Stress Chaperones 2014; 19:193-203. [PMID: 23943343 PMCID: PMC3933611 DOI: 10.1007/s12192-013-0445-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022] Open
Abstract
Host-pathogen interactions in plants are complex and potentially influenced by heat shock/stress (HS). Host HS proteins (HSPs) induced prior to bacterial exposure may facilitate the folding of newly synthesized defense proteins and promote incompatible host-pathogen interactions. We hypothesized that a non-lethal HS, with recovery, promotes protection of Nicotiana tabacum during subsequent exposure to avirulent soilborne necrotrophic pathogen Ralstonia solanacearum. The objective of this study included investigating the effects of HS with or without recovery on the outcome of bacterial exposure to a virulent and avirulent biovar of R. solanacearum in N. tabacum cell suspensions. This was assessed by quantifying host Hsp70/Hsc70 levels, mitochondrial electron (e (-)) transport activity as a marker of viability, and phosphatidylserine externalization and DNA fragmentation as markers of apoptosis. Our findings support the hypothesis that HS, with recovery, promotes protection of N. tabacum during subsequent exposure to R. solanacearum, suggesting a role for Hsp70/Hsc70 in the observed protection of e (-) transport, increased apoptosis, and DNA fragmentation.
Collapse
Affiliation(s)
- Heather-Anne Byth-Illing
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa,
| | | |
Collapse
|